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3 LIP, Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, INRIA,
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Abstract. In this paper we show duality results between categories of
equations and categories of coequations. These dualities are obtained
as restrictions of dualities between categories of algebras and coalge-
bras, which arise by lifting contravariant adjunctions on the base cate-
gories. By extending this approach to (co)algebras for (co)monads, we
retrieve the duality between equations and coequations for automata
proved by Ballester-Bolinches, Cosme-Llópez and Rutten, and general-
ize it to dynamical systems.

1 Introduction

Equations play a fundamental role in (universal) algebra. Their categorical dual
in universal coalgebra is the notion of coequations. Coequations were studied
extensively in the search for a dual of Birkhoff’s theorem and the specification
of classes of coalgebras (see, e.g., [1,2,5,9,11,12,18,19,21–23]).

The aim of the current paper is a different one: to relate equations to coequa-
tions and vice versa. Our starting point is the abstract definition of (co)equations
on (co)algebras for an endofunctor. These definitions give rise to categories of
equations and coequations; we seek sufficient conditions to obtain dual equiva-
lences between such categories.

We start with a more general concept than a duality, namely, a contravari-
ant adjunction. Our approach is to lift adjunctions to categories of algebras and
coalgebras [13]. In the setting of a contravariant adjunction, and by using preser-
vation of limits by adjoints, we have that sets of equations are sent to sets of
coequations. To guarantee the converse, i.e., that coequations are also mapped
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Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) oper-
ated by the French National Research Agency (ANR).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
I. Hasuo (Ed.): CMCS 2016, LNCS 9608, pp. 73–93, 2016.
DOI: 10.1007/978-3-319-40370-0 6



74 J. Salamanca et al.

to equations, we assume that the contravariant adjunction is a duality. This
gives us a duality result between equations and coequations. We derive known
dualities between equations and coequations for automata [7,24,25] as a special
case of this abstract approach, and we generalize the duality shown in [7] to
include (general) dynamical systems.

As a natural next step in this study we include monads and comonads into the
picture and prove a lifting theorem to lift contravariant adjunctions to Eilenberg-
Moore categories. From this lifting theorem we show the following results:

– Dualities between equations and coequations for Eilenberg-Moore categories.
– Lifting of contravariant adjunctions to Eilenberg-Moore categories where,

given a contravariant adjunction and a comonad, we define a canonical monad.
– Lifting of dualities to Eilenberg-Moore categories where, given a duality and

a monad, we define a canonical comonad.

The paper is organized as follows. Section 2 is a preliminary section in which
we introduce some notation we use in the paper. In Sect. 3 we introduce the
abstract definitions of equations and coequations, satisfaction of equations for
algebras and satisfaction of coequations for coalgebras. Section 4 introduces the
notion of a contravariant adjunction. We state a theorem for lifting contravariant
adjunctions (Theorem 3), which is essentially a special case of [13, 2.14.Theorem],
and then illustrate this lifting theorem through several examples. In Sect. 5 we
focus on the particular case that the contravariant adjunction is a duality to
show a general duality result between equations and coequations. Further, we
show how to get a canonical notion of satisfaction of equations for coalgebras. In
Sect. 6 we include monads and comonads in our setting to prove a lifting theorem
(Theorem 11) that allows us to lift contravariant adjunctions to a contravariant
adjunction between Eilenberg-Moore categories. We show how to construct a
comonad from a given monad and vice versa to get respective lifting theorems.
Finally, in Sect. 7 we apply the lifting theorems (to Eilenberg-Moore) to the
study of equations and coequations for dynamical systems and deterministic
automata.

2 Preliminaries

In this section we introduce the notation for categories of algebras and coalgebras
that we will use in the paper. We assume that the reader is familiar with basic
concepts from category theory and coalgebra, see, e.g., [6,22].

Given a category D and an endofunctor L : D → D, we denote by alg(L) the
category of L-algebras and their homomorphisms, i.e., objects in alg(L) are pairs
(X,α) where X is an object in D and α ∈ D(LX,X), and a homomorphism from
an L-algebra (X1, α1) to an L-algebra (X2, α2) is a morphism h ∈ D(X1,X2)
such that h ◦ α1 = α2 ◦ Lh.

Dually, for a given endofunctor B : C → C on a category C, coalg(B) denotes
the category of B-coalgebras, i.e., objects in coalg(B) are pairs (Y, β) where Y
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is an object in C and β ∈ C(Y,BY ), and a homomorphism from a B-coalgebra
(Y1, β1) to a B-coalgebra (Y2, β2) is a morphism h ∈ C(Y1, Y2) such that β2 ◦h =
Bh ◦ β1.

In case that we have a monad L = (L, η, μ), we let Alg(L) denote the category
of (Eilenberg-Moore) L-algebras, i.e., algebras for the monad L. Similarly, for
a comonad B = (B, ε, δ), the category Coalg(B) consists of Eilenberg-Moore
coalgebras for the comonad B. Notice that we use the notation L,B to refer to
(co)monads, and L,B to refer to the underlying functors.

Each of the categories alg(L), Alg(L), coalg(B), and Coalg(B) has a canonical
forgetful functor into the underlying category. For instance, the forgetful functor
for Alg(L) is the functor U : Alg(L) → D defined as U(X,α) = X and Uf = f
for any L-algebra morphism f . We will refer to those forgetful functors without
giving them a specific name.

3 Equations and Coequations

We introduce the abstract definitions of equations and coequations. Let L be
an endofunctor on D and S be an object in D. The free L-algebra on S gen-
erators is an algebra F(S) = (F(S), τ) ∈ alg(L) together with a morphism
η ∈ D(S,F(S)), called unit, satisfying the following universal property: for any
L-algebra X = (X,α) and any morphism f ∈ D(S,X) there is a unique mor-
phism f � ∈ alg(L)(F(S),X) such that f � ◦ η = f , i.e., the following diagram
commutes:

S

F(S)

LF(S)

X

LX

η
∀f

τ α
f �

Lf �

We define equations for L on S generators as epimorphisms with domain F(S),
i.e., elements eP ∈ alg(L)(F(S), P ) that are epimorphisms for some P = (P, ζ) ∈
alg(L). Observe that if L is a polynomial functor on Set (see, e.g., [22, Section 10])
then equations can be identified with L-congruences C of F(S), since F(S)/C ∼=
P for C = ker(eP ), and elements in C are pairs of terms with variables on the set
S. This corresponds to the classical definition of equations in universal algebra.
Finally, we say that an L-algebra X = (X,α) satisfies the equation eP , denoted
as (X,α) |= eP , if for any morphism f ∈ D(S,X) the morphism f � factors
through eP , i.e., there exists gf ∈ alg(L)(P,X) such that the following diagram
commutes:
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S

F(S)

LF(S)

P

LP

X

LX

η

eP

τ

LeP

ζ α
gf

Lgf

∀f

f �

Now, assuming that the free L-algebra on S generators F(S) = (F(S), τ)
exists, we can define the category eq(L, S) of equations for L on S generators as
follows:

Objects of eq(L, S) : epimorphisms eX ∈ alg(L)(F(S),X) for some
X = (X,α) ∈ alg(L).

Arrows of eq(L, S) : for eXi
∈ eq(L, S), i = 1, 2, a morphism

f ∈ eq(L, S)(eX1 , eX2) is a morphism f ∈ alg(L)(X1,X2)
such that the following diagram commutes:

F(S) X1

X2

eX1

eX2 f

Notice that morphisms in eq(L, S) are necessarily epimorphisms.

Example 1. Consider the Set endofunctor L given by LX = A × X, where A
is a fixed set, and the singleton set S = 1 of generators. Then an L-algebra
together with an assignment of the single generator is a pointed deterministic
automaton, i.e., a triple (X,α, x) consisting of a set of states X, a transition
function α : A × X → X and an element x ∈ X.

The free L-algebra on 1 is given by A∗ = (A∗, τ) where τ : A × A∗ → A∗

is defined by τ(a,w) = wa and the unit η : 1 → A∗ maps the single generator
to the empty word ε ∈ A∗, i.e., η = ε. Given a pointed automaton (X,α, x) we
obtain a unique homomorphism rx : A∗ → X, given by rx(ε) = x and rx(wa) =
α(a, rx(w)). In the sequel we sometimes denote rx(w) by w(x), the state we reach
from the state x by processing the word w.

A right congruence on A∗ is an equivalence relation C ⊆ A∗ × A∗ such that
for any a ∈ A and (u, v) ∈ C we have that (ua, va) ∈ C. Right congruences
C correspond to equations as defined above, by letting A∗/C = (A∗/C, [τ ]) ∈
alg(L) where [τ ] is given by [τ ](a, [w]) = [wa] and the epimorphism (equation)
eC ∈ alg(L)(A∗, A∗/C) maps every word to its equivalence class.
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An L-algebra (X,α) satisfies the equation eC , i.e., (X,α) |= C, if and only
if for every (u, v) ∈ C and any x ∈ X, we have rx(u) = rx(v). This coincides
with satisfaction of equations as defined in [7].

Notice that the function τ ′ : A × A∗ → A∗ defined as τ ′(a,w) = aw is such
that the algebra (A∗, τ ′) is also a free L-algebra, which gives us the notion of
left congruence as a corresponding notion of equation. �	
We dualize the definition of equations to obtain the definition of coequations,
e.g., [18,19,22]. Let B be an endofunctor on C and R be an object in C. The cofree
B-coalgebra on R colours is a coalgebra C(R) = (C(R), υ) ∈ coalg(B) together
with a morphism ε ∈ C(C(R), R), called counit, satisfying the following universal
property: for any B-coalgebra Y = (Y, β) and any morphism (colouring) f ∈
C(Y,R) there is a unique morphism f � ∈ coalg(L)(Y,C(R)) such that ε ◦ f � = f ,
i.e., the following diagram commutes:

R

C(R)

BC(R)

Y

BY

ε∀f

υβ
f �

Bf �

We define coequations for B on R colours as monomorphisms with codomain
C(R), i.e., elements mQ ∈ coalg(B)(Q,C(R)) that are monomorphisms for
some Q = (Q, δ) ∈ coalg(B). We say that a B-coalgebra Y = (Y, β) satisfies
the coequation mQ, denoted as (Y, β) ||= mQ (notice the difference between
the symbols: |= for equations and ||= for coequations), if for any morphism
(colouring) f ∈ C(Y,R) the morphism f � factors through mQ, i.e., there exists
gf ∈ coalg(B)(Y,Q) such that the following diagram commutes:

R

C(R)

LC(R)

Q

BQ

Y

BY

ε

mQ

υ

BmQ

δβ
gf

Bgf

∀f

f �

Assuming that the cofree B-coalgebra on R colours C(R) = (C(R), υ) exists,
define the category coeq(B,R) of coequations for B on R colours whose objects
are monomorphisms mY ∈ coalg(B)(Y,C(R)) for some Y = (Y, β) ∈ coalg(B),
and, a morphism between two objects mY1 and mY2 in coeq(B,R) is a mor-
phism g ∈ coalg(B)(Y1, Y2) such that mY2 ◦ g = mY1 . Notice that morphisms in
coeq(B,R) are necessarily monomorphisms.
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Example 2. For a given set A, consider the Set endofunctor B defined by
BX = XA, and consider the two-element set R = 2 of colours. Then a B-
coalgebra together with an assignment of colours to states is a coloured deter-
ministic automaton: a triple (Y, β, f) consisting of a set of states Y , a transition
function β : Y → Y A and an assignment of final states f : Y → 2.

The cofree B-coalgebra on 2 colours is given by 2A∗
= (2A∗

, υ) where
υ : 2A∗ → (2A∗

)A is given by right derivative

υ(L)(a) = La = {w | aw ∈ L}
and the counit ε : 2A∗ → 2 is given by ε(L) = L(ε). Given a coloured determinis-
tic automaton (Y, β, f), we obtain a unique B-coalgebra morphism l : Y → 2A∗

that maps every state to the language it accepts, i.e., l(x)(ε) = f(x) and
l(x)(aw) = l(β(x)(a))(w).

Coequations for B on R correspond to subsets of 2A∗
that are closed

under right derivatives, i.e., subcoalgebras of 2A∗
. Given any monomorphism

(coequation) mQ with codomain 2A∗
and a B-coalgebra (Y, β), we have that

(Y, β) ||= mQ if and only if for every 2-colouring f ∈ Set(Y, 2) the set of those
languages accepted by the states of the coloured automaton (Y, β, f) is contained
in Im(mQ). This coincides with satisfaction of coequations as defined in [7].

Similarly to the previous example, the function υ′ : 2A∗ → (2A∗
)A given by

left derivative
υ′(L)(a) = aL = {w | wa ∈ L}

is such that (2A∗
, υ′) is also a cofree B-coalgebra for which the corresponding

notion of coequations are subsets of 2A∗
closed under left derivatives. �	

4 Lifting Contravariant Adjunctions

In this section we recall the notion of a contravariant adjunction and how to lift it
to categories of algebras and coalgebras, according to [13,14]. We instantiate this
abstract approach in examples of constructions on various kinds of automata.

Given two contravariant functors F : C → D and G : D → C (i.e., F and G
reverse the direction of arrows), a contravariant adjunction between F and G,
denoted by F 
� G, is a bijection

D(X,FY ) ∼= C(Y,GX)

which is natural in both X ∈ D and Y ∈ C. Observe that both F and G
are on the codomain of the Hom-sets. Such a contravariant adjunction can be
equivalently defined by two units ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF that
satisfy the triangle identities GηFG ◦ ηGF

G = IdG and FηGF ◦ ηFG
F = IdF .

By standard preservation properties, both F and G map colimits to limits, in
particular initial objects to final objects and epimorphisms to monomorphisms.

Given a contravariant adjunction as above, if ηGF and ηFG are isomorphisms
then we say F,G form a duality, and denote it by F ∼= G. In this case, limits are
mapped to colimits and vice versa.
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Our basic setting consists of a contravariant adjunction between F and G, an
endofunctor B on C and an endofunctor L on D, depicted in the diagram below.
Throughout this paper we depict contravariant functors in diagrams with an ‘×’
at the beginning of the arrow.

C D


�

F

B

G

L

In this setting, we are interested in lifting the adjunction to a contravariant
adjunction between lifted functors ̂F : coalg(B) → alg(L) and ̂G : alg(L) →
coalg(B) of F and G, respectively, as in the following picture:

C D

coalg(B) alg(L)


�

�

F

B

G

L

̂F

̂G

(1)

where the vertical arrows are forgetful functors. An important consequence of
such a lifting is that, if L has an initial algebra, then it is mapped by ̂G to a
final B-coalgebra.

In [13, 2.14.Theorem] it is shown that a sufficient condition for such a lifting
is the existence of a natural isomorphism γ : GL ⇒ BG. This is summarized by
the theorem below.

Theorem 3. Let F : C → D and G : D → C be contravariant functors that
form a contravariant adjunction. Let B be an endofunctor on C and L be an
endofunctor on D. If there is a natural isomorphism γ : GL ⇒ BG, then

1. The adjunction F 
� G lifts to an adjunction as in Diagram (1), i.e.,
to a contravariant adjunction between functors ̂F : coalg(B) → alg(L) and
̂G : alg(L) → coalg(B).

2. If F,G form a duality then ̂F , ̂G form a duality as well.

The functors ̂F : coalg(B) → alg(L) and ̂G : alg(L) → coalg(B) are defined
on objects as:

(Y
β−→ BY )

̂F
−→ (LFY
ρY−→ FBY

Fβ−→ FY )

(LX
α−→ X)

̂G
−→ (GX
Gα−→ GLX

γX−→ BGX)
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and on morphisms as ̂F = F and ̂G = G. The natural transformation ρ : LF ⇒
FB in the definition of ̂F is defined as the mate of the inverse γ−1 : BG ⇒ GL:

ρ
def.= FBηGF ◦ Fγ−1F ◦ ηFGLF,

using the units ηGF and ηFG of the adjunction. Natural transformations of the
form ρ : LF ⇒ FB and the definition of ̂F form the heart of the approach
to coalgebraic modal logic based on contravariant adjunctions/dualities (see,
e.g., [8,15,16,20]). There is a one-to-one correspondence between such natural
transformations and those of the form BG ⇒ GL, using the above construction.
We are only interested in the case where the natural transformation BG ⇒ GL
is an isomorphism, to lift adjunctions, as in [17]. For notational convenience, the
direction in γ : GL ⇒ BG is reversed in the current paper.

In the rest of this section we provide examples and applications of Theorem 3
and the setting in Diagram (1).

Example 4. [17, Example 4] For a fixed set A consider the following situation:

Set Set

FX = GX = 2X

LX = (A × X) + 1

BY = 2 × Y A

γX : 2A×X+1 → 2 × (2X)A

�

F

B

G

L

Here L-algebras are pointed deterministic automata on A (Example 1) and B-
coalgebras are two-coloured deterministic automata on A (Example 2). The con-
travariant functors F and G form a contravariant adjunction which, by The-
orem 3, can be lifted to an adjunction between ̂F and ̂G. The isomorphism
γ : GL ⇒ BG is defined for any X as the function γX : 2A×X+1 → 2 × (2X)A

such that γX(f) = (f(·), λa. λx.f(a, x)).
Given a B-coalgebra (Y, 〈c, β〉) we have that ̂F (Y, 〈c, β〉) = (2Y , [α, i]) where

α : A × 2Y → 2Y and i : 1 → 2Y are functions defined as follows:

i(·) = c−1({1}) = accepting states of (Y, 〈c, β〉),
α(a, Z) = {y ∈ Y | β(y)(a) ∈ Z}.

Given an L-algebra (X, [α, i]) we have that ̂G(X, [α, i]) = (2X , 〈c, β〉) where the
functions c : 2X → 2 and β : 2X → (2X)A are defined as:

c(Z) = 1 iff i(·) ∈ Z

β(Z)(a) = {x ∈ X | α(a, x) ∈ Z}
Recall from Example 1 that the initial L-algebra is given by (A∗, [η, τ ′]),

where A∗ is the free monoid with generators A and identity element ε, η : 1 → A∗

is the empty word ε and τ ′ : A×A∗ → A∗ is the concatenation function given by
τ ′(a,w) = aw. Because of the contravariant adjunction, the initial L-algebra is
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sent by ̂G to the final B-coalgebra, given by ̂G(A∗, [η, τ ′]) = (2A∗
, 〈ε̂, τ̂〉) where

ε̂(L) = L(ε) and τ̂(L)(a)(w) = L(aw). Note that the final B-coalgebra is not
sent by ̂F to the initial L-algebra. �	
Example 5. Let CABA be the category of complete atomic Boolean algebras
whose morphisms are complete Boolean algebra homomorphisms. For a fixed set
A consider the following situation:

CABA Set

FY = At(Y )

GX = 2X

LX = (A × X) + 1

BY = 2 × Y A

γX : 2A×X+1 → 2 × (2X)A

∼=
F

B

G

L

Here At(Y ) denotes the set of atoms of the object Y in CABA. The contravariant
functors F and G form a contravariant adjunction, in fact a duality, which, by
Theorem 3, can be lifted to a duality between ̂F and ̂G if we consider the canon-
ical natural isomorphism γ : GL ⇒ BG defined for every X as the morphism
γX : 2A×X+1 → 2 × (2X)A such that γX(f) = (f(·), λa. λx.f(a, x)).

Given a B-coalgebra (Y, 〈c, β〉), we have that ̂F (Y, 〈c, β〉) = (At(Y ), [α, i])
where the functions α : A × At(Y ) → At(Y ) and i : 1 → At(Y ) are defined as
follows:

i(·) = the unique element y0 ∈ At(Y ) s.t. c(y0) = 1,
α(a, y) = the unique element y′ ∈ At(Y ) s.t. β(y′)(a) ≥ y.

In particular, if P ⊆ 2A∗
is a preformation of languages [7, Definition 11], i.e.,

P ∈ CABA and it is closed under left and right derivatives1, then (P, 〈ε̂, τ̂ ′〉) ∈
coalg(B) where ε̂(L) = L(ε) and τ̂ ′(L)(a) = aL. In this case, ̂F (P, 〈ε̂, τ̂ ′〉) =
free(P ) which is the quotient A∗/C where C is the set, in fact congruence, of
all equations satisfied by the automaton (P, τ̂), where τ̂(L)(a) = La (see [7]).

Given an L-algebra (X, [α, i]), we have that ̂G(X, [α, i]) = (2X , 〈c, β〉) where
the CABA morphisms c : 2X → 2 and β : 2X → (2X)A are defined as

c(Z) = 1 iff i(·) ∈ Z

β(Z)(a) = {x ∈ X | α(a, x) ∈ Z}.

In particular, if C is a congruence of the monoid A∗ then (A∗/C, [[τ ′], [ε]]) ∈
alg(L) where [τ ′](a, [w]) = [aw]. In this case, ̂G(A∗/C, [[τ ′], [ε]]) ∼= cofree(A∗/C)
which is the minimum set of coequations that the automaton (A∗/C, [τ ]) satisfies,
where [τ ](a, [w]) = [wa] (see [7]).

1 P ⊆ 2A∗
is closed under right (left) derivatives if for every L ∈ P and a ∈ A, La ∈ P

(aL ∈ P ). Here La(w) = L(aw), and aL(w) = L(wa), w ∈ A∗.



82 J. Salamanca et al.

Similarly to the previous example, the initial L-algebra A∗ = (A∗, [η, τ ′]),
where η = ε and τ ′(a,w) = aw, is sent by ̂G to the final B-coalgebra 2A∗

=
(2A∗

, 〈ε̂, τ̂〉), where ε̂(L) = L(ε) and τ̂(L)(a)(w) = L(aw). Also, because the
contravariant adjunction is a duality, the final B-coalgebra 2A∗

is sent by ̂F
to the initial L-algebra A∗. We will explore this case further in Sect. 5 to get
dualities between sets of equations and sets of coequations. �	
Example 6. For a fixed field K, let VecK be the category of vector spaces over K
with linear maps. Let A be a fixed set and consider the following situation:

VecK VecK

FX = GX = X∂

LX = K + (A × X)

BY = K × Y A

γX : (K + A × X)∂ → K × (X∂)A


�

F

B

G

L

Here X∂ = VecK(X,K), the dual space of X, and A × X :=
∐

a∈A X. We
have that the contravariant functors F and G form a contravariant adjunction
which, by Theorem 3, can be lifted to a contravariant adjunction between ̂F
and ̂G if we consider the canonical natural isomorphism γ : GL ⇒ BG defined
for every X as the map γX : (K + A × X)∂ → K × (X∂)A such that γX(ϕ) =
(ϕ(1), λa. λx.ϕ(a, x)).

Given a B-coalgebra (Y, 〈c, β〉), we have that ̂F (Y, 〈c, β〉) = (Y ∂ , [i, α]) where
i : K → Y ∂ and α : A × Y ∂ → Y ∂ are linear maps which are defined on the
canonical basis as:

i(1)(y) = c(y)
α(a, ϕ)(y) = (ϕ ◦ β(y))(a) = ϕ(β(y)(a))

In particular, if S ⊆ K
A∗

is a subsystem such that for every f ∈ S and a ∈ A,
fa, af ∈ S, where fa(w) = f(aw) and af(w) = f(wa), w ∈ A∗, then we have
that (S, 〈ε̂, τ̂ ′〉) ∈ coalg(B) where ε̂(f) = f(ε) and τ̂ ′(f)(a) = af . In this case,
̂F (S, 〈ε̂, τ̂ ′〉) ∼= free(S) which is the quotient V (A∗)/C where C is the set, in fact
linear congruence, of all linear equations satisfied by the automaton (S, τ̂). Here
V (A∗) = {φ : A∗ → K | supp(φ) is finite}, where supp(φ) = {w ∈ A∗ | φ(w) �=
0} is the support of φ, and the function τ̂ is defined as τ̂(f)(a) = fa (see [25]).

Given an L-algebra (X, [i, α]), we have that ̂G(X, [i, α]) = (X∂ , 〈c, β〉) where
the linear maps c : X∂ → K and β : X∂ → (X∂)A are defined as

c(ϕ) = ϕ(i(1))
β(ϕ)(a)(x) = ϕ(α(a, x))

In particular, if C ⊆ V (A∗) × V (A∗) is a linear congruence on V (A∗), then
we have that (V (A∗)/C, [[τ ′], [ε]]) ∈ alg(L), where [τ ′](a, [φ]) = [aφ], and we
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have that ̂G(V (A∗)/C, [[τ ′], [ε]]) ∼= cofree(V (A∗)/C) which is the minimum set
of coequations (power series) satisfied by the automaton (V (A∗)/C, [τ ]), where
[τ ](a, [φ]) = [φa] (see [25]).

Notice that the contravariant adjunction is not a duality, but if we restrict to
vector spaces of finite dimension then we get a duality. In the latter case there
is no initial L-algebra or, equivalently, there is no final B-coalgebra. �	

5 Duality Between Equations and Coequations

In Sect. 3, we defined equations as epimorphisms from an initial algebra and
coequations as monomorphisms into a final coalgebra. In the previous section,
we have seen how to relate initial algebras and final coalgebras by lifting con-
travariant adjunctions and dualities. Next, we describe how to apply these liftings
to obtain a correspondence between equations and coequations.

If we lift the contravariant adjunction on the base categories to a contravari-
ant adjunction ̂F : coalg(B) → alg(L) and ̂G : alg(L) → coalg(B) as in the
previous section, then ̂G sends the initial L-algebra to the final B-coalgebra,
and ̂G sends epimorphisms to monomorphisms. As a consequence, equations are
sent by ̂G to coequations. However, ̂F does not map coequations to equations,
in general.

In order to obtain a full correspondence between equations and coequations,
suppose that the contravariant adjunction between F and G is a duality (and
that there is a natural isomorphism γ : GL ⇒ BG). Then, by Theorem 3, the
duality between F and G lifts to a duality between ̂F and ̂G. In this case, we
can add another level to the picture in (1), yielding a duality between equations
and coequations:

C D

coalg(B) alg(L)

coeq(B, G(S)) eq(L, S)

∼=

∼=

∼=

F

B

G

L

̂F

̂G

̂F

̂G

(2)

where eq(L, S) and coeq(B,G(S)) are the categories of equations for L on S
generators and coequations for B on G(S) colours respectively, as defined in
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Sect. 3, lower vertical arrows are forgetful functors, and upper vertical arrows are
the canonical functors U : coeq(B,G(S)) → coalg(B) and V : eq(L, S) → alg(S)
which are defined as U(mY ) = Y and V (eX) = X on objects and Uf = f and
V g = g on morphisms.

Theorem 7. Let F : C → D and G : D → C be contravariant functors that form
a duality. Let B be an endofunctor on C, L be an endofunctor on D with an
object S in D such that the free L-algebra F(S) on S generators exists. If there
is a natural isomorphism γ : GL ⇒ BG then:

1. The duality between F and G lifts to a duality ̂F : coeq(B,G(S)) → eq(L, S)
and ̂G : eq(L, S) → coeq(B,G(S)), as in Diagram (2).

2. Given eP ∈ eq(L, S), mQ ∈ coeq(B,G(S)), (X,α) ∈ alg(L), and (Y, β) ∈
coalg(B) we have:
(i) (X,α) |= eP if and only if ̂G(X,α) ||= ̂G(eP ).
(ii) ̂F (Y, β) |= ̂F (mQ) if and only if (Y, β) ||= mQ.

As an application of the previous theorem we have the following.

Example 8. (cf. Example 5) For a fixed set A consider the following situation:

CABA Set

FY = At(Y )

GX = 2X

LX = A × X

BY = Y A

γX : 2A×X → (2X)A

∼=
F

B

G

L

If we put S = 1, then we get a duality between eq(L, 1), whose objects can
be identified with right congruences of A∗, and coeq(B, 2), whose objects can
be identified with subalgebras Q ⊆ 2A∗

in CABA that are closed under left
derivatives. From this setting, if we consider congruences of A∗ and subalgebras
of 2A∗

that are closed both under left and right derivatives, we can derive the
duality between equations and coequations that was shown in [7, Theorem 22].
We will come back to this situation in a more general setting in Sect. 7.1 and
also in a slightly different setting in Sect. 7.2. �	
Example 9. In this example we explicitly show that if the contravariant adjunc-
tion is not a duality then sets of coequations are not always sent to sets of
equations. For the set A = {a, b} consider the situation:

Set Set

FX = GX = 2X

LX = A × X

BY = Y A

γX : 2A×X → (2X)A


�

F

B

G

L
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In this case, consider the set S = 1 of generators. The free L-algebra on S
generators is given by A∗ = (A∗, τ ′), where τ ′(a,w) = aw, and unit η = ε. The
cofree B-coalgebra on G(S) = 2 colours is the coalgebra 2A∗

= (2A∗
, υ) = ̂G(A∗),

where υ(L)(a)(w) = L(aw), and counit ε(L) = L(ε). Now, consider the element
mQ ∈ coeq(B, 2) where Q = {∅, A∗} and mQ is the inclusion map mQ : Q → 2A∗

.
Then the codomain of ̂F (mQ) is (2Q, α) where α(a, f) = α(b, f) = f for all
f ∈ 2Q (this definition of α follows from Example 4).

We have that 2Q = (2Q, α) cannot be a homomorphic image of A∗. In fact, if
there exists an epimorphism e ∈ alg(L)(A∗, 2Q) then there is a right congruence
C of A∗ such that (A∗/C, [τ ′]) ∼= (2Q, α) which means that A∗/C has four
equivalence classes and for each equivalence class [w] ∈ A∗/C we have that
[w] = [aw] = [bw], which is a contradiction since the last equality implies that
there is only one equivalence class. �	

5.1 Equations for Coalgebras

In this section we show how to define equations for coalgebras by using liftings
of contravariant adjunctions. The concepts presented here can be dualized to
define coequations for algebras.

Assume that we have lifted a contravariant adjunction between functors
F : C → D and G : D → C to a contravariant adjunction between ̂F : coalg(B) →
alg(L) and ̂G : alg(L) → coalg(B) for an endofunctor B on C and an endofunctor
L on D. Given an equation eP ∈ eq(L, S) for some S in D, we define, for a given
coalgebra (Y, β) in coalg(B), (Y, β) |= eP , and say that the coalgebra (Y, β)
satisfies the equation eP , as:

(Y, β) |= eP
def⇔ ̂F (Y, β) |= eP .

Notice that if ̂F and ̂G form a duality then ̂F (Y, β) |= eP is equivalent to
(Y, β) ||= ̂G(eP ). One could be tempted to use (Y, β) ||= ̂G(eP ) as a definition for
(Y, β) |= eP since ̂G(eP ) ∈ coeq(B,G(S)) but we prefer to avoid this since the
dual argument is not true in general, i.e., given mQ ∈ coeq(B,G(S)), ̂F (mQ) is
not always in eq(L, S), as it was shown in Example 9.

Example 10. Consider the situation given in Example 4 and let S = ∅. Then
we have that for a B-coalgebra (deterministic automaton) Y = (Y, 〈c, β〉) and a
right congruence C on A∗:

(Y, 〈c, β〉) |= C ⇔ ∀(u, v) ∈ C u(i(·)) = v(i(·)) in ̂F (Y, 〈c, β〉)
⇔ ∀(u, v) ∈ C {x ∈ X | c(u(x)) = 1} = {x ∈ X | c(v(x)) = 1}.

In words, a right congruence C on A∗ is satisfied by Y = (Y, 〈c, β〉) if for every
pair (u, v) ∈ C the set of states that accept u coincides with the set of states
that accept v.

In Example 1 we also defined satisfaction of right congruences for determin-
istic automata, as the canonical notion that arises by viewing (the transition
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structure of) automata as algebras. According to this, if we consider (Y, β) as
an A × IdSet-algebra, we have a direct definition for (Y, β) |= C. We conclude
this example by showing the relation between (Y, 〈c, β〉) |= C and (Y, β) |= C.

Consider the coloured automaton (Y, 〈c, β〉) on A = {a} given by:

t

a

s
a

r
a

If we denote by 〈u = v〉 the least right congruence containing the pair (u, v) ∈
A∗ × A∗, then we have that (Y, 〈c, β〉) |= 〈a = aa〉 since

{y ∈ Y | c(a(y)) = 1} = {r, s, t} = {y ∈ Y | c(aa(y)) = 1}

but (Y, β) �|= 〈a = aa〉 since a(r) = s �= t = aa(r). One can prove that (Y, β) |=
〈u = v〉 implies (Y, 〈c, β〉) |= 〈u = v〉 and that the converse holds if (Y, 〈c, β〉) is
minimal. �	

6 Lifting Contravariant Adjunctions to Eilenberg-Moore
Categories

In this section we extend the results from the previous sections, on lifting adjunc-
tions and dualities, to the case that the endofunctor L is a monad and the functor
B is a comonad. We state the main theorem for lifting contravariant adjunctions
to Eilenberg-Moore categories (Theorem 11), and obtain a theorem for dualities
between equations and coequations as a consequence. Further, given either a
monad or a comonad, we show how to derive a corresponding canonical comonad
or monad, respectively.

Assume a contravariant adjunction between F : C → D and G : D → C, a
monad L = (L, η, μ) on D, and a comonad B = (B, ε, δ) on C, as summarized in
the following picture:

C D


�

F

B = (B, ε, δ)

G

L = (L, η, μ)

Then we can ask under what conditions the contravariant adjunction can be
lifted to functors ̂F : Coalg(B) → Alg(L) and ̂G : Alg(L) → Coalg(B) on the
Eilenberg-Moore categories. Similar to the approach in Sect. 4, we require a
natural isomorphism γ : GL ⇒ BG, but for the current case we also require γ
to satisfy certain conditions that relate the monad L and the comonad B.

Theorem 11. Let F : C → D and G : D → C be contravariant functors that form
a contravariant adjunction. Let L = (L, η, μ) be a monad on D, and B = (B, ε, δ)
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a comonad on C. If there is a natural isomorphism γ : GL ⇒ BG such that the
following two diagrams commute:

G BG

GL

εG

Gη γ

BGL GLL GL

BBG BG

γL Gμ

Bγ

δG

γ (3)

then F lifts to a functor ̂F : Coalg(B) → Alg(L) and G lifts to a functor
̂G : Alg(L) → Coalg(B), such that ̂F and ̂G form a contravariant adjunction.
Additionally, if F and G form a duality then ̂F and ̂G form a duality.

As an application of the previous theorem we can derive dualities between
equations and coequations in Eilenberg-Moore categories, whose general result is
obtained in a similar way as in Sect. 3. Notice that we do not need to explicitly
assume the existence of free algebras since for any object S in D the algebra
(LS, μS) ∈ Alg(L) has the universal property that characterizes free objects,
with the unit given by ηS : S → LS.

Theorem 12. Let F : C → D and G : D → C be contravariant functors that
form a duality. Let L = (L, η, μ) be a monad on D, and B = (B, ε, δ) a comonad
on C. If there is a natural isomorphism γ : GL ⇒ BG making the diagrams (3)
commute, then:

1. The duality between F and G lifts to a duality ̂F : Coeq(B, G(S)) → Eq(L, S)
and ̂G : Eq(L, S) → Coeq(B, G(S)).

2. Given eP ∈ Eq(L, S), mQ ∈ Coeq(B, G(S)), (X,α) ∈ Alg(L), and (Y, β) ∈
Coalg(B) we have that:
(i) (X,α) |= eP if and only if ̂G(X,α) ||= ̂G(eP ).
(ii) ̂F (Y, β) |= ̂F (mQ) if and only if (Y, β) ||= mQ.

We proceed with special cases of our setting where, given the contravariant
adjunction and a comonad B on C, we can canonically define a monad L on
D such that the contravariant adjunction lifts (Sect. 6.1). We can also do it in
the opposite way, i.e., define a comonad from a given monad, but in this case
additional assumptions are required (Sect. 6.2).

6.1 Defining a Monad from a Comonad

In this part we start with a contravariant adjunction between contravariant
functors F : C → D and G : D → C and a comonad B = (B, ε, δ) on C. That is,
we have the following setting:

C D


�

F

B = (B, ε, δ)

G
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The purpose is to find a canonical monad L = (L, η, μ) on D together with a
lifting ̂F : Coalg(B) → Alg(L) and ̂G : Alg(L) → Coalg(B) of the contravariant
adjunction. We choose L = FBG, and define η : IdD ⇒ L and μ : LL ⇒ L by:

η = (IdD
ηF G

==⇒ FG
FεG==⇒ FBG)

μ = (FBGFBG
FBηGF

BG=====⇒ FBBG
FδG==⇒ FBG)

(4)

where ηFG and ηGF are the units of the contravariant adjunction. With this
choice of (L, η, μ) we have the following result.

Proposition 13. Let F : C → D and G : D → C be contravariant functors that
form a contravariant adjunction. Let B = (B, ε, δ) be a comonad on C. Then
(L, η, μ) with L = FBG and η, μ defined as in (4) is a monad on D.

Additionally, if ηGF is a natural isomorphism, then the contravariant adjunc-
tion between F and G lifts to a contravariant adjunction between ̂F : Coalg(B) →
Alg(L) and ̂G : Alg(L) → Coalg(B). In this case, if F and G form a duality then
the lifting ̂F and ̂G is also a duality.

6.2 Defining a Comonad from a Monad

We can dualize the previous proposition in order to define a comonad on C if we
have a monad on D. In order to do this we will assume that the contravariant
adjunction is a duality so we can use the fact that the units of the contravariant
adjunction are isomorphisms.

Assume that we have a contravariant adjunction between two contravariant
functors F : C → D and G : D → C, and L = (L, η, μ) a monad on D. Define
the endofunctor B on C as B = GLF . Now, if we assume that the contravariant
adjunction is a duality with units ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF that are
natural isomorphisms. Then we can define natural transformations ε : B ⇒ IdC
and δ : B ⇒ BB as:

ε = (GLF
GηF==⇒ GF

(ηGF )−1

=====⇒ IdC)

δ = (GLF
GμF===⇒ GLLF

GL(ηF G)−1
LF=======⇒ GLFGLF )

(5)

Under the previous assumptions and choice of (B, ε, δ) we get:

Proposition 14. Let F : C → D and G : D → C be contravariant functors
that form a duality. Let L = (L, η, μ) be a monad on D. Then (B, ε, δ), where
B = GLF and ε, δ are defined as in (5), is a comonad on C. Further, the
duality between F and G lifts to a duality between ̂F : Coalg(B) → Alg(L) and
̂G : Alg(L) → Coalg(B).

7 Applications

In this section we will apply results from the previous section to study equations
and coequations for dynamical systems and deterministic automata.
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7.1 Equations and Coequations for Dynamical Systems

Let M = (M, ·, e) be a monoid, let L = (L, η, μ) be the monad on Set defined as:

LX = X × M ηX : X → X × M μX : (X × M) × M → X × M
x 
→ (x, e) (x,m, n) 
→ (x,m · n)

and let B = (B, ε, δ) be the comonad on CABA defined as:

BY = Y M εY : Y M → Y δY : Y M → (Y M )M

f 
→ f(e) f 
→ λm.λnf(n · m)

Consider the duality between CABA and Set given by the contravariant functors
F : CABA → Set and G : Set → CABA defined as FY = At(Y ) and GX = 2X ,
if we consider the natural isomorphism γ : GL ⇒ BG given by the canonical
isomorphism γX : 2X×M → (2X)M then we can easily verify the hypothesis of
Theorem 11 to lift the duality between F and G from the following setting:

CABACABA SetSet

FFYY = At(= At(YY ))

GXGX == 22XX

LXLX == XX ×× MM

BBYY == YY MM

γγXX : 2: 2XX××MM →→ (2(2XX))MM

∼∼==
FF

BB = (= (B, ε, δB, ε, δ))

GG

LL = (= (L, η, μL, η, μ))

Observe that elements (X,α) ∈ Alg(L) are dynamical systems (monoid actions)
on Set, that is, an L-algebra is a set X together with a map α : X × M → X
that satisfies the properties α(x, e) = x and α(α(x,m), n) = α(x,m ·n). Further,
a B-coalgebra is a set Y with a map β : Y → Y M such that β(x)(e) = x and
β(β(x)(m))(n) = β(x)(n · m).

We are going to consider equations and coequations for dynamical systems
for the particular case that the set of generators is S = 1. We have that the free
algebra F(1) in Alg(L) on S = 1 generators is F(1) = (M, τ) where τ : M ×M →
M is given by τ(m,n) = m · n and the unit η : 1 → M is given by η = e, the
identity element in M . On the other hand, the cofree coalgebra C(G(1)) = C(2)
in Coalg(B) on 2 colours is C(2) = (2M , τ̂), where τ̂ : 2M → (2M )M is given by

τ̂(f)(n) = {m ∈ M | f(m · n) = 1}
and the counit ε : 2M → 2 is given by ε(f) = f(e).

According to this, equations in Eq(L, 1) correspond to quotients M/C =
(M/C, [τ ]) where C ⊆ M × M is a right congruence on M , i.e. an equivalence
relation such that for any p ∈ M , (m,n) ∈ C implies (m · p, n · p) ∈ M , and
the function [τ ] : M/C × M → M/C is given by [τ ]([m], n) = [m · n]. On the
other hand coequations in Coeq(L, G(S)) correspond to left-closed-subsystems
Q = (Q, τ̂), i.e. subalgebras Q of the complete atomic Boolean algebra 2M such
that for any f ∈ Q and m ∈ M , τ̂(f)(m) ∈ Q.

Now, by using Theorem 12, we have as a consequence a correspondence
between right congruences and left-closed-subsystems for dynamical systems.
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Proposition 15. There is a duality between Eq(L, 1) and Coeq(B, 2) given by
̂F and ̂G that induces a duality between right congruences on M and left-closed-
subsystems of 2M .

Using this duality one can prove that right congruences on M and left-closed
subsystems of 2M characterize the same classes of dynamical systems.

Proposition 16. For any dynamical system (X,α) on M and any right congru-
ence C on M let eC ∈ Alg(L)(M,M/C) be the canonical epimorphism (equation)
defined as eC(m) = [m]. The following are equivalent:

(i) (X,α) |= eC .
(ii) For every colouring c : X → 2 and any x ∈ X we have that

{m ∈ M | c(β(x)(m)) = 1} ∈ Im( ̂G(eC)).

If M is the free monoid on A generators then we get [24, Corollary 14]. In
this case, property ii) in the previous proposition is the definition for satisfaction
of coequations given in [7] where the set of coequations considered is Im( ̂G(eC)).

7.2 Equations and Coequations for Automata

Consider the following setting:

CABA Set∼=
F

G

L = (L, η, μ)

where FY = At(Y ), GX = 2X , and L is the monad given by:

LX = X∗ =
∐

i∈N
Xi ηX : X → X∗ μX : (X∗)∗ → X∗

x 
→ x w1 · · · wn 
→ w1 · · · wn

According to Proposition 14, as F and G form a duality, we get a comonad
B = (B, ε, δ) on CABA and a duality between Coalg(B) and Alg(L). Observe
that Alg(L) is isomorphic to the category of monoids.

For any set A, LA = A∗ is the free monoid on A generators, with unit
morphism ηA and multiplication μA. Now we will fix the set A and show how
the notion of satisfaction of equations given in [7] for a deterministic automaton
on A can be equivalently defined in this setting. In fact, given a deterministic
automaton (X,α : X × A → A) on A we can use the correspondence:

α : X × A → X

α : A → XX

to work with the monoid XX = (XX , β) ∈ Alg(L) with composition of functions
as multiplication β. We have that homomorphic images of A∗, i.e., elements in
Eq(L, A), correspond to congruences of the monoid A∗. Given any congruence C
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of A∗ we have that (X,α) |= A∗/C, if the unique extension α� ∈ Alg(L)(A∗,XX)
of α factors through the canonical morphism e : A∗ → A∗/C. That is, we have
that (X,α) |= A∗/C if there exists gα ∈ Alg(L)(A∗/C,XX) such that the
following diagram commutes:

A

A∗

(A∗)∗

XX

(XX)∗

A∗/C

(A∗/C)∗

ηA

e

e∗

μA β[μA]
gα

g∗
α

α�

α

this means that for any (u, v) ∈ C the transition functions fu, fv ∈ XX , where
fw(x) = w(x), w ∈ A∗, are the same. This is the notion of satisfaction of
equations we previously defined in Example 1, and which appears in [7].

We apply G to the previous diagram to get the following diagram:

2A

2(A
∗)

2((A
∗)∗)

2(X
X)

2((X
X)∗)

2(A
∗/C)

2((A
∗/C)∗)

2ηA

2e

2e∗

2μA 2β2[μA]

2gα

2g∗
α

2α�

2α

This means that Im(2α�

) ⊆ Im(2e) = {L ∈ 2(A
∗) | ∀ (u, v) ∈ C,L(u) = L(v)},

which is an object in CABA and it is closed under left and right derivatives
because C is a congruence.

By Theorem 12, we get a duality between Eq(L, A) and Coeq(B, G(A)) which
is the duality between equations and coequations given in [7, Theorem 22]. Addi-
tionally, using the previous commutative diagrams, one can prove the equiva-
lence between (i) and (ii) given in Proposition 16 for the case that M = A∗, the
congruences C are congruences of A∗, and the coequations Im( ̂G(eC)) are sub-
algebras of 2M that are closed under left and right derivatives, cf. [24, Theorem
17].

8 Conclusions

We presented duality results between categories of equations and categories of
coequations, Theorem 7. We started our approach by using a more general con-
cept than a duality, namely, contravariant adjunctions. By using this setting we
can employ algebraic techniques to study coalgebras as we showed by defining
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equations for coalgebras and we can also do it the opposite way, define coequa-
tions for algebras. Then we showed similar results if we add monads and comon-
ads into our setting, to this end, we proved a lifting theorem to lift contravariant
adjunctions to Eilenberg-Moore categories, Theorem 12.

The work here is aimed to understand the interaction between the algebraic
and coalgebraic world, including the interpretation of coequations, and the study
of comonads. In the future we would like to explore more the coalgebraic aspect,
either with the aid of the algebraic side or not, in order to find applications to
e.g., tree automata (cf. [17]). Because of limited space we have left out from our
examples fundamental dualities such as Stone or Priestley dualities, which will
possibly lead to a connection with the recent Eilenberg-type correspondences
studied in [3,4,10]. We also leave open for future work the question if a converse
of Theorem 11 holds.

Acknowledgements. We would like to thank Alexander Kurz for his valuable com-
ments, and Jan Rutten for his support and suggestions.
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