
Collaboration Support in an International Computer
Science Capstone Course

Robert Adams1 and Carsten Kleiner2(✉)

1 School of Computing and Information Systems, Grand Valley State University,
Allendale, MI 49401, USA
adams@cis.gvsu.edu

2 Department of Computer Science, University of Applied Sciences & Arts Hannover,
Hannover, Germany

carsten.kleiner@hs-hannover.de

Abstract. Many computer science programs require some kind of culminating
“capstone” course where students demonstrate skills learned in their CS curric‐
ulum. These capstone courses typically focus on the technical skills that students
have learned, but one skill that is becoming more critical in our ever-global world
is the ability to work in an international setting. Specifically, working on a team
with students from a different country and/or culture. Over the past three years
we have successfully offered an international capstone experience requiring
students to work on a virtual team with students from a different country. For
instructors, the primary challenge in offering such a course is collaboration
between the instructors prior to the start of class. For students, the primary chal‐
lenge is collaboration while the course is underway. This paper examines how
we support instructor/instructor, instructor/student, as well as student/student
communication and collaboration. This paper highlights how current web-based
technologies provide support for collaboration. More specifically at least shared
online storage for standard documents such as text or spreadsheets as well as video
conferencing facilities are required for all the relations. Additionally, shared code
repositories (and corresponding presentation) as well as online and offline
messaging is necessary for a satisfactory experience. Software project manage‐
ment platforms provide additional important features. We show how technologies
such as GitHub, Google Drive, Google Hangouts and Redmine provided the
necessary support in several projects. At the same time other project teams have
employed other similar technologies successfully as well. Our hope is that others
are encouraged to attempt similar international efforts in order to broaden their
students’ non-technical skills as all the technologies are already in-place, well-
known and stable, thus lowering the barrier for these important international
experiences significantly.

Keywords: Computer science capstone course · Collaboration support ·
International software project · Software engineering in virtual teams ·
Collaboration tools

© Springer International Publishing Switzerland 2016
G. Meiselwitz (Ed.): SCSM 2016, LNCS 9742, pp. 313–323, 2016.
DOI: 10.1007/978-3-319-39910-2_29



1 Introduction

Many computer science and software engineering programs require some kind of
culminating capstone course where students demonstrate skills learned in their
subject-specific part of the curriculum. Many of these courses focus on a large soft‐
ware development project, and require students to apply their technical (hard) skills
as well as their non-technical (soft) skills to a specific project or implementation.
Successful completion of the capstone course demonstrates that students have
learned, and can successfully apply, a large subset of the skills learned in prior CS
courses. In addition, this course is usually a good dry run for how the future gradu‐
ates will find their professional workplace.

Although these capstone courses typically focus on the technical skills that students
have learned, one skill that is becoming more critical in our ever-global world is the
ability to work in an international setting. Like many other CS topics, the meaning of
“internationalization” in the curriculum varies. On the technical side, internationaliza‐
tion can mean adapting software to support other languages (e.g., alternate keyboard
layouts, and displaying program strings in a different language). As this aspect is very
frequently found in practice, there are technological solutions for this issue. The partic‐
ular solution depends on the specific development language and system architecture, but
important foundation to use these properly has usually been laid in technical classes
throughout the curriculum. On the non-technical side, internationalization can mean
equipping students with the skills necessary to operate within a global company (e.g.,
managing time zones and working on physically distributed teams). Issues in this area
consist of organizational as well as social challenges. It is this latter aspect that we focus
on in this paper.

Over the past four years we have successfully offered an international capstone
experience as joint effort between Grand Valley State University, Michigan, USA, and
the University of Applied Sciences & Arts, Hannover, Germany. Our joint capstone
requires students to work on a virtual team with students from a different country. Natu‐
rally, offering such a course requires overcoming several challenges for the instructors,
as well as for the students. For instructors, the primary challenge in offering such a course
is collaboration between the instructors prior to the start of class. For students, the
primary challenge is collaboration while the course is underway. This paper examines
how we support instructor/instructor, instructor/student, as well as student/student
communication and collaboration in an international setting.

This paper is organized as follows: we start with a brief general overview of the
course design and how it fits into the two different programs. Thereafter we elaborate
on the specific challenges regarding the different collaboration models required
throughout the course. Then we suggest technological solutions that help remedy most
of the collaboration issues and explain non-technological solutions that are helpful on
top. All the suggestions focus on the typical university course setting where budgets are
extremely limited. After that we review other work on international capstone courses
before we finish with a conclusion and outlook.

314 R. Adams and C. Kleiner



2 Course Overview

Before discussing collaboration issues, we provide an overview of the course structure.
In the next section we discuss particular challenges of collaboration. Richards [12]
identifies several key design choices faced by project-based courses (international or
not). Here, we describe and justify our particular pedagogical choices.

One important consideration is team size and team formation. Our choice was for
teams of about four students. Our experience confirms that of [11] and [17]: teams with
fewer students limit the dynamic, collaborative experience that we wanted students to
achieve, and don’t accurately reflect the challenges of working on a globally distributed
team. Likewise, teams with more than about six students are often overwhelmed by team
management issues, especially given the short total time frame of one semester mandated
by our curricula. For example, with more than four students, it is often difficult (if not
impossible) for students to coordinate their school/work/life schedules to find a common
meeting time. We’ve found that approximately four students presents the right balance
between challenge and frustration.

There is broad discussion on whether students should form their own teams or if the
instructors should do so. In contrast to [11] and [12], we decided to give students latitude
to form their own teams, typically based on the interest in a shared project idea. Students
share possible term-length project ideas with each other and from those ideas, self-form
teams. The team formation process is moderated by one of the instructors who, after
publishing the pool of project ideas, collects student votes for three subjects from this
pool. Based on these votes good project ideas to be realized will be selected and students
assigned. In our experience it is almost always possible to only execute projects with at
least four votes while accommodating at least one of the three choices of each student.
Even though being able to form their own teams may not accurately reflect the situation
in their future professional lives, we note that it provides a boost in motivation due to a
shared common interest in the project idea. We have noted that students want to work
on their projects because they feel they own the project, rather than having it imposed
on them. Also having team members that fit well on an emotional level significantly
improves motivation. High motivation is extremely important in any software develop‐
ment project [19] and can be difficult to achieve by the instructor if the general project
ideas do not suit students.

After teams are formed, teams work cooperatively to create a working software
project, as well as several document artifacts. All of these artifacts (and thus the devel‐
opment process) together with due dates are defined in a shared effort by the two instruc‐
tors before the class starts. Each team reports to only one of the two instructors, so that
additional effort on the instructor side due to the international setting is minimized and
the students learn to work with a remote product owner. Teams first produce a project
prospectus describing their project. Project ideas are generated by the teams themselves,
although there is nothing to prevent the instructors from using industry-sponsored
projects, or even in-house projects that have been added to the pool of project ideas.
Instructors evaluate the prospectus based on content and scope. In terms of content,
instructors ensure that the project involves aspects from several different areas of
computer science. The project is meant to be a capstone experience, and cannot be

Collaboration Support in an International Computer Science Capstone Course 315



limited to a single domain of computing (e.g., solely graphics or AI). The prospectus is
also evaluated in terms of scope: ensuring that the project is ambitious enough to require
the team the entire semester to complete.

After the prospectus is approved, teams conduct a feasibility study to generate a
feasibility report and initial burndown chart based on an initial set of items for the product
backlog. The feasibility study requires teams to conduct initial research on those areas
of the project whose solutions are currently unknown (novel algorithms, data structures,
languages, APIs, etc.), and present initial solutions that were discovered. Teams must
demonstrate that their target platform, language, libraries are installed on their devel‐
opment machines. Because of the distributed nature of the course, teams must also
identify how and where course artifacts will be created. Finally, teams must create a
burndown chart based on initial estimates for the items in the product backlog showing
the intended timeline for development taking the general course schedule into account.

During the project development phase, teams are required to complete a certain set
of items from the backlog to produce a working part of the final product after every
sprint. In recent years we have split the semester into 4 sprints, each about 3 weeks in
length. After each sprint, teams will generate a sprint report and meet with their instructor
to discuss progress to date, and challenges faced. Another important part of every sprint
(as well as the preliminary phases) is a peer evaluation that is to be submitted to the
instructor individually by each student. The peer evaluations help instructors to identify
potential problem spots where intervention by the instructor may be necessary. This is
particularly important for issues within the project teams, especially on the social level,
that do not show in the intermediate result.

The final result of the term is presented to the entire class. Teams collaboratively
create the presentation slides, and must carefully orchestrate the order in which the
team members will speak. Besides the course artifacts themselves, teams must also
submit periodic peer evaluations. One way of supporting the student’s evaluation of
their team members is the mandatory use of a version control system [6]. Using the
blame feature available in systems, instructors can determine how much each student
is contributing to a solution. This information helps to support or refute student
comments about their peers.

Grading throughout the semester follows a predefined and publicly available grading
rubric that has been set by the instructors in a common effort. All grading is done by the
instructor that a team reports to with some commonly graded teams in the first two years
to align application of the rubrics by the different instructors. The final grades from the
percentage results of the grading rubrics, however, are determined by the local instruc‐
tors in order to align these grades with local specifics of the programs regarding grades.

3 Collaboration Challenges

As noted above, there are several points of collaboration between student/student,
instructor/instructor, and instructor/student. In this section we make explicit the chal‐
lenges and requirements of collaboration at each of these points.

316 R. Adams and C. Kleiner



Overall, instructors must agree on the purpose of the course. Without this funda‐
mental agreement, a student’s experience in the course would depend highly on who
their instructor is. Our goal is to mitigate instructor differences by ensuring a common
vision.

Between the instructors, much of the collaboration happens before the class even
begins. At minimum, instructors must co-create a syllabus for the course outlining the
following items:

• What student learning objectives are central to the course? As with any course in
higher education defining the learning objectives for the students is the first central
issue to fix. Usually learning objectives for these courses at each individual institution
have already been set externally when originally designing the course. The specific
collaboration challenge for the instructors is thus to check whether there is a sufficient
overlap between those objectives. This can be done virtually (e.g. video conference)
but a personal discussion is usually favorable.

• What content do the instructors deliver in class? It is important that all students on
the virtual teams start with as equal knowledge regarding software engineering
projects as possible. Note though that there is substantial difference in both technical
as well as organizational skills even within a single local class. So, at least the same
level of variation is to be expected in distributed teams as well. Focus here should
be on a common understanding of the development process itself. This collaboration
challenge can be solved by exchanging information about prerequisites as well as
material to be shared in class. Shared document storage is usually sufficient.

• What software development model/process will students use to create their projects?
Similarly to the previous item all students need to work on the same common process
model with the same timeline. This can only be achieved if previously agreed and
defined by the instructors.

• What deliverables will students be submitting for grading? There should be common
understanding and deadlines regarding deliverables throughout the project. As
discussed in the previous issue the same development process will be used, thus it
should be rather simple to also define common deliverables to be submitted by the
students. Usually most of the deliverables are immediate consequences of the chosen
process model. Some additional deliverables specific to university courses as
opposed to professional software development should be added based on a common
decision (i.e. frequent formal peer evaluations).

• How will student deliverables will be graded? Using what criteria? For each of the
deliverables mentioned above there needs to be a common set of criteria that will be
used to assess the quality. In addition, there should be a common grading rubric
(usually percentages have been proven useful). Also, common agreed weights should
be used for each of these criteria as well as for overall grading combining grades for
all deliverables.

• When will student deliverables be due? After deciding on the process model, deliv‐
erables and overall timeline, common due dates for each of the deliverables should
be defined. Note that these due dates have to take a potential time difference into
account. Due dates for deliverables should be unique for the whole course whereas

Collaboration Support in an International Computer Science Capstone Course 317



presentations may be scheduled individually for distributed teams as close to the
presentation times of local teams as possible.

• How will teams be formed and by whom? This is one of the more difficult issues to
solve as there are different ways to do this, each with specific advantages and draw‐
backs. On a meta level it is important that the instructors agree on the process of team
formation and decide who will make ultimate decisions in the case of complaints. To
a certain degree the formation process depends on other parameters of the course
(self-defined projects vs. externally provided, keeping groups of friends on a team
vs. purposely separating them). In our setting the process as described above has
proven to work well.

After the course begins a whole new set of collaboration challenges arise between
the instructor and students, and between the students themselves. Between the instructor
and students the main challenges are:

• How to find common meeting times for instructors and students to meet? As teams
are distributed, there can be no regular meetings according to the regular university
schedule. Thus each team’s meeting times with the instructor have to be set individ‐
ually. As this process tends to be difficult because it extends regular class hours, all
parties will need to bring a lot of flexibility. Also, in order to keep organizational
overhead minimal an agreed process on how to set these times is necessary.

• How to conduct meetings with students when they are not in the same time zone or
country? Whereas the previous challenge already holds true for any distributed team,
the international setting with different time zones makes finding common meetings
times even more difficult as the number of constraints increases significantly. Thus,
a strict process and time-wise flexibility are even more important.

• How to keep track of a team’s progress throughout the semester? The deliverables
and due dates selected by the instructors should be rather fine-grained in order for
the instructor to keep track of the team’s progress continuously. In the distributed
setting the deliverables are usually the only chances for the instructor to track progress
as frequent in-class meetings or informal meetings are not suitable. It is also important
to keep an eye on each student’s individual participation in the teams. On the other
hand the organizational overhead for the instructor must remain manageable.

• How to facilitate communication about a team’s performance throughout the
semester? Grading of each of the deliverables throughout the project is only helpful
if the team gets feedback on their performance shortly after submission. This is
particularly important in case of imperfect deliverables to let the team know how to
improve the quality for the upcoming artifacts. As this cannot be done in a personal
meeting as usual, a way to communicate assessment needs to be defined that is both
quick and easy to use.

Finally, the following challenges arise between the students on a team. These are
probably the most important challenges as there much more students involved in the
class than instructors. In addition there is no natural hierarchy within the student teams
so that no ultimately deciding instance is present. Thus easy to use and commonly agreed
solutions for these challenges will have to be available in order for the student teams to
function properly.

318 R. Adams and C. Kleiner



• When and how do the students find common meeting times? Every project work
requires some kind of synchronous interaction between team members. In a distrib‐
uted team apart from local meetings, common meetings can only be virtual and have
to observe many time constraints from each participant as well as from the interna‐
tional setting in general. Thus finding suitable meeting times is a real challenge with
distributed student teams.

• How are they supported in a continuous team building process? Most components
of traditional team building processes are centered on common experiences. These
are not really available with distributed teams. It is almost impossible to hold a phys‐
ical kickoff meeting or perform classical social events supporting team building. New
ways of team formation both on the social as well as the organizational level (i.e.
roles on the project team) have to be found. Typically those will at least slow the
process down significantly which can be problematic given the time constraints of a
semester.

• How are they sharing project artifacts (e.g. documents, source code, product
backlog)? Throughout the project there is a need to share artifacts within the project
team. Those range from simple documents stating ideas or project aspects over docu‐
ments used as deliverables in the defined process (e.g. sprint reports, product back‐
logs, burn-down charts) to the source code of the product developed by the team
itself. In a distributed team there needs to be a way to provide these sharing capa‐
bilities with minimal overhead. As many real-world development teams also operate
in a distributed manner this challenge is not as big as it seems. Many professional
development teams have faced similar issues and thus well-proven technological
solutions are available (see next section).

• How/when are they meeting as a team? Apart from the first challenge which dealt
with finding a concrete common meeting time, a related challenge is whether and
how often they can be meeting as a team at all. The frequency will definitely be
reduced when compared to a local team, so that working style in the project will have
to be adjusted to fewer team meetings. This affects many aspects of project work
from amount of independent work to level of documentation and ways to make deci‐
sions on the team.

• What software development model do they use (e.g. individually, peer program‐
ming)? Related to the previous challenge there is also an impact of the distributed
team on the software development model. The number of choice is reduced as e.g.
pair programming can only be performed by the local parts of a team. This in turn
poses a challenge and restrictions on the separation of work within the team which
may have to follow geographic aspects more than technical ones.

4 Collaborative Tool Support

According to [20] tools supporting collaboration of student development teams can be
grouped into four categories: communication, goal tracking, information distribution
(e.g. document sharing and management) and change management. We will focus on
the first three of those as change management only impacts the instructor-instructor

Collaboration Support in an International Computer Science Capstone Course 319



relationship over several instances of a course and is thus of limited importance for the
student teams.

Given the set of challenges described in the previous section, we now discuss tools
that were used to address those challenges. As mentioned previously, much of the
collaboration between instructors happens before the class begins, and falls into two
general types of collaboration: real-time synchronous communication, and asynchro‐
nous document creation. Agreement on the general vision and format of the course is
best handled synchronously. Face-to-face communication is the best avenue for this, but
in this case one instructor was in Germany while the other was in the United States.
Therefore, a synchronous communication program like Skype, FaceTime, or Google
Hangouts can be used, or if nothing else, a telephone. With synchronous communication
instructors can quickly share their ideas for the course, their concerns, and work with
the other instructor to create a shared vision for the course. Naturally, this could also be
done via email, but the turnaround time makes it less than ideal.

After the general goals of the course are agreed upon, detailed course documents
need to be created. We have discovered that an asynchronous document creation system
works very well for this. In our particular case, we used Google Drive to collaboratively
create course documents and spreadsheets. The course documents included a syllabus
and course schedule. The syllabus not only describes the learning outcomes, but the
course deliverables, software development methodology to be used, and grading rubrics.
Asynchronous collaboration is appropriate because it gives instructors a chance to work
on different parts of the documents simultaneously, as well as to thoughtfully respond
to edits made by the other instructor. Also, Google Drive’s commenting features, as well
as its ability to track changes without having to email documents back and forth, ensures
that both instructors always have access to the latest version of a document.

During the semester communication between the instructors diminishes except when
clarification is required on grading rubrics or how to handle a specific situation with a
team. In these cases, our experience is that email is normally sufficient, although a phone
call or Skype session to talk through a situation is sometimes warranted.

After the course begins instructors and students start collaborating in earnest. Once
again, the challenges fall into two types: the need for real-time synchronous communi‐
cation, and the need for asynchronous document/artifact sharing. One of the initial chal‐
lenges is trying to find a common time when teams and their instructors can meet. This
is normally accomplished through open source meeting scheduling tools like Doodle
[doodle.com]. Because instructors and students are not located in the same country or
time zone, meetings must be held online. We have had success using tools like Skype
and Google Hangouts, both of which allow for multi-person “conference calls”.

Document and artifact sharing (reports, spreadsheets, graphs, etc.) requires some
kind of shared storage. We have successfully used Google Drive and Dropbox for this,
although some teams choose to host their own websites. Sharing source code is a neces‐
sity, and we mandate the use of git. We chose git because it is free, and an industry
standard. Some teams choose to share documents by uploading them to their GitHub
repositories, as well as using GitHub’s wiki feature to create documents, thereby
ensuring that all course artifacts are located at the same location.

320 R. Adams and C. Kleiner



For our course we also require all students to keep track of the time spent on their
project. Many accomplish this by uploading a document or spreadsheet as described
above. Other students do this by using an online time tracking tool like Toggl1. Toggl
allows users to start and stop timers, to specify what was being worked on, and then to
generate reports showing time-on-task.

Finally, students on the same team face collaboration challenges, especially when
they are not located in the same country. However, even students at the same university
often have collaboration challenges due to work schedules outside of school, or family
commitments. Like the collaboration between the instructors and teams, collaboration
between students can be characterized as either synchronous or asynchronous. Many
student teams reported that both Skype and Google Hangouts worked well for them,
allowing them to hold live meetings from any location (one student reported that he
“attended” a team meeting while his car was stuck in a snowbank on the way to campus).
Of course, email also remains a primary tool used to convey information that may not
be time-critical. Students also have a need to share artifacts (primarily source code), and
this is easily accomplished using tools such as Google Drive and git as described above.

In general, integrated project management systems for software development teams
such as Redmine may also provide a good choice as they provide solutions for a fair
number of the challenges. They typically focus on the software project specific issues
(e.g. wiki, document sharing, version control, issue tracking, time recording), though,
still leaving the need for tools solving the communication challenges discussed above.

5 Related Work

The general idea of using distributed student project teams has been documented in the
literature for several years, the first notable work being [5] with [1, 3, 10, 17] being more
recent. The ideas and challenges mentioned in those papers have been leveraged in our
course by re-using some of the ideas and purposely setting it up differently in other
aspects. [18] also describes a similar effort compared to ours, but this paper focuses more
on the specific collaboration challenges and how those can be solved with recent tech‐
nological tools that have not been available 10 years ago.

The works just mentioned provide an overall description of course pedagogy. More
specific work focuses on overall challenges for distributed teams [16], communication
skills [9], student team organization [2], software testing techniques [13], software tools
[7, 6], cultural factors influencing success [15], use of Agile and scrum methodologies
[14], and student motivation [4]. [20] is a recent paper that categorizes tools used in a
software engineering course, but does not elaboration on what those tools were. As
discussed above [11, 12] discuss the student team formation process which we did not
use here as our setting is different.

Some general work on effective tool support for distributed software development
teams away from the University setting also exist, e.g. [8] discussing software quality
and [19] explaining how to raise developer motivation in such teams. More papers exist,

1 http://www.toggl.com.

Collaboration Support in an International Computer Science Capstone Course 321

http://www.toggl.com


but many are of limited applicability to a university student project as some of the key
setup parameters are different (e.g. need for tools complying with no budget, specific
student-instructor situation, externally fixed schedule etc.).

6 Conclusions

Many computer science programs require some kind of culminating experience for
students, and it is clear that gaining experience working in an international setting is
becoming a critical skill. Several schools are incorporating global learning into their
capstone courses, and it is likely that other schools are beginning to consider doing the
same. The main challenge in developing a course around distributed virtual teams is
ensuring sufficient support for collaboration. Over the past three years we have success‐
fully offered an international capstone experience requiring students to work on a virtual
team with students from a different country. During that time the number and sophisti‐
cation of tools that support collaboration has grown dramatically, to the point that lack
of tools is no longer a viable argument against virtual teams.

Our experience has been that the need for collaboration among the instructors and
students falls into two broad categories: the need for synchronous communication, and
the need for asynchronous document sharing. In both cases current open-source tools
are sufficient to support distributed software development teams, and these supporting
technologies have significantly improved the collaboration of the student teams.

Although a wealth of tools exist in each category, we have successfully run our
capstone course using tools that are well-known, well-supported, and completely free.
Specifically, both Skype and Google Hangouts are comparable in features and effec‐
tively support synchronous discussions. For asynchronous document sharing, Google
Drive, Dropbox, and GitHub are more than adequate. Finally, integrated project manage‐
ment systems such as Redmine also provide support for document sharing challenges.

Our hope is that others are encouraged to attempt similar international efforts in order
to broaden their students’ non-technical skills. All the necessary collaborative technol‐
ogies are already in-place, well-known, and stable, lowering the barrier for these impor‐
tant international experiences significantly.

References

1. Al-Janabi, S., Sverdlik, W.: Towards long-term international collaboration in computer
science education. doi:10.1109/EDUCON.2011.5773118

2. Bruegge, B., Dutoit, A.H., Kobylinski, R., Teubner, G.: Transatlantic project courses in a
university environment. doi:10.1109/APSEC.2000.896680

3. Ciccozzi, F., Crnkovic, I.: Performing a Project in a Distributed Software Development
Course: Lessons Learned. doi:10.1109/ICGSE.2010.29

4. Clear, T., Kassabova, D.: Motivational patterns in virtual team collaboration. In: Young, A.,
Tolhurst, D. (eds.) Proceedings of the 7th Australasian Conference on Computing Education,
ACE 2005, vol. 42, pp. 51–58. Australian Computer Society Inc., Darlinghurst (2005)

322 R. Adams and C. Kleiner

http://dx.doi.org/10.1109/EDUCON.2011.5773118
http://dx.doi.org/10.1109/APSEC.2000.896680
http://dx.doi.org/10.1109/ICGSE.2010.29


5. Daniels, M., Petre, M., Almstrum, V., Asplund, L., Bjorkman, C., Erickson, C., Klein, B.,
Last, M.: RUNESTONE, an international student collaboration project. doi:10.1109/FIE.
1998.738780

6. Glassy, L.: Using version control to observe student software development processes. J.
Comput. Small Coll. 21(3), 99–106 (2006)

7. Gotel, O., Kulkarni, V., Scharff, C., Neak, L.: Working Across Borders: Overcoming
Culturally-Based Technology Challenges in Student Global Software Development. doi:
10.1109/CSEET.2008.16

8. Gotel, O., Kulkarni, V., Say, M., Scharff, C., Sunetnanta, T.: Quality Indicators on Global
Software Development Projects: Does ‘‘Getting to Know You’’ Really Matter? doi:10.1109/
ICGSE.2009.8

9. Johansson, C., Dittrich, Y., Juustila, A.: Software engineering across boundaries: student
project in distributed collaboration. doi:10.1109/47.807967

10. Makio, J., Betz, S.: On educating globally distributed software development — A case study.
doi:10.1109/ISCIS.2009.5291874

11. Oakley, B., Felder, R.M., Brent, R., Elhajj, I.: Turning Student Groups into Effective Teams.
J. Student Centered Learn. 2(1), 9–35 (2004)

12. Richards, D.: Designing project-based courses: with a focus on group formation and
assessment. ACM Trans. Comput. Educ. 9(1) (2009). Article 2

13. Richardson, I., Moore, S., Paulish, D., Casey, V., Zage, D.: Globalizing Software
Development in the Local Classroom

14. Scharff, C., Gotel, O., Kulkarni, V.: Transitioning to Distributed Development in Students’
Global Software Development Projects: The Role of Agile Methodologies and End-to-End
Tooling. doi:10.1109/ICSEA.2010.66

15. Swigger, K., Alpaslan, F., Brazile, R., Harrington, B., Peng, X.: The challenges of
international computer-supported collaboration. doi:10.1109/FIE.2004.1408738

16. Swigger, K., Brazile, R., Serce, F.C., Dafoulas, G., Alpaslan, F.N., Lopez, V.: The Challenges
of Teaching Students How to Work in Global Software Teams. doi:10.1109/TEE.
2010.5508836

17. Tabrizi, M.H.N., Collins, C.B., Kalamkar, V.: An international collaboration in software
engineering. Proceedings Of The 40th Acm Technical Symposium On Computer Science
Education (SIGCSE 2009), pp. 306–310. ACM, New York (2009)

18. van der Duim, L., Andersson, J.: Good practices for educational software engineering
projects. In: 29th International Conference on Software Engineering, ICSE 2007, pp. 698–
707. IEEE Computer Society Press (2007)

19. Sach, R., Sharp, H., Petre, M.: Continued involvement in software development: motivational
factors. In: Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2010). ACM, New York (2010). doi:
10.1145/1852786.1852843. http://doi.acm.org/10.1145/1852786.1852843

20. Knutas, A., Ikonen, J., Ripamonti, L., Maggiorini, D., Porras, J.: A study of collaborative tool
use in collaborative learning processes. In: Proceedings of the 14th Koli Calling International
Conference on Computing Education Research (Koli Calling 2014), pp. 175–176. ACM, New
York (2014). doi:http://dx.doi.org/10.1145/2674683.2674706

Collaboration Support in an International Computer Science Capstone Course 323

http://dx.doi.org/10.1109/FIE.1998.738780
http://dx.doi.org/10.1109/FIE.1998.738780
http://dx.doi.org/10.1109/CSEET.2008.16
http://dx.doi.org/10.1109/ICGSE.2009.8
http://dx.doi.org/10.1109/ICGSE.2009.8
http://dx.doi.org/10.1109/47.807967
http://dx.doi.org/10.1109/ISCIS.2009.5291874
http://dx.doi.org/10.1109/ICSEA.2010.66
http://dx.doi.org/10.1109/FIE.2004.1408738
http://dx.doi.org/10.1109/TEE.2010.5508836
http://dx.doi.org/10.1109/TEE.2010.5508836
http://dx.doi.org/10.1145/1852786.1852843
http://doi.acm.org/10.1145/1852786.1852843
http://dx.doi.org/10.1145/2674683.2674706

	Collaboration Support in an International Computer Science Capstone Course
	Abstract
	1 Introduction
	2 Course Overview
	3 Collaboration Challenges
	4 Collaborative Tool Support
	5 Related Work
	6 Conclusions
	References


