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Abstract. Declarative process models have become a mature alterna-
tive to procedural ones. Instead of focusing on what has to happen, they
rather follow an outside-in approach based on a rule base containing dif-
ferent types of constraints. The models are well-capable of representing
flexible behavior, as everything that is not forbidden by the constraints
in the model is possible during execution. These models, however, are
more difficult to comprehend and require a higher mental effort of both
the modeler and the reader. Since constraints can be added freely to the
model, it is often overseen what impact the combination of them has.
This is often referred to as hidden dependencies. This paper proposes
a methodology to make these dependencies explicit for the declarative
process modeling language Declare by considering a Declare model as
a graph and relying on the constraints’ characteristics. Moreover, this
paper also contributes by empirically confirming that a tool that can
visualize hidden dependency information on top of a Declare model has
a significant positive impact on the understandability of Declare models.

Keywords: Declarative process modeling · Declare · Hidden dependen-
cies · Empirical evaluation

1 Introduction

Declarative process models have been proposed to counter the flexibility lim-
itations of procedural modeling languages. Instead of modeling predetermined
paths of activities, declarative process models use constraints to express what
can, cannot, and must happen. Every execution sequence that is not strictly for-
bidden by the constraints can be enacted by the model. This makes declarative
models much more flexible indeed, but also more difficult to comprehend. To put
it simplistically, it is not possible to ‘find an execution path by following your
finger along the arcs’. There are many possible outcomes due to the interaction
of the constraints over the activities.
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In different works approaches to deal with the understandability problems of
declarative models have been proposed. For instance in [1], the impact of hier-
archy is investigated and in [2] the typical pitfalls of understanding declarative
models are pointed out.

This paper proposes an approach capable of improving the understandabil-
ity of models expressed in Declare [3], one of the most widely used declara-
tive process modeling language. The approach deals with hidden dependencies
[2,4,5], one of the main reasons that make Declare models difficult to under-
stand. Hidden dependencies pose a significant challenge for humans: it is not
sufficient to rely on the information explicitly indicated by the constraints, but
one has to carefully analyze all the defined constraints for understanding all
the dependencies that are not explicitly visible (i.e., that are hidden). The con-
tribution of this paper consists of a methodology to build so-called constraint
dependency structures in order to reveal all hidden dependencies and make them
explicit in a Declare model. Furthermore, this methodology is developed into the
Declare Execution Environment1, a tool that supplements an existing Declare
model with visual and textual annotations to clarify which behavior is allowed or
disallowed by the model. In an experimental evaluation with 95 novice Declare
modelers, we show that the methodology to make hidden dependencies explicit
and visually annotating a Declare model with this information, has a significant
positive impact on the understandability of Declare models.

The structure of the paper is as follows. First, the concept of Declare con-
straints is briefly summarized and relevant characteristics are explained. Next,
Sect. 3 explains how to capture and formalize dependency structures, followed
by Sect. 4, which shows the implementation and tool. This tool is used for exper-
imental validation in Sect. 5. Finally, Sect. 6 summarizes the related work and
Sect. 7 discusses future work and the conclusion.

2 Declare Constraints and Their Characteristics

Declare models are constructed using a fixed set of constraints, which are sum-
marized in Table A1 in [6]. They range from unary constraints, indicating the
position and cardinality of an activity, to n-ary constraints, which capture typical
sequential behavior such as precedence and succession relationships. A Declare
model DM = (A,Π) can be represented as follows:

– A is a set of activities from the alphabet Σ,
– Π is the set of Declare constraints defined over the activities.

In this paper we assume n ≤ 2. A Declare graph can be represented as a directed
graph DG = (A,Π). Hence the activities and constraints map one-to-one onto
the graph in case of n = 2, given that unary constraints are considered as self-
loops. We denote all incoming arcs of a ∈ A as •a ⊆ Π and outgoing arcs as
a• ⊆ Π. The antecedent and consequent of π ∈ Π are denoted as πa and πb.2

1 http://www.processmining.be/declareexecutionenvironment.
2 Our interpretation of these concepts differ from, e.g., [7], as we consider a the

antecedent in Precedence(a, b) relationships, rather than b for notational simplicity.

http://www.processmining.be/declareexecutionenvironment
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The execution of a Declare model can be realized by constructing an automa-
ton (either a Büchi [8] or finite state automaton [9,10]) by conjoining the different
constraints’ automata to obtain the behavior that is allowed for by all of them.
This conjunction actually abolishes the notion of the separate constraints and
thus throws away the information of how the separate constraints interact. One
technique to mitigate this is to color the constraints [11] by keeping both the
global and separate automata, but still the interactions remain untraceable.

Declare constraints exhibit a hierarchy, which is well-explained in [8,9].
For unary constraints, Existence(A,n) and Absence(A,n) together form Exactly
(A,n). Binary constraints are divided in different classes, for which every
class depends on the previous one: Unordered (Responded/co-existence), Sim-
ple ordered (Precedence (p), Response (r), Succession (s)), Alternating ordered
(Alternate p,r,s), and Chain Ordered (Chain p,r,s). Next to these constraints,
there exist negative versions for three of them (Not co-existence, Not succession,
Not chain succession). Finally, the Choice constraint exists, which is comparable
with a branched unary constraint Existence({A,B},n).

For binary constraints, (Alternate/Chain) Response(A,B) and (Alternate/
Chain) Precedence(A,B) form (Alternate/Chain) Succession. When a property is
discussed for, e.g., Chain succession, this also includes (Chain/Alternate) prece-
dence/response and vice versa.

Furthermore, each constraint has specific characteristics that are discussed
in [12]. Some constraints have an impact on the temporary violation aspect of
the model (the constraint is not in an accepting state and requires an activity to
resolve it, e.g. Response or Choice), some constraints can disable activities for
the remainder of the execution (such as Exactly and Not succession), and some
constraints can temporarily block all other activities (Chain constraints). These
different characteristics all impose certain dependencies among constraints that
are not directly visible through a single constraint (arc). E.g., a model con-
sisting of A = {a, b, c} and Π = {Response(a, b), Response(b, c), Exactly(c, 2)}
contains a hidden dependency between a and c. When c is fired once (and hence
can only fire one time anymore), and a has fired without b firing already, c should
not fire before b resolves the temporary violation of Response(a, b), since after
firing c, c cannot resolve Response(b, c) anymore (as it can only fire two times)
and b should not fire to avoid another temporary violation of Response(b, c).

The hidden dependencies caused by all these characteristics can be made
explicit. In the following section, it is explained how they relate to the activities
in a declarative model.

3 Declare Dependency Structures

This section discusses how dependency structures retrieved from Declare models
can be constructed (Sect. 3.1), how they can aid interpretation of the model
and the way in which constraints interact (Sect. 3.3). Before constructing the
structures, however, the unary constraints in the model need to be propagated
to achieve the correct interpretation, as explained in Sect. 3.2.
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3.1 Construction

A hidden dependency can be defined as an interaction between constraints and
their activities that is not made explicit as such in the model itself. They are
the outcome of conjoining the separate constraints to avoid permanent violation,
as explained earlier. Hence, it is paramount to find the ways to avoid perma-
nent violation to occur. There are three types of resolution strategies to resolve
temporary violations:

1. An activity must still happen: after firing the antecedent in Responded
existence, Co-Existence, (Alternate/Chain) Response, the consequent must
fire afterwards.

2. An activity must still happen a certain amount of times: Existence,
Exactly, Choice.

3. An activity must still happen at a fixed moment in time: Chain
response.

Note that combining different constraints could lead to coalesced resolution
strategies: Chain response(a,b) coupled with Existence(a,2) requires firing b at
least twice on certain fixed moments (directly after a) as well.

Now we construct the set of dependency structures DP for DM with DS =
(πDS ,ΠDS

dep ,DSDS
dep),DS ∈ DP with

– πDS the constraint triggering the structure,
– ΠDS

dep the set of dependent constraints, and
– DSDS

dep the set of nested dependency structures dependent of πDS .

To fill ΠDS
dep and DSDS

dep , Algorithm 1 creates a dependency structure for every
activity that is involved in at least one of the five constraints that can perma-
nently disable it. Hence, a structure is created for a in Absence/Exactly(a,n), a
and b in Exclusive choice/Not co-existence(a,b), and for b in Not succession(a,b)
as can be seen on lines 7–25.

First, all backward-propagating constraints are considered (ΠBW ⊆ Π,
inferred from resolution strategy 1) and used for recursive search, as well as
stored in Πdep (Algorithm 2, lines 1–22). During this procedure, all incoming
Existence and Choice constraints (as in 2) are stored as well (Algorithm 2, lines
16–18). They also need to be fulfilled, but do not propagate due to their unary
nature. When Responded existence is encountered, a new dependency structure
DL ∈ DSDS

dep is constructed because when the constraint becomes satisfied (by
firing its consequent), it is satisfied indefinitely (unlike, e.g., Response which
can become temporarily violated again) and its propagation is also abolished
(Algorithm 2, lines 6–10).

For every activity that is encountered by the algorithm, a forward-
dependency search is performed for all forward-propagating constraints ΠFW ⊆
Π, which include all (Alternate/Chain) precedence constraints and Co-
existence. These constraints need to be activated (the antecedent has to be fired,
in the case of alternating variant possibly multiple times) to resolve dependencies
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Algorithm 1. Retrieving Dependency Structures
Input: DM = (A, Π)
Input: ΠBW ← ΠResp/CoEx ∪ Π(C/A)Response � Backward-propagating constraints
Input: ΠFW ← ΠCoEx ∪ Π(C/A)Precedence � Forward-propagating constraints
Output: DP � The set of dependency structures for DM
1: procedure ReturnDepTrans(DM)
2: DP ← ∅ � The set of all dependency structures of the model
3: for π ∈ Π do
4: DS ← ∅ � The dependent structure for π
5: V l ← ∅ � Set of visited activities for left search
6: V r ← ∅ � Set of visited activities for right search
7: if π ∈ ΠAbs ∨ π ∈ ΠExa then
8: πDS ← π
9: DS ← SearchLeft(πa, V l, DS) ∪ SearchRight(πa, V r, DS)
10: DP ← DS
11: end if
12: if π ∈ ΠNotSuc then
13: πDS ← π
14: DS ← SearchLeft(πb, V l, DS) ∪ SearchRight(πb, V r, DS)
15: DP ← DS
16: end if
17: if π ∈ ΠExclChoi ∨ π ∈ ΠNotCoEx then
18: πDS ← π
19: DS ← SearchLeft(πa, V l, DS) ∪ SearchRight(πa, V r, DS)
20: DP ← DS
21: DS2 ← ∅
22: πDS2 ← π
23: DS2 ← SearchLeft(πb, V l, DS) ∪ SearchRight(πb, V r, DS2)
24: DP ← DS2
25: end if
26: end for
27: return DP
28: end procedure

from backward-propagating constraints. The constraints dependent of them are
linked to them through a separate, nested dependency structure DL ∈ DSDS

dep

(Algorithm 2, lines 22–36).

Example. Consider the model in Fig. 1a. Not succession(c,b), meaning any
occurrence of c cannot be followed eventually by b, causes the algorithm
to construct a dependency structure for b. Backward-searching will reveal
Response(a,b) and Exactly(a,1) as dependent constraints. c cannot fire before a
has resolved Exactly(a,1), which will render Response(a,b) temporarily violated
and requires b to resolve it. Hence sequences such as σ = e → b or σ = a → e
are not possible. In a forward search, Precedence(b,d) requires a new depen-
dency structure, nested in DSNot succession(C,B). Firing e requires d to resolve
Response(e,d). Hence, firing c before firing e would render e disabled, as b can
never fire anymore due to Not succession(c,b), so the Precedence(b,d) can never
be activated. Firing b before c would resolve this, as d can then fire an unlimited
amount of times. The full dependency structure present in the model is DS =
{π = Not succession(c, b),Πdep = {Response(a, b), Exactly(a, 1)},DSdep =
{π = Precedence(b, d),Πdep = Response(e, d), ∅}}.
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Algorithm 2. Search for Dependency Constraints
1: procedure SearchLeft(a, V, DS)
2: if ¬(a ∈ V ) then � Do if a is not visited yet, avoids infinite loops
3: V ← a
4: for π ∈ •a do � Scan all incoming Declare constraints of activity a
5: if π ∈ ΠBW then
6: if π ∈ ΠRespEx then
7: DL ← ∅ � Create new nested dependency structure
8: πDL ← π
9: DL ← SearchLeft(πa, V, DL) ∪ SearchRight(πa, V, DL)

10: DSDS
dep ← DL � Add nested structure to main structure DS

11: else
12: ΠDS

dep ← π

13: DS ← SearchLeft(πa, V, DS) ∪ SearchRight(πa, V, DS)
14: end if
15: end if
16: if π ∈ ΠExis ∨ π ∈ ΠExa ∨ π ∈ ΠChoi then
17: ΠDS

dep ← π

18: end if
19: end for
20: end if
21: return DS
22: end procedure

23: procedure SearchRight(a, V, DS)
24: if ¬(a ∈ V ) then
25: V ← a
26: for π ∈ a• do � Scan all outgoing Declare constraints of activity a
27: if π ∈ ΠFW then
28: DL ← ∅
29: πDL ← π
30: DL ← SearchLeft(πb, V, DL) ∪ SearchRight(πb, V, DL)

31: DSDS
dep ← DL

32: end if
33: end for
34: end if
35: return DS
36: end procedure

3.2 Unary Propagation

The construction and use of dependency structures depends on the correct prop-
agation of all unary relations inside of the model. E.g., consider the model in
Fig. 1b. Changing Precedence(b,d) and Response(e,d) to their alternating variant
and adding Existence(e,2) would require d and hence b to fire at least twice as
well. In general, unary constraints that are not present in the original model are
added in the following fashion for a, b ∈ A:

– Responded existence(a,b), if a occurs at least or exactly n times, then b has
to occur at least once.

– Co-existence(a,b), if a or b occurs at least or exactly n times, then b respec-
tively a has to occur at least once.

– Response(a,b), if a occurs at least or exactly n times, then b has to occur at
least once.

– Precedence(a,b), if b occurs at least or exactly n times, then a has to occur
at least once.
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(a) Simple example with Not succes-
sion inflicting hidden dependencies.

(b) The same example with unary and
alternating constraints.

Fig. 1. An example of a small Declare model with hidden dependencies in two variants.

– Succession(a,b), if a or b occur at least or exactly n times, then the other
activity has to occur at least once.

– Alternate response(a,b), if b occurs at most or exactly n times, then a can
occur at most n times. If a occurs at least or exactly m times, then b has to
occur at least m times.

– Alternate precedence(a,b), if b occurs at least or exactly n times, then a has
to occur at least n times.

– Alternate succession(a,b), both a and b have to have the same unary restric-
tions.

– Chain response(a,b), if a occurs at least or exactly n times, then b has to
occur at least n times. If b occurs at most or exactly m times, then a can only
occur at most m times.

– Chain precedence(a,b), if a occurs at most or exactly n times, then b can occur
at most n times.

– Chain succession(a,b), both a and b have to have the same unary restrictions.

Every unary constraint has a lower bound Existence(n) and upper bound
Absence(m), and they are combined and replaced by an Exactly constraint when
n = m − 1. These rules are applied to the model until no unary constraint
changes anymore. If there would be an activity for n > m − 1, this would mean
the model would end up in a permanently violated state.

This propagation is done before the model is used in the algorithms in order to
have consistent dependency structures. Next, the same procedure is repeated to
calculate for each activity how many times it still has to execute in the following
execution steps. This helps the dependency structures to recognize whether a
certain nested structure can be cast off because it can fire a sufficient amount of
times.

Example. Returning to the example, Existence(e,2) is propagated to d, yielding
an Existence(d,2) and next to b yielding Existence(b,2). The minimum amount of
occurrences is also calculated and updated throughout the execution per activity.
This way, the dependency structures will incorporate the unary constraints into
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the model and indicate that c cannot fire before b has fired its appropriate
amount of times to enable d and e to fire at least twice. Initially, b, d, and e
must execute a minimum of 2 times. b can be disabled after d and e have fired
at least once, and b has fired at least two times (once before d fired and once
after d fired to grant d another execution because of Alternate precedence(b,d)),
for example sequence σ1 = b → e → d → b → c or σ2 = e → b → d → b → c.
After this execution, d cannot fire until e is fired because they can both fire
only once anymore (d because of Alternate precedence(b,d) and hence e through
Alternate response(e,d)) and d has to be able to resolve Alternate response(e,d),
e.g. σ1 → e → d and not σ1 → d → e.

3.3 Interpretation

Constructing dependency structures can already give extra information by
displaying them in a graph showing which constraints interact with the main
constraint (πDS) in the structure. However, they can be expressed in extra
descriptions to annotate the model in order to help understand why constraints
are related and what combined impact they have.

First of all, for Exclusive choice(a,b) and Not co-existence(a,b), the structures
reflect that whenever an activity from either structure is fired (either the one
for a or b), the activities in the other structure become disabled permanently.
Indeed, firing any activity in the dependency structure of a or b requires them
to fire, hence activating Exclusive choice or Not co-existence. If the structures
of a and b share activities, this means the net is not deadlock-free.

Secondly, for Not succession(a,b), a becomes disabled whenever a constraint
π ∈ ΠDS

dep is temporarily violated and needs b to resolve it. Also, dependent
structures in d ∈ DSDS

dep cannot contain any violations in their Πd
dep unless the

antecedent of the main constraint πd ∈ DSd
dep is activated and can execute a min-

imum number of times required (as explained in Sect. 3.2). For unary constraints,
Absence(A,n) and Exactly(A,n), this applies as well, with the exception that a
becomes disabled when a constraint relies upon it to become satisfied again.

Finally, every execution of activities in Chain constraints should be checked
for executions one step ahead. For each of them, it is calculated whether the
consequent is available to fire for Chain response, or is the only one available for
Not chain succession in order to avoid deadlock.

4 Tool Support

The construction of the dependency structures has been implemented in a
Declare execution environment, of which the implementation can be found by
following the link in the introduction. The tool can read a Declare model saved
from Declare Designer [13], which, during execution, is supported by descrip-
tions for the hidden dependencies. A screenshot and an example can be found
in Fig. 2.
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Fig. 2. An example of a small Declare model with hidden dependencies and the corre-
sponding dependency graph for Exactly(c,2).

Furthermore, the dependency structures can be visualized next to the model
as a directed graph as well. Finally, the trace created over the model by the user
is displayed below the model, aiding the user in understanding the history of the
current situation displayed over the model.

The execution semantics are provided by dk.brics.automaton [14] and con-
sists of the conjunction of the separate Declare automata expressed in regular
expressions, as can be found in [9,10].

5 Empirical Evaluation

Making hidden dependencies explicit by annotating Declare models can signifi-
cantly improve their understandability. In this section, it is empirically demon-
strated that novice process modelers are indeed better capable of understanding
Declare models when they are provided with an environment that makes hidden
dependencies explicit through text and figures.

5.1 Experimental Setup

In the experiment, 95 students (see Table 2) enrolled in KU Leuven’s Business
Analysis course, in which both procedural and declarative process modeling are

http://www.dk.brics.automaton
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Table 1. The different Declare models used during the experiments. High-resolution
versions of the figures of the models used in the experiment can be found by following
the link to the tool site.

Model 1 Model 2 Model 3

Response(a,b) Exactly(a,2) Response(a,b)

Precedence(b,c) Existence(c,2) Response(b,c)

Not co-existence(b,e) Exactly(b,2) Exactly(c,2)

Response(d,e) Absence(d,3) Precedence(b,e)

Alternate precedence(a,c) Response(d,e)

Alternate response(b,d) Alternate precedence(e,g)

Response(f,g)

Model 4 Model 5

Response(a,b) Response(a,b) Choice(a,j)

Existence(b,1) Response(b,c) Not succession(i,j)

Alternate precedence(b,c) Exactly(c,2)

Not succession(b,e) Precedence(b,e)

Existence(c,1) Response(d,e)

Response(d,c) Alternate precedence(e,g)

Existence(d,2) Response(f,g)

taught, were asked to solve five questions for each of five different Declare models
in a timespan of two hours. The students have the same modeling experience
and background and can be considered novice business process modelers. The
models, as represented in Table 1, are of increasing complexity and are tailored
towards assessing different kinds of dependencies:

– Model 1: focuses on the impact of the Not co-existence constraint.
– Model 2: focuses on the impact of unary constraint propagation.
– Model 3: focuses on the impact of simple forward and backward dependen-

cies induced by Exactly(c,2).
– Model 4: focuses on the impact of more advanced forward and backward

dependencies induced by Not succession(b,e).
– Model 5: focuses on the same impact as models 3 and 4, with an added
Choice constraint.

At the start of the test, students were provided instructions making use of
the example used in Sect. 2, a model which was used as a foundation for models
3–5, but without the additional constraints and activities added. As such, the
idea behind hidden dependencies was explained, as well as how to make use of
the tool they were provided with.

In order to measure the impact of handing natural language descriptions and
the visualization of dependency graphs, the students were divided into three
groups which received a different version of the Declare Execution Environment.
Group A could only see the Declare model and the constraint descriptions,
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but no color annotation nor dependency structure visualizations. Group B
received a tool in which the enabled activities were colored green, and tem-
porarily violated constraints were colored red, in a fashion described in [11] and
similar to Declare Designer [13]. Also, the constraint descriptions were given.
Finally, group C was given an environment with the same functionality as group
B, but with extra descriptions concerning hidden dependencies, as well as the
possibility to open a dynamic visualization of the dependency structures.

Table 2. The students were selected from 3 different programs, however, it was made
sure their distribution could not skew the results. More info can be found by following
the provided link in Sect. 1.

Group Participants Gender Program

Male Female IS Business CS

A 36 25 11 5 31 0

B 32 23 9 6 26 0

C 27 15 12 5 21 1

The questions were aimed at uncovering to which extent the participants
grasped the full impact of the blend of different constraints. They were asked to
indicate which activities were enabled after firing a certain sequence, and why or
how to reach a certain firing sequence. Since two out of three groups knew which
ones were enabled, they could focus more on the second part of the question. An
example question used for model 1 was ‘After firing d, which activities are still
enabled? Explain’.

Each question was scored on a 0 to 1 scale, where incomplete answers (usually
because of overlooked hidden dependencies or incorrect use of constraints) were
still awarded a score higher than 0. E.g., a student from group B who provides the
correct set of enabled activities but fails to state that activity c in model 3 is not
enabled because of hidden dependencies was still awarded 0.6. The explanation
was taken into account so as to make a fair comparison with students in group
A, who got no extra information, and therefore many times missed even these
basic answers. Group C students that just copied extra descriptions provided by
the tool also did no receive a grade of 1, as they did not prove to understand
the model.

5.2 Results

Quantitative Results. Given this setup, an experimental analysis can be con-
ducted to investigate the impact of the environment students were given (i.e.
group) on the score, where a higher score reflects a better level of understand-
ing. Figure 3 shows boxplots of the average scores over 5 questions, per model
and per group. From the figure, it can be seen that for each model, an increase
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Fig. 3. Boxplot of the scores of 5 questions per model (1–5) and per group (A–C).

Table 3. Linear regression model based on the data gathered from the experiment
with significance scores ‘***’ 0, ‘**’ 0.001, and ‘*’ 0.01.

Coefficients Estimate Std. errror t value Pr(>|t|)
(Intercept) 0.64092 0.01583 40.498 < 2.00E-16 ***

Model2 -0.17082 0.01939 -8.81 < 2.00E-16 ***

Model3 -0.17082 0.01939 -8.81 < 2.00E-16 ***

Model4 -0.10498 0.01943 -5.403 < 7.22E-08 ***

Model5 -0.21555 0.01964 -10.977 < 2.00E-16 ***

GroupB 0.15811 0.01463 10.81 < 2.00E-16 ***

GroupC 0.26522 0.01524 17.4 < 2.00E-16 ***

Residual standard error: 0.2986 on 2340 degrees of freedom

Multiple R-squared: 0.1658

Adjusted R-squared: 0.1636

F-statistic: 77.49 on 6 and 2340 DF, p-value: < 2.2e-16

is observed in terms of the score when students are provided with additional
hidden dependency-based annotations. Note that the data is available on the
tool’s web site.

So as to evaluate the statistical significance of this pattern, a linear regression
(Score = α × model + β × group + ε) was fitted on the data. From the results in
Table 3, it is clear that both the impact of the model as well as the group (and
hence tool) is highly significant. Observe that the data was also fitted for a model
with interaction between model and group and also for a model with gender
and program included. These models did not raise the R-squared values much
(<0.18), hence hinting at little extra explanatory power. Running a Durbin-
Watson-test also rejected the hypothesis for correlation among the residuals.
Finally, it was tested whether the error terms were normally distributed, as can
be seen in Fig. 4a.



Improving Understandability of Declarative Process Models 95

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

(a) Q-Q plot of the error terms showing
they are close to a normal distribution.

0 500 1000 1500 2000

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Index

fit
$r

es

(b) Plot of the residuals, showing no no-
ticeable patterns.

Fig. 4. Descriptive statistics of the results of the linear regression model.

Qualitative Results. Since the participants did not just give an answer in
the form of ‘A is now enabled’ but had to motivate their answers, some extra
observations could be made concerning the results. Although it was the case that
the two groups with the more elaborate tool were better capable of seeing which
activities are enabled and which constraints are violated, they still seemed to
ignore these annotations. Especially group B sometimes ignored the coloring of
the model as they did not understand some implications of the constraints. Par-
ticipants often also bended the descriptions of the Declare constraints towards
their understanding, hence starting to discuss irrelevant parts of the model. For
the third group, this behavior was still present, although to a much lesser extent.
Group A participants often found the hidden dependencies in the easier exam-
ples. Because they had no support they analyzed the models thoroughly, but
failed to find any hidden relations in the elaborate examples.

Remarks. As for all empirical studies, there are threats to validity that need
to be addressed, the main ones in our case are:

– Internal validity: Our experiment had the maturation threat because sub-
jects may react differently as time passes (because of boredom or fatigue).
We solved this threat by dividing the experiment into different questions per
model. Next this threat, we made sure there could be no interaction between
the students of different sessions.

– Construct validity: Our experiment was threatened by the hypothesis
guessing threat because students might figure out what the purpose of the
study is, which could affect their guesses. We minimized this threat by hiding
the goal of the experiment. Since the R-squared values were not very high,
it might also be interesting to include the time spent on the questions and
the grades of the final exam of the students to explain the score through the
capabilities to learn and think logically in general.

– External validity: Our experiment might suffer from interaction of selection
and treatment: the subject population is limited to students. Although the
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number of subjects is quite high and their profiles balanced, we can only
generalize the results to students. The subjects might not be representative
to generalize the results to professional modelers as well. It is, e.g., not possible
to claim that the tool can help or improve Declare modeling efforts of more
experienced users.

6 Related Work

Declare, introduced as DecSerFlow and ConDec in [15,16], has become one of
the most widely-used declarative process languages in research. Some competing
approaches exist such as DCR Graphs [17], which are comparable to a slimmed-
down version of Declare for improving understandability and setup, and the more
data-oriented language Guard-Stage-Milestone [18].

Declare and its understandability has been researched for a test case-driven
approach [4], the impact of hierarchies [1], and its common understandability
challenges [2]. While these works clearly state the presence of hidden dependen-
cies, with [2] explicitly mentioning this as a common pitfall for understandability,
they have not provided a way to capture them. This work continues on the pre-
liminary approach for retrieving hidden dependencies of [19].

Many other works on Declare mining exist as well, which have led to a better
understanding of the properties of the language. Most notably the hierarchy
[9] and semantics [10,20,21] and the transitivity properties [22] have brought
clarification as to how constraints behave in a model.

7 Conclusion and Future Work

This paper shows how to retrieve and use dependency structures and unary
propagation in Declare models to increase understandability. It offers a theoretic
aspect in explaining how to construct and interpret the relations of constraints
and their hidden dependencies in ways that have not been proposed yet, and
was validated on novice users in an experiment. This showed that explaining
and visualizing hidden dependencies and constraint structures rendered users
significantly better capable of understanding the models.

Future work includes analyzing the results further by using extra user sta-
tistics such as average grades, as well as including new observations from expert
users. Next, it is also straightforward to extend these findings to n-ary con-
straints, which changes only the propagation and interpretation slightly. Fur-
thermore, constructing the hidden dependencies has numerous other applica-
tions. By understanding in which way constraints are related, it becomes easier
to grasp the complexity of conjoining the separate Declare constraints’ automata
and hence it is possible to score the impact of different constraints on, e.g., the
performance of calculating the global automaton of the whole model. Further-
more, these insights can be used to score a Declare model for simplicity., i.e.,
models which contain more hidden dependencies can be scored lower for this
metric.
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