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Abstract. The use of neurophysiological sensors in HCI research is increasing
in use and sophistication, largely because such sensors offer the potential benefit
of providing “ground truth” in studies, and also because they are expected to
underpin future adaptive systems. Sensors have shown significant promise in the
efforts to develop measurements to help determine users’ mental and emotional
states in real-time, allowing the system to use that information to adjust user
experience.

Most of the sensors used generate a substantial amount of data, a high dimen‐
sionality and volume of data that requires analysis using powerful machine
learning algorithms. However, in the process of developing machine learning
algorithms to make sense of the data and subject’s mental or emotional state under
experimental conditions, researchers often rely on existing and imperfect meas‐
ures to provide the “ground truth” needed to train the algorithms.

In this paper, we highlight the different ways in which researchers try to
establish ground truth and the strengths and limitations of those approaches. The
paper concludes with several suggestions and specific areas that require more
discussion.

Keywords: Machine learning · Cognitive data · Method validity · fNIRS · Neuro-
physiological sensors

1 Introduction

The goal of using machine learning on data generated by neural sensors is to predict or
identify a user’s mental state in real-time. The roadmap to achieving that goal usually
involves conducting controlled experiments, where subjects are exposed to a series of
control and treatment conditions. Depending on the experimental setup, the subject’s
mental state under the treatment condition can be either identified through self-report
measures, the nature of the task and its expected effect on mental state, or the subject’s
task performance. The labels are then used as predictor variables for machine learning
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algorithms. Each of these approaches has drawbacks in terms of validity and reliability,
which may lead us to train the algorithms on incorrectly labeled data (Hoskin 2012).

In an ideal world, the problems of mislabeled data would average out over large data
sets – machine learning is successfully applied in many spaces where a high volume of
data is available to train the models. However, in the applied neuroscience space the
number of cases is usually very small and the dimensionality of the data is very large,
which can easily lead to overfitted models. This is one of the reasons why developing
models that work across subjects, experimental conditions, and/or treatments is very
difficult.

To sum up the challenge in a single sentence, we are trying to build predictive models
on unreliably tagged data under the curse of dimensionality.

There are valid reasons for undertaking this effort. First, these efforts will enable
future systems that adapt to our mental, physical, and emotional state in real-time,
helping us make better decisions, gain deeper insights, and solve bigger problems, from
medical diagnoses to adaptive military technology (Gateau et al. 2015; Girouard 2010;
Naseer and Hong 2015; Marx et al. 2015). Developing such systems will involve inte‐
grating voluminous data from multiple sensors, a task which machine learning is espe‐
cially well-suited. This paper addresses one of the handful of challenges associated with
building adaptive systems – identifying the ground truth to build upon when developing
models and systems.

The remainder of the paper is structured as follows: first, a brief description of
neurophysiological sensors is provided. Then, an overview of the approaches to labelling
data for algorithm training purposes, and a discussion of the validity and reliability
problems associated with the labeling approaches follows. The paper concludes with a
discussion of potential solutions and directions for future research.

2 Generating Data

Neurophysiological sensors rely on different physical mechanisms to measure activity
in the brain. For example, an EEG measures electrical activity generated by neurons
firing within the brain, fNIRS measures blood flow to and from areas of the brain insti‐
gated by activation and deactivation of specific regions, and fMRI uses magnetic reso‐
nance imaging to track blood flow in a manner similar to fNIRS.

The main point to consider when thinking about labeling neurophysiological data
for machine learning purposes is that the sensor generates one row of data every time it
samples. For example, an fNIRS can be set to sample at 10 Hz, generating approximately
36,000 rows of data for a one hour experiment. For each row there may be some number
of data points associated with the channels in the device, which we can call features.
Supervised learning algorithms use those features and derivative features to build a
model that predicts a label. Most algorithms perform this model creation and evaluation
by passing over the data frequently, iteratively refining the weights given to each of the
features until such a point that the algorithm has satisfied its optimization criteria. The
labeling process involves estimating the subject’s mental or emotional state at each of
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those points in time and assigning a category code (the label, or “class label”) to that
point in time or interval of time.

The labeling process results in at least a few error in the labeling process in the
boundary regions between state shifts because identifying the exact point in time when
a cognitive state changes in not currently possible. Furthermore, we argue in this paper
that the labels in general are not entirely reliable due to limitations of the approaches
available, and as a result, the trained models are not reliable. Using incorrectly labeled
data to train a supervised algorithm would be analogous to teaching a child to add by
giving her a set of addition problem examples with answers that were correct only some
of the time, then expecting the child to know how to add when given a new set of
problems.

Before going into detail justifying our argument, we start with a brief description of
the approaches researchers have used to determine those labels and the justifications for
making that choice (Fairclough and Gilleade 2014; Noah et al. 2015; Liu et al. 2015).

3 Approaches to Labeling Data

We identified three approaches to labeling the data – response based, task based, and
task-performance based. Here we will refer to the label as “ground truth” – what the
researcher believes to be the best approximation of the subject’s mental or emotional
state. Each approach has strengths and weaknesses, and none appears to be the superior
approach.

3.1 Response-Based Labeling

Response based labeling uses the subject’s subjective interpretation of their mental state
as the ground truth. For example, researchers have used the self-assessment manikins
(Bradley and Lang 1994; Balconi et al. 2015; Bandara et al. In press) and NASA TLX.
Fundamentally, this boils down to asking the subject – were you upset, overloaded,
angry, sad, etc. This requires a certain amount of self-awareness on the subjects, a fair
degree of honesty (Paulhus and Vazire 2009), and a good recollection of how they felt
over a period of time without succumbing to recency bias (Sackett and Larson Jr.
1990; Morrison et al. 2014).

Any one of the instruments listed above is considered well-validated gross measures
of emotional or cognitive state. However, sensors sample anywhere between 1 and 1000
times per second, which means the subject’s state needs to be accurately labeled for each
of the intervals. For example, fNIRS focuses on the hemodynamics of the brain, and
most devices sample somewhere in the vicinity of 10 Hz, tracking blood flow to regions
that changes measurably within a 6–8 s window. Yet, we use a subject’s best estimation
of their mental state over a 16–30 s window, hoping that the most recent impression of
their mental state does not prompt them to ignore the mode state. Researchers have noted
repeatedly that self-reports do not have guaranteed accuracy, with some suggesting that
a best practice is to triangulate their observations with other known, validated measures
(Liu et al. 2015; Rusnock et al. 2015).
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Response based labeling has certain advantages – it can be used to triangulate task-
based labeling (see below), or to explore meaningful concepts that are tested using
protocols that are known to reliably induce cognitive or emotional responses. An addi‐
tional advantage of response based labeling is that it may also make it easier to connect
the machine learning body of literature to other HCI literature that still relies heavily on
self-report measures (Rek et al. 2013; Lottridge 2009; Olson and Kellogg 2014).

3.2 Task-Based Labeling

Task-based labeling involves using tasks that are known or expected to elicit certain
mental or emotional states reliably (Ang et al. 2012; An et al. 2013). Task-based labeling
is not reliable, even for well-established measures. For example, researchers developed
and tested a game that was perceived to have multiple levels of difficulty and thus
expected to provoke different levels of engagement. However, during their experiment,
two subjects did not notice the difference in difficulty levels and seven did (Girouard
et al. 2009). Any attempts to build models using fixed channels as inputs, where the
channels are expected to map to specific areas of the brain, faces challenges as well. In
some studies, handedness influences cerebral blood flow on certain tasks (Cuzzocreo
et al. 2009). Finally, task-based labeling is built on the assumption that participants are
engaged in the task.

Task-based labeling has certain advantages, with the most notable being that they
avoid the limitations of response-based labeling of conditions. There are two additional
benefits of task-based labeling – (1) it allows researchers to more accurately track
expected changes in cognitive state because expected changes can be synced to changes
in the task; and (2) researchers do not have to interrupt the flow of the experiment to ask
the subject to rate his or her experience.

3.3 Performance-Based Labeling

Performance-based labeling involves establishing ground truth by measuring the
subject’s performance on a specific task. The general chain of assumptions appears to
be that (a) the task relies on known cognitive processes, (b) performance on the task
requires effort, and (c) performance is correlated with activation and failure is correlated
with lack of activation. An example of performance-based labeling can be found in
(James et al. 2010), where the researchers estimated cognitive burden generated by
learning a visual-motor task by measuring the distance from the cursor to the target on
the screen.

Performance-based labeling avoids the pitfalls of self-report measures in that they
offer temporal granularity and do not require subjects to estimate their own state. They
also avoid some of the limitations of task-based measures, most notably addressing the
concern that subjects may or may not be engaged in the task. Performance-based labeling
does not address limitations in terms of accurately localizing activation in individuals,
although determining the subject’s handedness appears to account for a large portion of
behavioral lateralization (Lawlor-Savage and Goghari 2014).
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4 Conclusion

In this paper we presented a provisional taxonomy for determining ground-truth of
emotional or cognitive states in experiments involving the use of machine learning on
neurophysiological data. Each approach has strengths and weaknesses, and researchers
can either determine those limitations are within the limits of acceptability or employ
triangulation procedures to improve their confidence in the measures. We are not arguing
that researchers should always use triangulation (although it would be beneficial);
instead, we would like to suggest starting a discussion on how it would be possible to
estimate the upper boundary of accuracy for the algorithms based on the acknowledge‐
ment that the models were trained on data that had low n and was only partially accurate.
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