
A Longitudinal Study of Community-Oriented
Open Source Software Development

Kateryna Neulinger1(B), Anna Hannemann1, Ralf Klamma1,
and Matthias Jarke1,2

1 Advanced Community Information Systems (ACIS) Group,
RWTH Aachen University, Ahornstr. 55, 52056 Aachen, Germany

{neulinger,hannemann,klamma}@dbis.rwth-aachen.de
2 Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany

jarke@dbis.rwth-aachen.de

http://dbis.rwth-aachen.de

Abstract. End-users are often argued to be the source of innovation
in Open Source Software (OSS). However, most of the existing empir-
ical studies about OSS projects have been restricted to developer sub-
communities only. In this paper, we address the question, if and under
which conditions the requirements and ideas from end-users indeed influ-
ence the development processes in OSS. We present an approach for auto-
mated requirements elicitation process discovery in OSS communities.
The empirical basis are three large-scale interdisciplinary OSS projects
in bioinformatics, focusing on communication in the mailing lists and
source code histories over ten years. Our study results in preliminary
guidelines for the organization of community-oriented software develop-
ment.

Keywords: Requirements engineering · End-user development · Open
source software

1 Introduction

Recent communication infrastructures like Web 2.0 open up new opportunities
for requirements engineering. Experts as well amateurs can easily contribute
their knowledge to requirements engineering processes. By collecting external
ideas, companies get access to a worldwide spread knowledge. Therefore, many
companies already provide environments for community building of end-users
(e.g. XEROX1, SAP2). We call such software development concepts community-
oriented. OSS projects represent a successful example of community-oriented
development. OSS communities usually exhibit hierarchical structures with a
core layer (core communities) supported by peripheral layers (peripheral com-
munities) [34,37]. Histories of OSS projects can be used as a source to study

1 http://open.xerox.com/.
2 http://scn.sap.com/community/coil.

c© Springer International Publishing Switzerland 2016
S. Nurcan et al. (Eds.): CAiSE 2016, LNCS 9694, pp. 509–523, 2016.
DOI: 10.1007/978-3-319-39696-5 31

http://open.xerox.com/
http://scn.sap.com/community/coil

510 K. Neulinger et al.

a possible organization of end-user community integration in the requirements
elicitation process. Community needs are posed through informal means and
negotiated within community discourses. This kind of requirements elicitation
(RE) can then be the starting point for a requirements engineering process in
which these needs are formulated as requirements, and then specified and imple-
mented in a current or later release of the OSS system. Despite a great number of
OSS studies [12] and a novel research in “just-in-time” requirements engineering
[2], an approach for automated requirements elicitation within OSS is seldom if
ever addressed [8,35].

In this paper, we present a methodology for RE process discovery that incor-
porates a combination of knowledge mining techniques for community-generated
content. In order to address the end user roles, we follow the observation of many
papers [34,37] that OSS communities often expose a separation into core develop-
ers and a periphery. Our mining techniques are specifically geared to understand
this periphery with their structure and contributions as well as the impact and
evolution of these aspects over the history of an OSS community. Specifically,
we pursue three research questions:

RQ1 Is there a difference of requirements contribution to the OSS
community from core and peripheral members?

RQ2 To what extent do requirements correlate with general devel-
opment activity?

RQ3 Does the level of participation in RE influence the level of
satisfaction of peripheral project members?

Given the great variance of communities, and the early stage of this kind
of research, we decided to choose for our empirical context of our technology
initially three OSS communities that have at least some common properties, so
that any differences we could identify can be expected not to be totally based on
differences e.g. in domain, user competencies, and the like. Moreover, we wanted
to conduct a long-term study over many years, and this obviously implied a cer-
tain bias towards relatively successful communities that even had such longevity.
As a consequence, we focus this paper on three long-lived communities in the
bioinformatics sector, for which we could mine rich, if heterogeneous data for
a longitudinal study over eleven years. The rest of the paper is organized as
follows. Section 2 gives an overview of existing concepts for end-user integration
in the RE process and the organization of RE process in OSS. Section 3 presents
a methodology for the RE process discovery in OSS. The methodology is later
applied to the data shown in Sect. 4. The results of our study are described
in Sect. 5. Section 6 concludes the paper with advices for the organization of
community-oriented software development.

2 Related Work

Requirements elicitation (RE) process has evolved from a generally technical to
an end-user oriented process [1]. In order to facilitate the requirements negotia-
tion with end-users, different approaches are proposed: mobile technologies [30],

A Longitudinal Study of Community-Oriented OSS Development 511

scenario-based RE process [33], group support systems [3]. Additionally, concep-
tual paradigms for end-user integration vary. Whilst von Hippel [13] suggests to
identify the lead users (experts among product users) and collect their needs,
Chesbrough [4] proposes to collect innovative ideas from the masses. Maiden
et al. [21] advise to apply creative problem solving for innovative idea finding.
Yet, the question remains - which tools and paradigms are robust to overcome
challenges of community-oriented RE process?

In the following, different analysis methods relevant for the RE process explo-
ration in OSS projects are presented.

2.1 Community Clustering

Over the past decade OSS projects have been investigated in numerous research
studies [12,29]. OSS communities represent multi-layer hierarchical structures
[6,7,38]. Despite various layer definitions proposed by OSS researchers, we can
generalize that the core of the OSS community is a small group of developers,
surrounded by a much bigger periphery. The requirements in OSS projects are
traditionally based on the personal experience and the knowledge of the core
developers. However, questions and suggestions from peripheral users trigger
significant modifications in the OSS product [14,25].

In order to investigate the role of requirements coming from core and periph-
eral communities, they have to be separated. In [7] three different approaches
to the identification of the core in OSS communities are compared, based on
(1) information on the project Website or other resources; (2) the contribution
frequencies; (3) the hierarchical clustering of the social characteristics. In case of
the first method, the data on the project Website might be not up-to-date. As
for the second method, the contribution log of a project does not always reflect a
complete picture of personal efforts. In many projects, only a very small group of
developers have the right to commit changes. Therefore, a committer is not nec-
essary the author of the code she/he commits. Finally, the hierarchical clustering
makes use of the expected properties of the core to be more dense and cohesive
than the periphery. Especially in the context of non-predefined social structures,
hierarchical clustering of OSS communities is the most suitable method.

2.2 Requirements Detection

The whole OSS project management takes place in publicly available open
access infrastructures. Although the composition of the OSS project infrastruc-
ture varies significantly from project to project, most projects include at least
mailing lists, a project page and/or wikipage, and a code repository. Require-
ments in OSS are continuously emerging within communication and development
processes ‘just-in-time’ [8]. Requirements in the form of ideas, complaints, post-
hoc description and others are spread among the artifacts created by the OSS
community members within the project infrastructures [28].

512 K. Neulinger et al.

OSS communities and projects are evolving structures [38]. Thus, OSS
processes undergo continuous change and need to be approached as dynamic sys-
tems. To perform dynamic analyses of OSS repositories, some researchers divide
data in periods of fixed size [26], while others use time points of releases as a
cutting criterion [36]. Considering the mechanics of OSS projects, their rhythms
and iterations, a continuous cycle of design-analysis-development can be identi-
fied. At some point in time during the development process, a current branch is
frozen for the next release. From that time on, only bug fixes are allowed. After
the code is released, only hotfixes - small code updates which address specific
problems in the last release - are possible. Hence, a period (tj , tj+1) between two
releases j and j +1 can be considered as a logical step for the dynamic analysis.
This approach is consistent with the metrics and laws of software evolution [19].

2.3 Sentiment Analysis

The integration of end-users in the development process aims not only to get
the access to the domain knowledge, but also to better the end-users attitude
towards the end product. Thus, by measuring the mood within the community,
we estimate the level of satisfaction among users. The mood of a user can be
implicitly estimated based on opinionated documents generated by the user.
Methods of sentiment analysis (SA) assign each user document (e.g. mailing list
posting) either to a positive or to a negative class. Methods of SA are often
applied to measure the mood of community-generated artifacts, for example
blogposts [22]. Within the OSS knowledge mining domain, Jensen et al. [16]
analyze the sentiment of OSS mail postings manually.

3 Methods: Requirements Engineering Framework
for Process Discovery in OSS

In this section, we describe a method framework for RE process discovery from
OSS process history data. Our approach combines several mining techniques
which typically should be applied in the following sequence (with possible back-
tracks as usual):

– A community structure analysis separates core from one or more periphery
layers, as we expect these layers to influence the OSS development process
in different ways, and our special interest is more the periphery than the
already well-understood core of such communities. In this structural analysis
for long-lived communities, a special demand is the identification of change and
evolution both in the product (OSS) and in the community structure. Here, we
propose a release-based rather than a real-time based temporal structuring,
and present techniques for its implementation.

– Adapted text mining techniques are employed to detect user requirements
among the many messages, in our case studies mostly mail postings, found in
the community logs.

A Longitudinal Study of Community-Oriented OSS Development 513

– Last not least, we adapt sentiment analysis technologies in order to measure
the degree of satisfaction within the different community layers in the different
time periods of the community life, as one of the possible outcome measures.

In all phases, noise in the history data (ranging from system-generated messages
to external spam, to discussions on topics outside the actual OSS tasks etc.) has
proven a major impediment, so data cleaning is a challenge in all three major
steps above; space is not sufficient to describe all techniques in detail here, but
we shall at least mention the most important ones.

3.1 Structural Analysis of OSS Communities’ Evolution

Prior to the mailing lists analysis, multiple aliases of the same individuals are
detected and consolidated. Communications created by automated notification
services like Bugzilla, Redmine and Nightly Build are excluded from the analysis.
Next, for each period between two releases j and j+1, an OSS community under
study is mapped to a social network graph structure: community members are
represented by nodes, their interaction by edges. Thus, for the OSS project with
k releases, we generate a sequence of k project graphs:

{graph(0,1); graph(1;2); . . . graph(j;j+1); . . . graph(k+1;k)} (1)

Edges are defined as follows. If at least one thread exists, in which two project
participants have submitted at least one mail posting in a mailing list, a link
between them is added to the project graph. To simplify the further analysis, the
edges are unweighted. As previously stated, we assume that core and periphery
of the OSS communities participate differently in the RE process. Hierarchi-
cal clustering is used in order to separate these two community layers. The
method is based on social network properties of community members. In this
study, we cluster communities based on degree centrality (the number of edges
incident upon a node). The primary approach behind this method is shown in
Algorithm 1. In order to track the evolution of periphery and core over time,
periphery is separated from core in period between two releases j and j + 1 in
the corresponding social network graph(j;j+1).

3.2 Requirements Detection Within the OSS Mailing Lists

In order to automatically extract postings from the OSS mailing lists which con-
tain requirements, adapted text mining algorithms are applied. First, irrelevant
(or even distorting) posts such as quotations, Spam, auto-generated bug reports
and announcements are deleted [9]. After this data cleaning, the OSS mailing
list postings are considered as bags of words: one posting - one document. Each
document is modeled as a vector of features which correspond to terms in the
corpus vocabulary.

For the classification tasks, the Näıve Bayes algorithm is applied. The Näıve
Bayes technique is one of the most efficient classification learning algorithms [39].

514 K. Neulinger et al.

Algorithm 1. Divide social network in two hierarchical layers Cperiphery

and Ccore

Require: Graph G = (V,E) with |V | = N nodes

Calculate out-degree ki for node i ∀i, 0 ≤ i ≤ N − 1
Sort all nodes based on out-degree ki in ascending order

Ensure: kmin < ki ∀i, 0 ≤ i ≤ n − 1
k = kmin; j = 0;
while j ≤ N do

Calculate out-degree of the vj ∈ V node kj
if kj < k then

kj = k
else

k = kj
Remove vj : V = V/vj and its edges

end if

end while

Determine (vh; vl) with the largest |kh − kl|
j=0;

while j ≤ N do

if kh ≥ kj then

Add vj to Ccore

else

Add vj to Cperiphery

end if

end while

It is based on a probabilistic generative model. In order to assign documents
(=postings) either to requirement or to non-requirement groups based on their
content, a domain specific lexicon optimized to the jargon of bioinformatics OSS
projects is created and presented in the Table 1. In this context, the Bayes rule is
defined as follows:

Pr(req|words) =
Pr(words|req)Pr(req)

Pr(words)
(2)

where Pr(req|words) is the probability that a document classified to the class
requirements contains certain words which identify this class. The number of
requirements is calculated and normalized for each period between two releases
REQ(tj , tj+1). To perform classification tasks, the open-source data mining
framework RapidMiner is used [18].

3.3 Sentiment Within the OSS Communities

To measure the “mood” within the OSS layers, a proportion of postings with
positive sentiment to the overall number of postings is monitored. We expect
positive mood among peripheral OSS project participants to reflect the satis-
faction with the system and in turn the success of the RE process. In order to

A Longitudinal Study of Community-Oriented OSS Development 515

Table 1. Segment of domain specific lexicon for detecting requirements

leak crack enhancement bug defect

shortcoming change adjustments alter modify

shift transform complain protest disagree

mistake slip exception anomaly deviation

unsuccessful breakdown break crash fault

insufficiency misconception feature characteristic highlight

restore settle flag signal idea

virus replace inaccuracy fail incompleteness

hypothesis inspiration intention opinion incorrect

improvement adjustment contribution correction flow

enrichment recovery insufficient lacking missing

absent non-existing wanting miss necessary

mandatory need require vital want

estimate the polarity of mailing lists’ postings, we created a classification model
for our data set. We selected a Support Vector Machine (SVM) algorithm as
a classification approach, because it showed the most convincing results in the
sentiment analysis [24]. A basic SVM classifier applied upon a set of input data
classifies each given input into one of two possible classes: POS and NEG. Initially,
the training set has to be provided, in order to infer some general correspondence
between the input data and classification groups. Following a particular training
set of labeled examples, the learning algorithm constructs a decision rule which
can then be used to predict the labels of new unlabeled examples. The decision
rule is based on the linear distance function [20].

A sentiment classifier was trained on the polarity data set used by [23] to
assign POS and NEG polarities to the mailing list posts. A training data set
adapted to the OSS domain was used to improve model performance. The pro-
portion of positive sentiment to the total amount of postings is calculated for
each period between two releases j and j + 1:

|POS(Postingsj;j+1)|
|(Postingsj;j+1)| (3)

Despite the fact that the training data set, adapted for the OSS domain, consists
of 100 entries, the results were improved compared to the initial classification
model.

4 Data

Our framework for the RE process discovery is applied to the three large-
scale bioinformatics OSS projects: BioJava [15], Biopython [5] and BioPerl [32].

516 K. Neulinger et al.

Hereafter, Bio* refers to the three OSS projects. Bioinformatics represents an
interdisciplinary research field: innovative computer science technologies and
algorithms are developed in order to answer current research questions of
computational biology. Interdisciplinary development is indispensable. In the
Bioinformatics OSS peripheral project participants are expected to be mainly
biologists, who make their first steps towards software development. Thus, gener-
ally speaking such OSS also represent a rich approximation for end-user integra-
tion in general. The Bio* projects provide open-source bioinformatics frameworks
for the manipulation of biological sequences and structures. The frameworks of
Bio* projects are based on Java, Python or Perl respectively.

BioJava and Biopython started in 1999, while BioPerl has been already devel-
oped since 1996. The infrastructures of the projects include wikipages, developer
and general discussion mailing lists, bug management systems and GIT reposi-
tories for code management. Table 2 summarizes the status of each project.

Table 2. Bio* OSS overview (on January 1, 2011)

Project Messages Users in mailing lists Commits Developers

BioJava 11951 2208 8267 94

Biopython 16108 1138 16868 29

BioPerl 31755 2824 12848 139

Beside conceptual similarity, the projects have a long history of over thirteen
years, which provides an ideal basis not only for comparative but also compre-
hensive longitudinal analysis. The entire data set amounts to ca. 60 000 postings
from the Bio* mailing lists in the period of eleven years (January 2000–January
2011). In the following section the co-evolution of community, requirements,
development and sentiment within the bioinformatics OSS projects is presented.
By taking a look at all four dimensions of results, our goal is to relate the changes
in RE to the correct historical events in the OSS projects lifetime.

5 Results

To perform a release-based dynamic analysis, all releases in every project under
study are identified. Our investigations show, that in eleven years there were 8
releases in BioJava, 26 in Biopython and 18 in BioPerl.

5.1 Structural Analysis of the OSS Projects

Our study shows that the core members in the Bio* projects are responsible for
creating the majority of messages in the mailing lists and of the contributions to
the code repositories. Furthermore, the core communities in Bio* projects consist
of two to three permanent leaders who play a significant role in the project.

A Longitudinal Study of Community-Oriented OSS Development 517

An additional two to three developers from the peripheral communities join the
core groups temporarily. Hence, the core groups experience continuous change.
Despite similarity in the average size of the core communities (six members),
the total number of the project members considerably differs. This results in
different proportions of the core size to the total community. The core ratio in
the total community in Biopython is 12%. In BioJava, the ratio is about 6%,
while in BioPerl, it is about 4%.

BioPerl managed to cultivate the biggest periphery among the three projects
under study. More detailed investigation on the Bio* communities shows that the
BioPerl community has evolved to a complex structure: the highly active core of
creators, the long-tail of lurkers with a very low activity, and the intermediate
layer of contributors. This social distribution can be related to “90-9-1” structure
from crowdsourcing.3

(a) Biopython

Fig. 1. Generation change in the Biopython project

In our study [11] we reported that we detected two generations in each of
the Bio* projects. The central members of “first generation” were active near
the first five years of the project. They also linked to all other project partici-
pants active during that period of time. During the next five years, new leaders
together with other user layers formed a second community (=“second genera-
tion”). As an example, Fig. 1 presents the sum of postings written by the core
of each generation year per year in the Biopython project. Due to their pri-
vate, preferential or personal issues, people spend different amounts of time and
3 http://www.nngroup.com/articles/participation-inequality/. For example, only 1 %

of people create wikipedia-articles and 9 % modify and adjust them, the rest 90 %
of wikipedia-users just use the content without any contribution.

http://www.nngroup.com/articles/participation-inequality/

518 K. Neulinger et al.

effort for an OSS project. The displayed bar chart makes the generation switch
obvious. Similar generation switch we observe in BioJava and BioPerl projects.

The generation switch introduces automatically detected changes in terms
of sentiment within communities, development progress, requirements produc-
tion/communication level/requirements creation in an OSS project. For instance,
the substitution of the main contributors Jeffrey C. and Brad C. by Peter C.
and Michael H. in Biopython led to a fivefold increase of releases and threefold
increase of commits per year. The modification of the main concepts can induce
people to leave an OSS community. The period of change of the core leaders is
marked by the decrease of the development activity, especially in case of non-
overlapping substitution. Interestingly, the generation switch happens around
2005 in all three projects.

5.2 Co-evolution of Requirements and Development

In the next stage of the RE process discovery framework, the explored social
structures are connected to requirement creation and development progress. The
amount of submitted software requirements from each sub-community (core and
periphery) for each period (tj , tj+1) between two releases j and j+1 in every Bio*
project is identified. An example of identified mail with requirement in the header
text: ‘Problems runing BLAST; blastall does not exist at blastcmd; New: Bug in
PHYLIPFileBuilder with protein sequences.’ An example of identified mail with
requirement in the content text: “Looks like a good time to do the release. Yup,
seems good. I guess there is only one request I have before release: Can we fix the
tests that are failing? I think it would be nice if people could install biopython and
not have tests failing on them. It seems like just some minor adjustments are all we
need to do. Brad, how do you make the documentation? Do you have time to do that,
or should I try and muddle through it?” In order to get an approximate insight, if
the detected requirements have influenced the project development, the correla-
tion with general development activity is estimated during the release-periods.

In BioPerl, we observe the highest correlation coefficients for both core and
periphery. Hence, the more requirements were submitted within the project, the
more lines of code were implemented. In BioJava, again both core and periphery
show the correlation. However, in this case the coefficients are much smaller indi-
cating weaker influence of the requirements on the development progress. In Biopy-
thon, a small correlation could be identified only for the core sub-community. This
may be linked to the fact that Biopython has the highest core/periphery ratio com-
pared with other two projects. Due to the small periphery, the development of the
Biopython project is perhaps driven by the core. This observation emphasizes the
important role of the periphery and supports empirically the claim, that “OSS
projects depend on the increase of the size of this user community” [31].

5.3 Sentiment Within the OSS Communities

End-user integration in the requirements negotiation is believed to improve the
end-user attitude towards the developing system. To analyze whether the level

A Longitudinal Study of Community-Oriented OSS Development 519

of end-user participation in the requirements generation process influences the
mood of peripheral community, sentiment analysis is applied to the mailing
list postings. Our findings indicate that the general mood within Bio* projects
is positive. In all three cases, approximately 60% of mails from each project
are classified to the POS group. However, there are several remarkable mood
shifts, relevant to further investigation. Due to the space constraint, we pro-
vide an example of one community: Biopython. In this community a significant
decrease in the number of positively marked messages from the periphery can be
observed during period 29 to 37 This period correlates with a significant decrease
in requirements fraction from peripheral project members. At the same time, the
substitution of core leaders in Biopython happened. Biopython new core lead-
ers, namely Peter C. and Michiel H. introduced new organizational principles:
much shorter release iterations and continuous contribution of a high amount
of changes to the code repository. The amount of submitted requirements from
the periphery decreased compared to the core and the sentiment together with
a great drop in activity within the peripheral community.

Such behavior is likely to be explained by negatively influenced sentiment.
Negatively influenced sentiment in its turn can be caused by the fact that the
development was mainly centered around the tasks that the community leaders
found particularly useful for their own work. Despite not having positive attitude
from the periphery, the development process intensively continued by a small
group of active contributors from the core. This observation supports the leading
role of core members in OSS development.

In BioJava, a decrease of sentiment in the peripheral community is observed
during period 5. A more detailed analysis of this period shows that a very high
amount of SPAM messages was submitted to the mailing lists [9]. For instance, out
of 164 messages only 16 were not SPAM in the BioJava for the period of November,
2004. In the SPAM-free data set, we observe the negative mood within the project
periphery. Enormous amount of SPAM annoys people subscribed to the project
mailing lists. In [10], we detected the highest user outflow from the BioJava project
in the period of the highest SPAM level in the project history. This further supports
our assumption that high level of SPAM results in dissatisfaction within the com-
munity. During hotfix detection [10], we also discover an extremely large release
within the BioJava project (33.5 times more edited lines of code than in most other
releases). A manual analysis has shown, that this release was the result of complete
restructuring of the project code base. The modification was executed in period 9.
Although no sentiment reaction can be detected in the period-oriented view a more
fine-granular overview (with a month as a step) shows that the modifications were
first met with a negative reaction among peripheral project participants. After
some time, the mood within the periphery became more positive again. Big reengi-
neering and restructuring of a project usually has a long-term benefit while in the
short run, peripheral members do not appropriate any changes. Restructuring of
the project could mean for the peripheral members a need to rewrite their own
programs, and therefore presents a short-term disadvantage.

520 K. Neulinger et al.

BioPerl proved to be an example of an OSS project with the most “healthy”
community and steady project development. Accordingly, the attitude towards
the project by core and periphery is stable, both communities have more or less
constant mood. The amount of submitted requirements from core and periphery
are rather similar. The project development is triggered by the needs from the
periphery and the core to the same extent.

6 Discussion and Conclusion

In this paper we proposed a framework for the requirements elicitation (RE)
process discovery within OSS projects. The approach was successfully applied
to the three bioinformatics OSS communities. Our study shows, that the com-
munication in general and specifically the requirements stated within the com-
munity communication resources, give rise to the development process. However,
when the core/periphery ratio exceeds 10%, the development is mainly driven
by requirements from the core leaders (RQ2). Hence, we do find a difference
between the requirements contribution from the core and from the peripheral
project participants (RQ1). For example, in BioPerl the periphery generates
58% of requirements, while in BioJava and Biopython the peripheral require-
ments fraction is only 40%.

The overall mood within the OSS communities is quite positive. Periods,
when the periphery has almost no influence on the project, are marked by a
decreasing level of satisfaction among the periphery (RQ3). Further, the mood
of periphery gets more negative as a reaction to: (1) technical problems within
project organization (e.g. high level of SPAM) and (2) major restructuring of the
project. The organization of the RE process is mainly defined by the core leaders.
The change of core leaders could be a stress factor for the community. In the
most-established OSS projects within our study, the requirements from both core
and periphery influence the development to a high extent. A stabilizing factor
appears to be an intermediate layer of contributors coming from peripheral users.
Based on the observed practices within the OSS communities, we hypothesize
the following advices how to foster community building of end-users:

– Project managers and/or core developers, who will hold and lead the commu-
nity need to be set. The management core should consists of 2–3 permanent
project participants.

– Detect arising experts among the peripheral participants and motivate (pro-
vide special rewards) them to form an interlayer between the project managers
and the community long-tail.

– Listen to the community needs, otherwise it will result in a negative mood
and community shrinkage.

– Take care of the technology used for community management. Errors and
disturbances within the community tools can chase the users away.

– In case of serious project restructuring, take time to explain the reasons for and
advantages of the planned changes. Otherwise, it could cause some resistance
of peripheral project participants.

A Longitudinal Study of Community-Oriented OSS Development 521

Our findings are consistent with the few existing results of evolution studies
achieved by other researchers. For example, [27] conducted a quantitative study
of the evolution of the Debian community. The authors found out that the volun-
teer teams are dynamic and changeable over time, while their efforts are stable
and reliable.

6.1 Threats to Validity

First, the quality of text and sentiment mining strongly depends on the quality
of training data sets used for the classification models. These data sets have to be
adapted for the OSS domain. Moreover, bioinformatics OSS projects are mostly
driven by bioinformatics scientists and, therefore, presents an exploration-
oriented [38] OSS. It is interesting further investigate Bio* communities in order
to detect other sub-communities and their influence to development process. As
also, further studies with domains outside bioinformatics are needed to achieve
truly generalizable results.

Moreover, the quality of any data mining analysis is as good as the data. It
can always happen, that some important decisions or negotiations take place pri-
vately. Cross examination of our automatically achieved results with other data
acquisition methods such as interviews would thus be helpful to further validate
our results. Within this work Bayes and SVM algorithms were used as the base
for the requirements detection and opinion mining models. Those can be effec-
tively extended by considering new achievements in the text mining discipline.
For example, one of the possible ways to improve our sentiment classification
model is to use the method based on Part-of-Speech (POS) tagging. Last but
not least, in OSS mailing lists the same requirement can be described within
various artifacts. Differently formulated identical ideas currently are classified as
distinct requirements. The clustering model based on latent semantic analysis
(LSA) can be used in order to identify similar requirements even if they do not
share any common words.

References

1. Alexander, I.: Migrating towards co-operative requirements engineering. Comput.
Control Eng. J. 10(1), 17–22 (1999)

2. Bhowmik, T., Reddivari, S.: Resolution trend of just-in-time requirements in open
source software development. In: Just In Time RE Workshop, Canada (2015)

3. Boehm, B., Grünbacher, P., Briggs, R.: Developing groupware for requirements
negotiation: lessons learned. IEEE Softw. 18(3), 46–55 (2001)

4. Chesbrough, W.: Open Innovation: The New Imperative for Creating and Profiting
from Technology. Harvard Business School Press, Boston (2003)

5. Cock, P., Antao, T., Chang, J., Chapman, B., Cox, C., Dalke, A., Friedberg, I.,
Hamelryck, T., Kauff, F., Wilczynski, B., de Hoon, M.: Biopython: freely available
python tools for computational molecular biology and bioinformatics. Bioinformat-
ics 25(11), 1422–1423 (2009)

6. Crowston, K., Howison, J.: Hierarchy and centralization in free and open source
software team communications. Knowl. Technol. Policy 18, 65–85 (2006)

522 K. Neulinger et al.

7. Crowston, K., Wei, K., Li, Q., Howison, J.: Core and periphery in free/libre and
open source software team communications. In: Proceedings of the 39th Annual
Hawaii International Conference on System Sciences, HICSS 2006. IEEE Computer
Society, Washington, D.C. (2006)

8. Ernst, A., Murphy, C.: Case studies in just-in-time requirements analysis. In: Pro-
ceedings of the Second IEEE International Workshop on Empirical Requirements
Engineering (EmpiRE), pp. 25–32 (2012)

9. Hannemann, A., Hackstein, M., Klamma, R., Jarke, M.: An adaptive filter-
framework for the quality improvement of open-source software analysis. In:
Kowalewski, S., Rumpe, B. (eds.) Software Engineering. LNI, vol. 213, pp. 143–156.
GI (2013)

10. Hannemann, A., Klamma, R.: Community dynamics in open source software
projects: aging and social reshaping. In: Petrinja, E., Succi, G., El Ioini, N., Sillitti,
A. (eds.) OSS 2013. IFIP AICT, vol. 404, pp. 80–96. Springer, Heidelberg (2013)

11. Hannemann, A., Klamma, R., Jarke, M.: Soziale Interaktion in OSS. Praxis der
Wirtschaftsinformatik (2012)

12. Hauge, O., Ayala, C., Conradi, R.: Adoption of open source software in software-
intensive organizations - a systematic literature review. Inf. Softw. Technol. 52(11),
1133–1154 (2010)

13. Hippel, E.: Lead users: a source of novel product concepts. Manag. Sci. 32(7),
791–805 (1986)

14. Hippel, E., Krogh, G.: Open source software and the “private-collective” innovation
model: Issues for organization science. J. Organ. Sci. 14(2), 208–223 (2003)

15. Holland, R., Down, T., Pocock, M., Prlić, A., Huen, D., James, K., Foisy, S.,
Dräger, A., Yates, A., Heuer, M., Schreiber, M.J.: Biojava: an open-source frame-
work for bioinformatics. Bioinformatics 24(18), 2096–2097 (2008)

16. Jensen, C., King, S., Kuechler, V.: Joining free/open source software communities:
an analysis of newbies’ first interactions on project mailing lists. In: Proceedings of
the 44th Hawaii International Conference on System Sciences (HICSS), pp. 1–10
(2011)

17. Klamma, R., Spaniol, M., Cao, Y.: MPEG-7 compliant community hosting. J.
Univ. Knowl. Manag. 1(1), 36–44 (2006)

18. Land, S., Fischer, S.: Rapid Miner in Academic Use (2012)
19. Lehman, M., Ramil, F., Wernick, D., Perry, E., Turski, M.: Metrics and laws of

software evolution - the nineties view. In: Proceedings of the Fourth International
Software Metrics Symposium, pp. 20–32 (1997)

20. Lovell, C., Walder, C.: Support vector machines for business applications. In: Voges,
K., Pope, N. (eds.) Business Applications and Computational Intelligence, pp. 267–
290. IGI Global, Hershey (2006)

21. Maiden, N., Jones, S., Karlsen, K., Neill, R., Zachos, K., Milne, A.: Requirements
engineering as creative problem solving: a research agenda for idea finding. In:
Proceedings of the 18th IEEE International Requirements Engineering Conference,
pp. 57–66 (2010)

22. Melville, P., Gryc, W., Lawrence, D.: Sentiment analysis of blogs by combining lex-
ical knowledge with text classification. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2009,
pp. 1275–1284. ACM, New York (2009)

23. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf.
Retrieval 2(1–2), 1–135 (2008)

A Longitudinal Study of Community-Oriented OSS Development 523

24. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using
machine learning techniques. In: Proceedings of the ACL-02 Conference on Empir-
ical Methods in Natural Language Processing, EMNLP 2002, vol. 10, pp. 79–86.
Association for Computational Linguistics, Stroudsburg (2002)

25. Raymond, E.: The Cathedral and the Bazaar. O’Reilly Media, New York (1999)
26. Robles, G., Gonzalez-Barahona, J.M.: Contributor turnover in libre software

projects. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (eds.)
Open Source Systems, vol. 203, pp. 273–286. Springer, Boston (2006)

27. Robles, G., Gonzalez-Barahona, J.M., Michlmayr, M.: Evolution of volunteer par-
ticipation in libre software projects: evidence from debian. In: Scotto, M., Succi, G.
(eds.) Proceedings of the First International Conference on Open Source Systems,
pp. 100–107 (2005)

28. Scacchi, W.: Understanding requirements for open source software. In: Lyytinen,
K., Loucopoulos, P., Mylopoulos, J., Robinson, B. (eds.) Design Requirements
Engineering. LNBIP, vol. 14, pp. 467–494. Springer, Heidelberg (2009)

29. Scacchi, W.: The future research in free/open source software development. In:
Proceedings of ACM Workshop on the Future of Software Engineering Research
(FoSER), Santa Fe, NM, pp. 315–319 (2010)

30. Seyff, N., Graf, F., Maiden, N.: Using mobile re tools to give end-users their own
voice. In: Proceedings of the 18th IEEE International Requirements Engineering
Conference, pp. 37–46 (2010)

31. Sowe, S.K.: Emerging Free and Open Source Software Practices. IGI Publishing,
Hershey (2007)

32. Stajich, E., Block, D., Boulez, K., Brenner, E., Chervitz, A., Dagdigian, C., Fuellen,
G., Gilbert, J., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla, C., Mungall, C.,
Osborne, B., Pocock, M., Schattner, P., Senger, M., Stein, L., Stupka, E., Wilkin-
son, M., Birney, E.: The bioperl toolkit: Perl modules for the life sciences. Genome
Res. 12(10), 1611–1618 (2002)

33. Sutcliffe, A.: Scenario-based requirements engineering. In: Proceedings of the 11th
IEEE International Conference on Requirements Engineering, RE 2003, pp. 320–
329. IEEE Computer Society, Washington, D.C. (2003)

34. Sutcliffe, A.: Evaluating the costs and benefits of end-user development. SIGSOFT
Softw. Eng. Notes 30(4), 1–4 (2005)

35. Vlas, R., Robinson, W.N.: A rule-based natural language technique for require-
ments discovery and classification in open-source software development projects.
In: Proceedings of the 44th Hawaii International Conference on System Sciences
(2011)

36. Wiggins, A., Howison, J., Crowston, K.: Heartbeat: measuring active user base and
potential user interest in FLOSS projects. In: Boldyreff, C., Crowston, K., Lundell,
B., Wasserman, A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 94–104. Springer,
Heidelberg (2009)

37. Wulf, V., Jarke, M.: The economics of end-user development: tools that empower
users to create their own software solutions. Commun. ACM 47(9), 41–42 (2004)

38. Ye, Y., Nakakoji, K., Yamamoto, Y., Kishida, K.: The co-evolution of systems
and communities in free and open source software development. In: Koch, S. (ed.)
Free/Open Source Software Development, pp. 59–82. Idea Group Publishing, Her-
shey (2004)

39. Zhang, H.: The optimality of naive bayes. In: Barr, V., Markov, Z. (eds.) FLAIRS
Conference, pp. 562–567. AAAI Press, Miami Beach (2004)

	A Longitudinal Study of Community-Oriented Open Source Software Development
	1 Introduction
	2 Related Work
	2.1 Community Clustering
	2.2 Requirements Detection
	2.3 Sentiment Analysis

	3 Methods: Requirements Engineering Framework for Process Discovery in OSS
	3.1 Structural Analysis of OSS Communities' Evolution
	3.2 Requirements Detection Within the OSS Mailing Lists
	3.3 Sentiment Within the OSS Communities

	4 Data
	5 Results
	5.1 Structural Analysis of the OSS Projects
	5.2 Co-evolution of Requirements and Development
	5.3 Sentiment Within the OSS Communities

	6 Discussion and Conclusion
	6.1 Threats to Validity

	References

