
Assessing Levels of Attention Using Low Cost
Eye Tracking

Per Bækgaard(B), Michael Kai Petersen, and Jakob Eg Larsen

Cognitive Systems, Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Building 321, 2800 Kongens Lyngby, Denmark

{pgba,mkai,jaeg}@dtu.dk

Abstract. The emergence of mobile eye trackers embedded in next gen-
eration smartphones or VR displays will make it possible to trace not
only what objects we look at but also the level of attention in a given situ-
ation. Exploring whether we can quantify the engagement of a user inter-
acting with a laptop, we apply mobile eye tracking in an in-depth study
over 2 weeks with nearly 10.000 observations to assess pupil size changes,
related to attentional aspects of alertness, orientation and conflict res-
olution. Visually presenting conflicting cues and targets we hypothesize
that it’s feasible to measure the allocated effort when responding to con-
fusing stimuli. Although such experiments are normally carried out in a
lab, we have initial indications that we are able to differentiate between
sustained alertness and complex decision making even with low cost eye
tracking “in the wild”. From a quantified self perspective of individual
behavioural adaptation, the correlations between the pupil size and the
task dependent reaction time and error rates may longer term provide
a foundation for modifying smartphone content and interaction to the
users perceived level of attention.
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1 Introduction

Low cost eye trackers which can be embedded in next generation smartphones
will enable design of cognitive interfaces that adapt to the users perceived level of
attention. Even when “in the wild”, and no longer constrained to fixed lab setups,
mobile eye tracking provides novel opportunities for continuous self-tracking of
our ability to perform a variety of tasks across a number of different contexts.

Interacting with a smartphone screen requires attention which in turn
involves different networks in the brain related to alertness, spatial orientation
and conflict resolution [20]. These aspects can be separated by flanker-type of
experiments with differently cued, sometimes conflicting, prompts. Dependent
on whether the task involves fixating the eyes on an unexpected part of the
screen, or resolving the direction of an arrow surrounded by distracting stimuli,
different parts of the attention network will be activated, in turn resulting in
varying reaction times [7].
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The dilation and constriction of the pupil is not only triggered by changes in
light and fixation but reflect fluctuations in arousal networks in the brain [13],
which from a quantified self perspective may enable us to assess whether we are
sufficiently concentrated when we interact with the screens of smartphones or
laptops, carrying out our daily tasks. Likewise the pupil size increases when we
face an unexpected uncertainty [1], physically apply force by flexing muscles,
or motivationally have to decide on whether the outcome of a task justifies
the required effort [23]. Thus, when we perform specific actions, the cognitive
load involved can be estimated using eye tracking. The pupil dilates if the task
requires a shift from a sustained tonic alertness and orientation to more complex
decision making, in turn triggering a phasic component caused by the release
of norepinephrine neurotransmitters in the brain [2,8], which may reflect both
the increased energization as well as the unexpected uncertainty related to the
task [1].

Whereas these results have typically been obtained under controlled lab con-
ditions, we explore in the present study the feasibility of assessing a users level
of attention “in the wild” using mobile eye tracking.

2 Method

2.1 Experimental Procedure

This longitudinal study was performed repeatedly over the course of two weeks
in September-October 2015. Two male right-handed subjects, A and B, (of aver-
age age 56) each performed a session very similar to the Attention Network
Test (ant) [7] approximately twice every weekday, resulting in 16 resp. 17 com-
plete datasets, totaling 9.504 individual reaction time tests. The experiment
ran “in the wild” in typical office environments off a conventional MacBook
Pro 13” (2013 model with Retina screen) that had an Eye Tribe Eye Tracker
connected to it. The ant used here is implemented in PsychoPy [18] and is
available on github [4]. Simultaneously, eye tracking data is recorded at 60 Hz
and timestamped for synchronization through the Eye Tracker API [21] via the
PeyeTribe [3] interface.

Before the actual experimental procedure starts, a calibration of the Eye
Tracker is performed. The experiment contains an initial trial run that the user
may select to abort, after which 3 rounds of 2 · 48 conditioned reaction time
tests follows (Fig. 1); each test is conditioned on one of 3 targets: Incongruent,
Neutral or Congruent and on 4 cues: No Cue, Center Cue, Double Cue or Spa-
tial Cue. At the start of each test, a fixation cross appears, and after a random
delay of 0.4–1.6 s the user is presented to a cue (when present for the particu-
lar condition). 0.5 s later the target appears, either with incongruent, neutral or
congruent flankers. The user is instructed to hit a button on the left or right
side of the keyboard with his left or right hand depending on the direction
of the central arrow of the target, which appeared above or below the initial
centred fixation cross. Half the targets appear above and half below the fixa-
tion cross, and left/right pointing central arrows also appear evenly distributed.
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Fig. 1. This Attention Network Test procedure used here: Every 4 s, a cue (either of
4 conditions (Top, Left)) precedes a target (either of 3 congruency conditions (Top,

Right)), to which the participant responds by pressing a key according to the central
arrow. The reaction time differences between cue- and congruency conditions form the
basis for calculating the latencies of the attention, orientation and conflict resolution
networks.

The resulting reaction time “from target presentation to first registered key-
press” is logged, together with the conditions of the individual tests, whether
the user hit the correct left/right key or not, and a common timestamp. For
further details on the ant please see [7].

Each test takes approximately 4 s to perform. With 2·3 repetitions of all com-
binations of conditions, left/right arrows and above/below targets, this results in
6 · 12 · 2 · 2 = 288 single tests. The user has the option of a short break after each
96 performed tests. A typical session with calibration, experimental procedure
and short breaks lasts approximately 25–30 min.
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2.2 Analysis

The reaction times for each experiment, for which the user responded correctly
within 1.7 s, are grouped and averaged over each of the 3 congruency and 4 cue
conditions, and the Attention Network Test timings can be calculated as follows:

talertness = tno cue − tdouble cue

torientation = tcenter cue − tspatial cue

tconflict resolution = tincongruent − tcongruent

where

tcond =
1
N

N∑

i|i=cond

ti

Linear pupil size and inter-pupil distance data can be somewhat “noisy” when
recording in office conditions. After epoch’ing to corresponding cue times for the
individual tests, invalid/missing data from blink-affected periods are removed,
and a Hampel [9] filter is therefore applied, using a centered window of ±83 ms
(shorter than a typical blink) and a limit of 3σ, to remove remaining outliers.
Data is then downsampled to 100 ms resolution using a windowed averaging filter,
and scaled proportionally to the value at epoch start (cue presentation), so that
the resulting pupil dilations represent relative change1 vs the pupil size at cue
presentation. This last part was done to compensate for varying environmental
luminosity changes and, to some degree, to offset any effect from immediately
preceding reaction time test(s) and to compensate for accidental head position
drift.

Time-locked averaging is then done by grouping data from similar conditions
within each experiment, from which the group-mean relative pupil dilations can
be derived.

At the same time, the inter-pupil distance is calculated, to ensure that pupil
size changes would not be the accidental result of moving the head slightly dur-
ing the experiment. Additionally, a “baseline” experiment has been performed,
recording eye tracking data in a condition where no action can be taken by the
user and when no arrow-heads are visible on the targets but otherwise presented
in similar conditions, in order to rule out that the recorded pupil dilations would
be the result of (small) luminosity changes caused by the presented cue and tar-
gets, or a result of slightly changing accommodation between the focus points of
the cue and the target.

The inter-pupil distance variation was found to be significantly smaller (typi-
cally much less than 0.2%) than the recorded pupil dilations, and the “baseline”
experiment could not account for the recorded pupil dilations from the real
experimental procedure either; it just showed the expected random variations.

1 The data received from the eye tracker is uncalibrated and cannot easily be refer-
enced to a metric measurement.
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The data processing has been done with iPython [19] using the numpy [22],
matplotlib [11], pandas [15], scipy [16] and scikit-learn [17] toolboxes.

3 Results

3.1 Attention Network Test Timings

Table 1 shows the aggregate Overall Mean Reaction- and Attention Network
timings for each subject A and B, with estimates of the variation over the
week. The figures are not significantly different from what is found in [7]; the
Meanrt reported here is slightly higher than an estimated 512 ms in the refer-
ence, whereas the alertness, orientation and conflict resolution are slightly lower
or similar to the 47 ms, 51 ms and 84 ms reported.

Table 1. Average Reaction- and Attention Network-Times over all correctly replied
experiments for the two week period for either user (the variation over the period is
given as estimated ± Sample Standard Deviation of the aggregate values), in millisec-
onds.

Subject Meanrt Alert Orient Conflict

A 577 (±54) 27 (±21) 22 (±18) 85 (±16)

B 559 (±55) 35 (±17) 49 (±15) 81 (±17)

There are, however, behavioural variations in reaction time throughout the
weeks. Figure 2 shows the variation of the derived ant timings throughout the
experimental period, and the relative error rate for each experiment. The varia-
tion appear to be statistically significant, as can be estimated from the standard
error of the mean (the shaded area), and may reflect underlying states of varying
levels of attention, fatigue and motivation.

To sum up the behavioural results, A shows a somewhat increasing trend in
error rate related to the objective task performance, whereas B shows a dimin-
ishing difference between the three estimated measures of conflict resolution,
spatial orientation and alertness reaction time.

3.2 Pupil Dilations

The group-mean relative linear pupil dilations for each of the 3 congruency
conditions are illustrated in Fig. 3.

Pupil dilation responses are all epoch’ed to the cue (at time 0 ms) and target
presentation (time 500 ms). A small and slow pupil dilation onset is seen <300 ms
after cue presentation, followed by a larger response likely triggered by the target
presentation, with an onset of approximately 700 ms and a peak approximately
1300 ms after target, with some variation between conditions, subject and eye.
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Fig. 2. Attention Network Timing over all sessions in the two week period. Conflict
Resolution (Red) is slower than Alertness (Green) and Orientation (Blue). A (Left)
shows an increasing error rate trend (Solid); Conflict Resolution for B gradually
approaches the other latencies. Both A and B have large variations over time, pointing
to varying levels of attention, fatigue and motivation. (Color figure online)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time since cue onset (s)

−4

−2

0

2

4

6

8

10

R
el
at
iv
e
ch
an
ge

(%
)

incongruent
congruent
neutral

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time since cue onset (s)

−4

−2

0

2

4

6

8

10

R
el
at
iv
e
ch
an
ge

(%
)

incongruent
congruent
neutral

Fig. 3. Averaged left-eye pupil dilations for each session, coloured according to con-
gruency (A (Left) and B). All-session average shown in bold, with the shaded area
representing the standard error of the mean. The average incongruent (Red) pupil
dilation is stronger than the others, indicating a higher cognitive load. (Color figure
online)

Even though the experimental conditions are not directly comparable, [14]
reported comparable peak latencies at 1400 ms after stimulus for a Stroop effect
experiment. Our results are thus in line with these previous findings of pupil
dilations, as well as with those reported in earlier processing load experiments
[12] at approximately 900–1200 ms. The initial onset of the pupil dilation can
occur even faster in some conditions [6,10] although generally onset and peak
latencies appear to be within the 150–1400 ms.

The incongruent pupil dilation is larger than the more similar neutral and
congruent dilations; there is however no such difference when comparing the 4
cue condition (not shown). The incongruent pupil dilation also has a tendency
to appear slightly later (most easily visible for A), consistent with the longer
reaction times for the inconsistent condition.
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Figure 4 shows the (relative) pupil size Blue vs the median value over a
selected period that covers 48 reaction time tests, in this case for B, for two
different experiments. Test-related pupil dilation responses, that occur every 4 s,
are not immediately visible in this graph due to random noise and a relatively
strong longer-periodic variation over 20–60 s2. The Green curve shows the rela-
tive variation of the inter-pupil distance, with variations an order of magnitude
smaller than the pupil size changes.
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Fig. 4. Filtered pupil size plots; 48-test long sections of two experiments (B, left-eye).
Relative inter-pupil distance (Green) indicates stable eye-to-screen distances. (Color
figure online)

Figure 5 shows the area under the pupil dilation curve between 1.5–2.5 s after
cue (1.0–2.0 s after target) for each experiment, serving as a very rough indicator
of the relative cognitive load caused by the tests. From these, also a δ(incon)
can be calculated by subtracting the congruent value from the incongruent.
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Fig. 5. Area under left-eye pupil dilation curves [1.5, 2.5] s for each session, indicative
of cognitive load, grouped after congruency. Both A (Left) and B show initial training
effects; only A however shows an increasing trend in cognitive load for the remaining
sessions. (Color figure online)

2 A frequency domain analysis of the signal shows, however, a distinct peak at 0.25
Hz, as expected.
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It is seen that both A and B have larger pupil dilation responses for the
initial two experiments, after which the level is lower. For B it remains at lower
levels, indicating a training effect. For A, the pattern is less clear, with possibly
an increased load towards the end of the two week period.

3.3 Predicting Congruency Condition from Pupil Dilations

In order to verify how well previous pupil dilations allow predicting the class
of congruency condition, a subset of the 3 within-experiment 96–average pupil
dilation responses from each subject were ordered in each of the 6 possible per-
mutations of the 3 congruency conditions. A neural-network type classifier was
then trained to identify which of the 3 averaged pupil dilations were the incon-
gruent.
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Fig. 6. Test error rates (0.9/0.1 train/test split) predicting averaged 3 s incongruent
pupil dilations after cue vs number of averaged experimental tests. At 48 averaged
experimental tests, the test error rate at 50% is clearly below chance (66.6 %, dotted).
(Color figure online)

Figure 6 shows the resulting test error rate vs. the number of averaged exper-
imental tests, dividing the 96 equal-condition responses of each experiment into
groups of 96, 48, 32 or 24 tests, and using a test/train split of 0.9/0.1. The
performance is clearly above chance level (66.6 %), and approaches 80 % accu-
racy for B vs 60 % for A. Even at groups of 24 averaged experimental tests, the
classifier operate above chance level, with continuing improved performance for
larger groups for B, however only marginally improving performance for A.

3.4 Correlating Response Times and Pupil Reactions

Table 2 show the Pearson Correlation Coefficients for all combinations of Atten-
tion Network- and Reaction-Times, Pupil Dilation metrics and Time-of-Day for
each subject, as it varies over the two week period. As the data sets are small (16
and 17 sets), caution is needed when judging the significance levels (p-values).

With some variation between subjects, pupil dilation responses appear
correlated.
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Table 2. Pearsons correlation coefficients between key metrics for A (Top) and B. A
shows negative correlation between mean reaction time and error rate (“speed-accuracy
tradeoff”). B (opposed to A) shows correlation between pupil dilations and error rate,
possibly indicating a different response to varying levels of fatigue or motivation; addi-
tionally alertness (and partly orientation) may inversely correlate to pupil dilations.
Both show expected correlations between pupil dilation metrics.

Att.-Net/Reaction Time Pupil Dilation

Orient Conflict μ(RT) Incon Neutral Con δ(Incon) ToD Errors

Att.-Net/Reaction Time
Alert 0.112 −0.047 −0.189 −0.013 −0.131 −0.011 −0.008 0.061 −0.051

Orient −0.548† −0.468∗ 0.274 0.269 −0.020 0.402 0.132 0.270

0tciflnoC .474∗ −0.081 −0.149 0.035 −0.147 0.330 −0.416

μ(RT 0) .002 0.049 −0.069 0.068 0.237 −0.635†

Pupil Dilation
Incon 0.767‡ 0.701‡ 0.737 ‡ 0.062 −0.098

Neutral 0.752‡ 0.362 0.222 0.109

Con 0.034 0.000 −0.018

δ(Incon) 0.087 −0.121

ToD 0.066

Two-tailed significance less than ∗7.5%, †5% and ‡0.25% marked.

Att.-Net/Reaction Time Pupil Dilation

Orient Conflict μ(RT) Incon Neutral Con δ(Incon) ToD Errors

Att.-Net/Reaction Time
Alert 0.015 −0.107 0.438 −0.499† −0.534† −0.231 −0.576 † 0.062 −0.358

Orient −0.094 0.352 −0.474∗ −0.407 −0.559† −0.155 0.056 −0.386

0tciflnoC .289 0.431 0.439 0.362 0.309 0.411 0.301

μ(RT) −0.220 −0.286 −0.173 −0.173 0.481∗ −0.400

Pupil Dilation
Incon 0.894‡ 0.817‡ 0.746 ‡ −0.026 0.725‡

Neutral 0.831‡ 0.549 † −0.184 0.701‡

Con 0.224 −0.020 0.626†

δ(Incon) −0.021 0.501†

ToD −0.215

Two-tailed significance less than ∗7.5%, †5% and ‡0.25% marked.

Subject A shows correlation between orientation and conflict resolution tim-
ings, which is however not seen at all for B. A also may have some correlation
between mean reaction time and orientation resp conflict resolution timings,
which are however again not quite as present with B.

Subject B shows correlation between alertness timing and both incongruent,
neutral and δ(incon) pupil dilations, as well as correlation between orientation
timing and congruent pupil dilations. These are not present for A, however.
Also, there are indications of a correlation between the time of day and the
mean reaction time; the experiments done on B were spread out over larger
sections of the day than for A, which might explain why this is not seen for A.
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[7] reported correlations between the conflict resolution timing and the mean
reaction time over a large group of people. As such, the conditions are not similar
to the within-person variation, but it might be worth pointing out that a similar
correlation is partly present for A and cannot be ruled out for B.

4 Discussion

Using low cost portable eye tracking to measure the variations in pupil size, we
have initial indications that we were able to differentiate and predict whether
users were engaged in more complex decision making or merely maintaining a
general alertness when interacting with a laptop, over nearly 10.000 tests. A par-
allel single-experiment study [5] repeating the experimental setup with nearly
10.000 additional tests over 18 more subjects, have confirmed that similar signif-
icant pupil response differences characterize the contrasts between incongruent
versus neutral or congruent task conditions.

In the present study, we found a significant difference based on the left eye
pupil size for the conflict resolution task in contrast to the attentional network
components of alertness and re-orientation, but not between these two latter
tasks. These results may reflect findings in other studies indicating that the
phasic component in attention is predominantly triggered by tasks requiring a
decision, whereas the tonic alertness may suffice for solving less demanding tasks
like responding to visual cues or re-orienting attention to an unexpected part of
the screen [2] as seen in the “baseline” experiment, where no decision needs to
be made and no motor cortex activation takes place.

From a quantified self perspective of individual behaviour, using mobile eye
tracking to assess levels of engagement, the relations between pupil size (a possi-
ble quantification of the cognitive load), and error rate/reaction time (a quantifi-
cation of the objective task performance), indicate individual differences among
the subjects’ behavioural adaptation to the attentional tasks. Participant A is
apparently coping with the cognitive load by trading off speed and accuracy to
optimize performance, as indicated by the lack of correlation between pupil size
and either of the performance related measures. However, for Participant B the
correlation between pupil size and accuracy may suggest a behavior character-
ized by applying more effort to the task if the number of errors increase.

As we have in this study only used the pupil size as a measure of atten-
tion, even without considering the spatial density of fixations or the speed of
saccadic eye movements that could entail further information, we suggest that
mobile eye tracking may not only enable us to assess the effort required when
undertaking a variety of tasks in an everyday context, but could also longer term
provide a foundation for continuously adapting the content and interaction with
smartphones and laptops based on our perceived level of attention.
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through the project Eye Tracking for Mobile Devices.



Assessing Levels of Attention Using Low Cost Eye Tracking 419

References

1. Ang, Y.S., Manohar, S., Apps, M.A.J.: Commentary: noradrenaline and
dopamine neurons in the reward/effort trade-off: a direct electrophysiologi-
cal comparison in behaving monkeys. Front. Behav. Neurosci. 9, 310 (2015).
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644795/pdf/fnbeh-09-00310.pdf,
http://journal.frontiersin.org/Article/10.3389/fnbeh.2015.00310/abstract

2. Aston-Jones, G., Cohen, J.D.: An integrative theory of locus
coeruleus-norepinephrine function: adaptive gain and opti-
mal performance. Ann. Rev. Neurosci. 28(1), 403–450 (2005).
http://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.28.061604.135709

3. Bækgaard, P.: Simple python interface to the Eye Tribe eye tracker (2015). https://
github.com/baekgaard/peyetribe/

4. Bækgaard, P.: Attention Network Test implemented in PsychoPy (2016). https://
github.com/baekgaard/ant

5. Baekgaard, P., Petersen, M.K., Larsen, J.E.: Differentiating attentional network
components using mobile eye tracking (in preparation)

6. Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of
processing resources (1982)

7. Fan, J., McCandliss, B.D., Sommer, T., Raz, A., Posner, M.I.: Testing the effi-
ciency and independence of attentional networks. J. Cogn. Neurosci. 14(3), 340–
347 (2002). http://www.mitpressjournals.org//abs/10.1162/089892902317361886

8. Gabay, S., Pertzov, Y., Henik, A.: Orienting of attention, pupil size, and the
norepinephrine system. Attention Percept. Psychophysics 73(1), 123–129 (2011).
http://www.ncbi.nlm.nih.gov/pubmed/21258914

9. Hampel, F.R.: The influence curve and its role in robust
estimation. J. Am. Stat. Assoc. 69(346), 383–393 (1974).
http://www.tandfonline.com//abs/10.1080/01621459.1974.10482962

10. Holmqvist, K.: Eye Tracking: A Comprehensive Guide to Methods and Measures.
Oxford University Press, Oxford (2011)

11. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3),
99–104 (2007)
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