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Abstract. Over the last years, several model repositories have been
proposed in response to the need of the MDE community for advanced
systems supporting the reuse of modeling artifacts. Modelers can interact
with MDE repositories with different intents ranging from merely repos-
itory browsing, to searching specific artifacts satisfying precise require-
ments. The organization and browsing facilities provided by current
repositories is limited since they do not produce structured overviews
of the contained artifacts, and the ategorization mechanisms (if any) are
based on manual activities. When dealing with large numbers of modeling
artifacts, such limitations increase the effort for managing and reusing
artifacts stored in model repositories. By focusing on metamodel repos-
itories, in this paper we propose the application of clustering techniques
to automatically organize stored metamodels and to provide users with
overviews of the application domains covered by the available metamod-
els. The approach has been implemented in the MDEForge repository.

Keywords: Model Driven Engineering · Model repositories · Meta-
model clustering · MDEForge

1 Introduction

The increasing adoption of Model-Driven Engineering (MDE) [1] in business
organizations led to the need for gathering artifacts in model repositories [2].
Several model repositories (see [3–6] just to mention a few) have been introduced
in the past decade. Among them metamodel zoos (as for instance the Ecore
Zoo1) hold metamodels, which are typically categorized to improve search and/or
browse operations. However, locating relevant information in a vast repository is
intrinsically difficult, because it requires domain experts to manually annotate
all metamodels in the repository with accurate metadata [7]: an activity that is

1 ATLAS Ecore Zoo: http://www.emn.fr/z-info/atlanmod/index.php/Zoos.
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time consuming and prone to errors and omissions. In fact, acquiring knowledge
about a software artifact is a challenging task: it is estimated that up to 60 % of
software maintenance is spent on comprehension [8].

Software clustering [9] is a well-established discipline, which has found numer-
ous applications in reverse engineering and software maintenance. It promotes
the automated categorization of software artifacts (like functions, classes, or
files) into high-level structures based on their similarity distance [10]. Software
clustering is applied, for instance, to detect misplaced software artifacts [11].

In this paper, in order to mitigate the difficulties related to the manual cate-
gorization of metamodels, we propose the application of clustering techniques for
metamodel repositories able to automatically organize metamodels into clusters.
Mutually similar metamodels are grouped together depending on a proximity
measure, whose definition can be given according to specific search and brows-
ing requirements. The approach is based on agglomerative hierarchical cluster-
ing [12] (see Sect. 3) and explores well-known proximity measures as well as
metamodel-specific ones, each providing different browsing characteristics. The
method has been already implemented in the MDEForge repository [13] and it
is available online2. Furthermore, an evaluation has been conducted by consid-
ering different similarity measures, each characterized by specific accuracy and
performance indexes. The evaluation permitted also to identify the application
domains represented by the metamodels stored in an arbitrary repository.

This paper is structured as follows. In Sect. 2 we illustrate the main charac-
teristics of modeling repositories. Section 3 provides an overview about clustering
techniques. In Sect. 4, we present our approach and show how it is able to auto-
matically categorize metamodel repositories. In the next section, the approach
is evaluated by applying it to a corpus of about 300 metamodels. A discussion
about the results is provided in Sect. 6. In Sect. 7 related work is discussed and
finally, in Sect. 8, we conclude and outline future plans.

2 Repositories of Modeling Artifacts in MDE

Modelers can interact with model repositories for several purposes. For instance,
as in the case of source code repositories, users can be interested in acquiring
knowledge from already developed modeling artifacts that might represent pre-
cious know-how to be conveyed to new modelers. Users that have clear require-
ments about the desired modeling artifacts, can use model repositories with the
aim of finding the modeling artifacts that best fit the user needs. Whatever the
modeler intents, repositories should provide users with a dedicated support for
properly organizing the contained artifacts, and to effectively search and retrieve
them. Especially in the case of large repositories, the potential benefits related to
the availability of reusable artifacts might be missed if they cannot be suitably
discovered. By considering the ways artifacts are organized, and thus the pro-
vided searching and browsing functionalities, it is possible to identify different
kinds of repositories as discussed below.
2 MDEForge site: http://www.mdeforge.org.

http://www.mdeforge.org
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Flat Repositories: They are not structured in the sense that contained artifacts
are not categorized, and searching and browsing functionalities are not available.
With this kind of repositories we refer to any publicly available collection of
artifacts that are stored in a file-system like manner. For instance, it’s plenty
of GitHub repositories containing modeling artifacts. Modelers are obliged to
download and inspect such models in order to gain some insights about them
and to check if they might satisfy their requirements.

Manually Classified Repositories Without Searching and Browsing Functionali-
ties: Artifacts are manually categorized, and searching and browsing function-
alities are not available. For instance, the Ecore Zoo repository consists of an
organized list of metamodels. For each metamodel, different attributes are given
including a short description about it, and a list of domains where the metamodel
can be applied. To search for a specific metamodel in the repository, modelers
have to rely on the in-page search facility of the used Web browser. Thus, when
searching for specific words, modelers have to manually check where they occur
(e.g., in the description, or in the domain attributes). For instance, in the case
of the Ecore Zoo, different metamodels are available for supporting the manage-
ment of projects in organizations, e.g., how to assign tasks and resources. Such
metamodels can be identified by searching the string “project management” in
the Ecore Zoo web page. In addition, also the Maven3 metamodel is found, as
the searched string occurs in its description, although Maven is a building tool
thus it refers to a different domain.

Fig. 1. Example of classified meta-
models

Manually Classified Repositories with
Searching and Browsing Functionalities:
Artifacts are manually categorized, search-
ing and browsing functionalities are avail-
able. Similarly to repositories like Ecore
Zoo, artifacts are manually classified
according to a predefined set of labels. The
available searching facility permits to give
search strings as input and match them
against the description field of the avail-
able artifacts (e.g., see [2]).

Most of the potential benefits of such repositories remain unexploited espe-
cially when hundreds or even thousands of modeling artifacts have to be man-
aged. In particular, by focusing on the provided functionalities for organizing,
browsing, and searching metamodels, all the available repositories are affected
by the following challenges:

C1. they do not provide the means to automatically produce structured
overviews of the contained metamodels, which are typically shown as merely
lists of stored elements, and which are consequently difficult to browse.
Organizations like the one shown in Fig. 1 would permit to have an overview
of the metamodels stored in the considered repository, e.g., with respect to
the covered application domains;

3 http://maven.apache.org/.

http://maven.apache.org/
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C2. all the available repositories do not provide mechanisms to automatically
categorize the stored artifacts, by making the interaction with the reposito-
ries complex. Even users that want to contribute with additional artifacts
have to manually annotate and classify them during the creation phase.
This activity is subject to errors and inaccuracies especially for large repos-
itories, and can compromise the searchability of artifacts. By considering
the example shown in Fig. 1, it would be extremely relevant having a mech-
anism able to automatically assign the metamodel being added to one of
the currently available categories (e.g., building tools, database, and project
management) or even create a new one if none of them are appropriate.

In the next sections we propose techniques and tools to address these chal-
lenges by focusing on the management of metamodels stored in publicly avail-
able repositories. We propose the application of an unsupervised metamodel
clustering mechanism, which permits to automatically organize unstructured
metamodel repositories, and provides the users with overviews of the available
metamodels. Thus manually annotating metamodels is no longer necessary, since
the provided approach is able to automatically catogorize metamodels according
to their content and structure.

3 Overview of Clustering Techniques

Clustering is one of the techniques for doing data mining and can be defined as
the process of organizing objects into groups of similar objects [14]. A cluster is
therefore a collection of objects, which are similar between them and are dis-
similar to the objects belonging to other clusters [12]. Clustering is also known
as unsupervised classification since we do not know a priori neither the number
of classes nor their attributes. Clustering techniques are applied in a wide spec-
trum of areas including biology to classify plants and animals according to their
properties, and geology to classify observed earthquake epicenters and thus to
identify dangerous zones. Clustering has found numerous applications to software
as well [9], where it is used in reverse engineering and software maintenance for
categorizing software artifacts in many respects. Over the years several clustering
methods have been developed like the hierarchical and partitional ones [12]. In
the remainder of the section we focus on the hierarchical clustering technique
since it underpins the approach proposed in the next section.

Fig. 2. Explanatory hierarchical clustering
example

Hierarchical clustering pro-
duces a nested set of groups based
on a criterion for merging or split-
ting clusters based on similarity.
The nested grouping and similar-
ity levels obtained by means of
hierarchical algorithms are typi-
cally represented by means of den-
drograms like the one in Fig. 2b.
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By cutting the dendrogram at a desired distance threshold, a clustering of the
data objects into disjoint groups is obtained. For instance, by considering the
example in Fig. 2 if we choose as distance threshold the value 0.25 we obtain three
clusters, i.e., {o1, {o2,o3}, {o4}}. With the threshold value 0.35 the obtained clus-
ters are {o1, {o2,o3,o4}}. Hierarchical clustering methods can be agglomerative
or divisive. The former starts with one object clusters and recursively merges
two or more of the most similar clusters. The latter starts with a single cluster
consisting of all the elements in the source data set and recursively split the
clusters according to some criterion for obtaining at the end of the process a
partition of one object clusters (named singleton clusters hereafter) [14].

Algorithm 1. Basic agglomerative hierarchical clustering algorithm
1: Compute the proximity graph;

2: Merge the closest (most similar) two clusters;

3: Update the proximity matrix to reflect the proximity between the new cluster and the original

clusters;

4: Repeat steps 3 and 4 until only a single cluster remains;

Fig. 3. Sample proximity
matrix and graph

All the existing clustering methods share the
fact that they can be applied when it is possible to
specify a proximity (or distance) measure that per-
mits to assess if elements to be clustered are mutu-
ally similar or dissimilar. The basic idea is that the
similarity level of two elements is inversely propor-
tional to their distance. The definition of the prox-
imity measure plays a key role in any clustering
method and it depends on many factors including
the considered application domain, available data,
and goals. Once the proximity measure is defined,
it is possible to produce a proximity matrix, which
is an n by n matrix (where n is the number of
objects to be clustered) containing all the pairwise
similarities or dissimilarities between the considered
objects. For instance, by considering a simple data
set O consisting of the objects o1, o2, o3, and o4, a
corresponding proximity matrix based on a sample
similarity function s : O → [0, 1] can be given like
the one shown in Fig. 3a.

A proximity matrix induces the definition of a weighted graph (like the one
shown in Fig. 3b) where nodes are the objects being clustered, and weighted
edges represent the similarities between the connected objects. The availability
of proximity graphs permits to see the clustering problem from a graph point
of view as that of breaking the graph into connected components, one for each
cluster [15]. By focusing on the agglomerative hierarchical clustering, a basic
algorithm would use the proximity graph as shown in Algorithm1 borrowed
from [16]:
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It is worth noting that to execute such a clustering algorithm a notion of
cluster proximity is necessary to execute the second step of the algorithm. To
this end, three different definitions of cluster distance can be used, namely sin-
gle link, complete link, and group average [16]. With the single (complete) link
definition, the proximity of two clusters is defined as the minimum (maximum)
distance between any two objects in the considered clusters. Whereas, with the
group average technique, the proximity of two clusters is the average pairwise
proximities of all pairs of objects from the considered clusters.

In the next section we discuss how the traditional clustering concepts previ-
ously outlined can be employed in the context of metamodel repositories.

4 Proposed Metamodel Clustering Approach

In order to deal with the issues discussed in Sect. 2 in this section we show how
to apply clustering techniques in the domain of model-driven engineering. The
proposed approach is able to automatically organize metamodels stored in a
given repository by analysing their content and not their metadata that might
be erroneous or misplaced. An overview of the approach is given in Sect. 4.1, its
implementation is presented in Sect. 4.2.

4.1 Overview

The main functionalities of the proposed clustering approach are shown in Fig. 4.
It is important to remark that the figure shows only the functionalities strictly
related to the automated classification of metamodels. For an overview about
the typically provided functionalities of existing model repositories, interested
readers can refer to [17]. As shown in Fig. 4, two different user roles are involved
in the proposed clustering approach namely the Repository Maintainer and the
Repository User discussed in the following.

Repository Maintainer: The application of the whole metamodel clustering
approach is performed by the maintainer of the repository who can have access
to the functionalities described below.

Apply Metamodel Clustering: It represents the key functionality of the proposed
clustering approach. It consists of calculating the proximity matrix (as shown
in Sect. 3) representing the similarities of all the metamodels available in the
repository, and then applying the clustering algorithm in Algorithm1.

Fig. 4. Actors and use cases of the proposed app-
roach

Manage Singleton Clusters:
When a new metamodel is
being added to the repository,
it may happen that accord-
ing to the used proximity mea-
sure it does not fit in any of
the existing clusters and conse-
quently it induces the creation
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of a singleton cluster, i.e., a cluster consisting of only one element. The repos-
itory maintainer can periodically consider the available singleton clusters and
verify if they have been created, e.g., because the used proximity measure has
to be refined.

Refine the Proximity Measure: The proximity measure plays a key role in the
whole clustering approach, and consequently its definition is an iterative process,
aiming at increasing the accuracy of the automatically obtained metamodel clus-
ters. The refinement process relies on the availability of reference data, which
are typically obtained by manual activities. Such data must be approximated by
the automated clustering procedure as discussed in the next section.

Repository User: Similarly to what happens in the case of open source soft-
ware, the availability of public model repositories can give place to multitudes
of users and developers that are willing to share their modeling artifacts. In this
respect, by focusing on the metamodel clustering aspects, the proposed approach
provides the users with the functionalities discussed below.

Add New Metamodel: In contrast with existing metamodel archives, users that
add new metamodels in the repository can omit the specification of correspond-
ing metadata. Even in such cases, the provided approach is able to automatically
classify the new metamodels. In fact the appropriate clusters are identified by
considering the content of the metamodels without the need for additional user
input. However, as previously mentioned, it might happen that newly added
metamodels do not fit in any of the existing clusters. Then, the repository main-
tainer takes care of such situations by means of the functionality Manage Sin-
gleton Clusters shown in Fig. 4.

Visualize Metamodel Clusters: The approach produces overviews of the auto-
matically produced metamodel clusters. Thus in addition to the list of avail-
able metamodels, the system is able to generate graphical representations of the
available metamodel clusters, and gives also the means to navigate them and to
retrieve detailed information about their content if requested by the user.

4.2 Supporting Tool

Fig. 5. MDEForge architecture

The proposed clustering method has
been implemented as extensions in
the MDEForge platform. In partic-
ular, as shown in Fig. 5, MDEForge
consists of core services that are pro-
vided to enable the management of
modeling artifacts, namely transfor-
mations, models, and metamodels.

Atop of such core services, extensions can be developed to add new functionali-
ties. For instance, in [18] we propose a service to automatically compose model
transformations according to user requirements. We have also developed exten-
sions to calculate several metrics on stored artifacts, and to support the under-
standing of metamodel and transformation characteristics [19,20].
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In the remainder of the section, we give details about the extensions that
are shown in Fig. 5 in bold and that we have developed to support the proposed
clustering approach. Concerning the other services of MDEForge the reader can
refer to [13,17].

Proximity Calculator: It plays a key role in the proposed clustering approach
since it is responsible of calculating the mutual similarities between all the meta-
models and thus create a corresponding proximity matrix like the one shown in
Fig. 3a. Such calculations rely on the definition of a given similarity measure. As
discussed in Sect. 3 identifying the appropriate similarity measure is a difficult
task that might depend on the available data set, on the considered application
domain, on the goal of the analysis being performed, etc. [12]. Consequently,
from an architectural point of view, the proximity calculator has been designed
in terms of an interface consisting of a method calculateSimilarity(Metamodel

mm1, Metamodel mm1), and then different concrete implementations can be
provided. So far we have developed different similarity measures already avail-
able in the system even though we plan to experiment and provide additional
ones. In particular, several similarity measures have been proposed in litera-
ture [14]. Among those typically applied to text documents we have considered
the cosine similarity [14] and the Dice’s coefficient [21] with the aim of relating
the similarity of two metamodels on the terms used therein and consequently on
the corresponding application domains. In particular:

– Cosine similarity: given two documents represented as term vectors, the sim-
ilarity of the input documents corresponds to the correlation between the
derived vectors. Such a correlation is calculated as the cosine of the angle
between vectors [14]. In order to apply such a similarity measure on meta-
models, for each of them we derive the corresponding string by borrowing the
serialization mechanisms available in EMF-REST4;

– Dice’s coefficient: it is defined as twice the number of common bigrams (i.e.,
pairs of adjacent letters in the string) in the compared strings divided by the
total number of terms in both strings [21]. Similarly to the application of the
cosine similarity, to calculate the Dice’s coefficient between two metamodels,
we first derive a string serialization of them.

We have developed also two additional similarity functions specifically conceived
for modeling artifacts. Both of them rely on the matching model calculated by
means of EMFCompare5:

– Match-based similarity: it is defined as the total number of matched elements
identified by EMFCompare divided by the total number of elements contained
in the analysed couple of metamodels;

– Containment-based similarity: the previous index does not perform well when
one of the input metamodels is contained in the other one. As an example we

4 http://emf-rest.com/.
5 http://www.eclipse.org/emf/compare/.

http://emf-rest.com/
http://www.eclipse.org/emf/compare/
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can consider the full specification of UML and the UML Class Diagrams. In
such cases the match-based similarity value would be very low since the total
number of matched elements would be much lesser than the total number of
elements contained in the two metamodels. In order to deal with such cases,
the containment-based similarity is defined as the total number of matched
elements divided by the lesser of the total elements in the two input meta-
models.

The application on a concrete data set of the measures used by the proximity
calculator is in-depth discussed in the next section.

Clustering Creator: By using the proximity calculator previously discussed, it
creates clusters of metamodels by applying the agglomerative hierarchical clus-
tering algorithm shown in Algorithm1. As to the cluster proximity calculation,
which is performed during each iteration of the algorithm, it is possible to specify
the distance to be used, i.e., single link, complete link, and group average (see
Sect. 3).

Cluster Visualizer: It creates graphical and tabular representations of the cal-
culated metamodel clusters. The user can explore the available metamodels by
specifying the similarity measure to be applied, and the threshold value used to
filter the identified metamodels pairs and show only those that have a similar-
ity value greater than the given threshold. The left hand side of Fig. 6 shows
the cluster visualizer at work. In particular, the shown connected graphs rep-
resent the identified clusters and the thickness of the edges is proportional to
the proximity value of the connected metamodels represented as nodes in the
graph. For each cluster, the system permits to retrieve additional information
as shown in the upper right-hand side of Fig. 6. In particular, given a cluster all
the contained metamodels are listed together with additional information like

Fig. 6. Sample visualizations of automatically created metamodel clusters
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the most representative metamodel, i.e., the one most connected with the other
ones in the cluster. Additionally, metamodels can be downloaded or even viewed
by means of an integrated tree-based editor.

It is important to remark that the platform is modular in the sense that
interested developers can extend or even substitute the provided services, for
instance, to refine the proximity measures if the proposed ones do not properly
meet their requirements.

5 Evaluation of the Proposed Metamodel Clustering
Approach

In this section we discuss the application of the clustering approach on a concrete
data set consisting of 295 metamodels retrieved from the Ecore Zoo. The main
goal of this section is to discuss the ability of the clustering method (i) to
automate the creation of metamodel groups according to different similarity
measures, and (ii) to provide the user with organized and interactive views of
the metamodel repository. We have applied the clustering technique by using
the four similarity functions discussed in the previous section and by specifying
different thresholds.

In order to evaluate the calculated clusters we have applied a clustering val-
idation technique based on external criteria [22]: the final goal is to validate the
results of the employed clustering technique comparing them with the manually
pre-specified clusters.

Experimental Setting and Dataset. We have downloaded all the meta-
models from the Ecore Zoo and we have manually grouped them with respect
to their content and the domain descriptions when available. Thus, we have
individually analysed the metamodels and incrementally defined the metamodel
clusters. At the end of this manual process, that took about two working days of
one senior researcher with a consolidated expertise in metamodeling and model-
driven engineering, we identified 90 groups, including 43 singleton6. Each group
represents a specific application domain, e.g., database management, project
management, building tools, and model transformation languages. Subsequently,
we have applied on the downloaded metamodels the proposed clustering app-
roach by using the four similarity functions previously discussed and by shifting
the thresholds from the value of 0.1 to 1.0 with 0.05 steps. Clearly, a too low
threshold corresponds to consider the repository population almost undistin-
guished, whilst a too high threshold returns too many clusters with too few
elements. The manually identified clusters and those automatically created are
analysed as discussed later on this section.

6 All the manipulated data are reported in the spreadsheet publicly available at
https://goo.gl/aogGqs.

https://goo.gl/aogGqs
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Table 1. Calculated metamodel clusters

(a) Cosine similarity
Thrsd #clst Avg.

clst size
Max

clst size
#non-
sing
clst

Corr.
with
IM

0.1 14 21.071 282 1 0.16
0.15 25 11.800 264 4 0.23
0.2 48 6.146 224 7 0.31
0.25 86 3.430 186 8 0.39
0.3 113 2.218 127 15 0.45
0.35 170 1.735 63 24 0.48
0.4 201 1.468 31 29 0.49
0.45 215 1.372 22 28 0.49
0.5 227 1.300 15 24 0.49
0.55 236 1.250 14 20 0.49
0.6 245 1.204 14 17 0.48
0.65 249 1.850 14 15 0.46
0.7 250 1.180 14 16 0.45
0.75 256 1.152 13 13 0.44
0.8 261 1.130 12 13 0.42
0.85 264 1.117 11 14 0.40
0.9 271 1.089 8 12 0.39
0.95 283 1.042 4 9 0.37

(b) Dice’s coefficient
Thrsd #clst Avg.

clst size
Max

clst size
#non-
sing
clst

Corr.
with
IM

0.1 1 295 295 1 0.00
0.15 1 295 295 1 0.02
0.2 1 295 295 1 0.03
0.25 1 295 295 1 0.04
0.3 1 295 295 1 0.05
0.35 2 147 .5 294 1 0.06
0.4 2 147 .5 294 1 0.08
0.45 2 147 .5 294 1 0.10
0.5 7 42.143 289 1 0.14
0.55 17 17.353 279 1 0.20
0.6 55 5.364 230 7 0.28
0.65 146 2.021 91 25 0.41
0.7 207 1.425 47 22 0.48
0.75 230 1.283 14 24 0.49
0.8 242 1.219 14 23 0.47
0.85 254 1.161 14 16 0.44
0.9 263 1.122 8 15 0.41
0.95 273 1.081 8 12 0.38

(c) Match-based similarity
Thrsd #clst Avg.

clst size
Max

clst size
#non-
sing
clst

Corr.
with
IM

0.1 45 6.555 228 8 0.26
0.15 96 3.072 152 20 0.41
0.2 157 1.878 72 28 0.50
0.25 192 1.536 19 32 0.52
0.3 214 1.378 14 32 0.50
0.35 227 1.299 14 26 0.48
0.4 234 1.260 14 24 0.47
0.45 238 1.239 14 25 0.46
0.5 245 1.204 14 21 0.45
0.55 250 1.180 13 18 0.44
0.6 256 1.152 12 15 0.43
0.65 257 1.148 12 15 0.42
0.7 259 1.139 12 16 0.41
0.75 263 1.122 8 17 0.40
0.8 268 1.101 6 16 0.39
0.85 272 1.085 4 14 0.38
0.9 280 1.054 4 12 0.37
0.95 288 1.024 3 6 0.35

(d) Containment-based similarity
Thrsd #clst Avg.

clst size
Max

clst size
#non-
sing
clst

Corr.
with
IM

0.1 2 147.5 294 1 0.08
0.15 2 147.5 294 1 0.09
0.2 2 147.5 294 1 0.12
0.25 4 73.75 292 1 0.16
0.3 11 26.818 284 2 0.20
0.35 15 19.667 275 3 0.24
0.4 18 16.389 273 2 0.29
0.45 40 7.375 241 6 0.36
0.5 66 4.470 213 6 0.40
0.55 73 4.041 204 7 0.41
0.6 144 2.049 121 18 0.47
0.65 167 1.766 72 23 0.49
0.7 189 1.561 21 30 0.49
0.75 215 1.372 16 28 0.50
0.8 223 1.323 16 24 0.51
0.85 228 1.294 16 22 0.51
0.9 233 1.266 14 21 0.51
0.95 239 1.243 14 17 0.50

(e) Execution time
Cosine similarity Dice’s coefficient Match-based similarity Containment-based similarity

≈ 10min ≈5min ≈4 hours

Evaluation Metrics. The manually defined clusters are used to generate the
incidence matrix I defined as follows:

I(i, j) =

{
1 if mmi and mmj are grouped in the same cluster
0 otherwise

(1)

where i, j = 1, . . . , n, and mmi and mmj are metamodels in the data set manu-
ally processed. Moreover, for each selected threshold and similarity function we
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binarized the calculated similarity matrix. The basic idea of binarization con-
sists in the introduction of binary values associated to the similarity values. Each
binary value is 1 if the numerical value to which it is associated has a value above
a certain threshold, 0 otherwise. More formally, a similarity matrix S is binarized
in B(S) as follow:

B(S(i, j)) =

{
1 if Sim(mmi,mmj) ≥ threshold

0 otherwise
(2)

where i, j = 1, . . . , n, and mmi and mmj are metamodels in the corpus, and
Sim is the considered similarity measure.

Inspired by the external validation technique discussed in [22], we have val-
idated the metamodel clustering approach by measuring the similarity between
the incidence matrix I, and the binarized similarity matrix B(S) induced by
the adopted similarity measure and threshold. Intuitively, the more similar the
incidence matrix I and B(S) are the better is the considered clustering tech-
nique. To this end we have applied the MATLAB corr2 function7 that returns
the correlation coefficient in the range of -1.00 (perfect negative correlation) and
+1.00 (perfect positive correlation) between two matrices or vectors of the same
size. A correlation with value 0 indicates that the two considered elements are
not correlated.

Data Analysis. The outcomes of the performed experiments are reported in
Table 1. In particular, for each similarity function and threshold (denoted with
Thrsd in the table) the following data are shown:

– #clst : the number of identified clusters;
– Avg. clst size: the average number of metamodels in each cluster;
– Max clst size: the number of metamodels in the bigger cluster;
– #non-sing clst : the number of clusters consisting of more than one metamodel;
– Corr. with IM : it indicates the correlation index between the automatically

calculated clusters and the one manually identified.

It is worth noting that the data reported in the tables can be reproduced
by interacting with the cluster visualizer component discussed in the previous
section, which permits to select the similarity measure and the preferred similar-
ity threshold. The graphical representation of the retrieved clusters is updated
in real time accordingly.

According to the calculated correlations shown in the last column of
Table 1(a–d), the match-based similarity with 0.25 as threshold value optimally
approximates the metamodel clusters that we have manually defined. However,
according to Table 1e the match-based similarity is also one of the most time
consuming measure like the containment-based similarity one. The text-based
similarity measures take less time than that required by the structural-based sim-
ilarities. This result depends on the matching function of EMFCompare, that
7 http://it.mathworks.com/help/images/ref/corr2.html.

http://it.mathworks.com/help/images/ref/corr2.html
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is exponential and depends on the number of all the elements contained in all
the possible metamodels couples. This is not the case of text-based similarities
that instead are based on the textual distance between the vectors encoding as
strings the metamodels being analysed.

6 Discussion

The main strengths of the approach proposed in this paper are related to the
advantages of classifying metamodels in repositories in an automated way instead
of using manual techniques that are strongly correlated to the maintainer back-
ground. This permits to relieve maintainers and contributors of the responsibility
of annotating metamodels, which is beneficial for the accuracy of core function-
alities such as searching and browsing. Nevertheless, the approach as proposed
in this paper can be enhanced in different directions as discussed below.

Similarity Measure: The generation of metamodel clusters strongly depends on
the adopted similarity measure. Depending on the purpose of the desired clus-
tering, a corresponding measure has to be properly selected from existing ones in
literature or even defined from scratch. As we have presented in Sect. 4, besides
using two similarity measures that are commonly applied to text documents,
we have developed two additional similarity measures (namely match-based and
containment-based) that are model specific (in fact, they rely on the match mod-
els calculated by EMFCompare). However, even if we restrict our focus on meta-
models, it is unlikely to define a similarity measure that meets the requirement
of any modeler. This justifies the decision of conceiving an extensible proximity
calculator that can be enriched by adding the implementation of further simi-
larity measures that the user can then select and play with from the front-end
of the application.

Performance: The complexity of hierarchical agglomerative algorithms is
O(n2 log n) [12] with n the number of elements in the considered data set.
Consequently, for very large data sets the adoption of alternative algorithms
is suggested. The hierarchical agglomerative clustering technique used in this
work is only one of the many possible ones. Moreover, the developed supporting
tool is agnostic of the clustering technique. It is important to remark that the
developed system nightly updates all the proximity matrices in order to consider
in the clustering calculation also newly added metamodels. Thus users do not
experiment performance issues when playing with the cluster visualizer since all
the required data are already pre-calculated.

Cluster Characterizations: In the current version of the approach each meta-
model is assigned to exactly one cluster only. However, in some cases a given
metamodel might belong to different clusters simultaneously. Moreover, by
exploiting the content of the considered metamodels and the corresponding
descriptions, when available, it can be possible to create cluster labels auto-
matically. Supporting such characterizations represents a relevant improvement
that we intent to investigate in the future.
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Experimentation and Evaluation: The implementation of the approach has been
applied by considering the metamodels available in the Ecore Zoo. However,
to better assess the validity of the approach and of the optimal parameters
presented in the previous section, and to obtain more extensive feedback, it is
necessary to consider an extended data set consisting of additional metamodels
that can be retrieved from further repositories like ReMoDD.

7 Related Work

Clustering techniques have been used in several applications including software
and data comprehension, data migration, and reverse engineering.

In [23] authors use clustering techniques and Model-Driven Reverse Engi-
neering principles for software comprehension. In particular, authors start by
extracting data from source code for the input data matrix construction. For
the code extraction, they consider the paragraph as the smallest atomic unit
and their cluster analysis is based on the hypothesis that record fields existing
in the same paragraphs can be grouped. For the data matrix the chosen dis-
tance of similarity for the cluster identification is the Euclidean distance. In [24]
authors propose a software automatic categorization system called MUDABlue,
based on Latent Semantic Analysis (LSA), which is a method to extract and rep-
resent the usage of words in texts by means of statistical computations. Similarly
to our approach, [23,24] propose techniques able to automatically categorize set
of similar objects. Whereas they focus on software comprehension, our approach
specifically focuses on metamodels stored in repositories.

In [25] authors present a methodology for handling the problem of database
migration. The approach uses semantic clustering to facilitate the translation
of extended entity relationship schema into complex objects schema. They start
from an Extended Entity Relationships (EER) schema to create a set of clustered
schemata such that each clustered schema corresponds to a level of abstraction
and grouping of the initial schema. By iteratively shrinking portions of EER
diagram into complex entities, the approach creates a schema of entities by
adding a layer of abstraction. The user can select a level of clustering to show
components at some degree of detail exactly like we do in our approach.

In [26] authors present an approach to support the visualization of large-scale
diagrams, which are decomposed into clusters of model elements. Graph clus-
tering techniques are employed by defining the node similarity in terms of node
distance. Differently to our approach, in [26] authors apply clustering techniques
to create sub-models whereas in our approach we categorize metamodels without
splitting their contents.

The work in [27] presents a technique, which is based on metamodeling,
Petri nets, and Facets for the analysis and clustering of requirements diagrams.
Intuitively, the approach is able to obtain the domain description in terms of
the relations and dependencies of modeled services. Then the analysis and the
clustering of requirements are automatically calculated accordingly. The work
in [28] presents a semi-automatic technique for the construction of feature mod-
els based on requirements clustering. This approach automates the activities
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of feature identification and reorganization using clustering techniques. Starting
from an existing system, the main idea is that tight-related individual functional
requirements are clustered into features, and functional features are organized
into an application feature model, which is then merged into a domain feature
model. Differently to our approach, [27,28] are specifically conceived for the
management of functional requirements, and clustering techniques are employed
at model level.

8 Conclusion and Future Work

In this paper, we studied the problem of the automated categorization of meta-
model repositories. The proposed approach adopted an agglomerative hierarchi-
cal clustering algorithm, which according to different similarity metrics (some
of them specifically devised for metamodels) detects the application domains
represented in an arbitrary repository. The effect of these similarity metrics is
evaluated over a corpus of metamodels: while metamodel-specific similarities per-
form better at the price of a high execution-time, generic text-based similarities
still offer acceptable accuracy with much better execution-time.

Future plans include a more systematic experimentation of the available sim-
ilarity metrics to provide repository maintainers with tools, which can offer to
the user a multi-dimensional browsing experience. In addition, we are interested
in understanding how to use the variance between the incidence matrix and the
experimental data as a feedback to improve similarity measures. We plan to
experiment the application of clustering techniques also on other sets of mod-
eling artifacts, like models and model transformations. In particular, we want
to investigate to what extent it is possible to substitute model transformations
that have source and/or target metamodels in common belonging to the same
clusters. Positive results in such direction might be beneficial for enhancing the
reuse of model transformations.
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