
Using a Well-Founded Multi-level Theory
to Support the Analysis and Representation
of the Powertype Pattern in Conceptual

Modeling

Victorio Albani Carvalho1,2(&), João Paulo A. Almeida1,
and Giancarlo Guizzardi1

1 Ontology and Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
victorio@ifes.edu.br, jpalmeida@ieee.org,

gguizzardi@inf.ufes.br
2 Federal Institute of Espírito Santo (IFES), Colatina, ES, Brazil

Abstract. Multi-level conceptual modeling addresses the representation of
subject domains dealing with multiple classification levels. In such domains, the
occurrence of situations in which instances of a type are specializations of
another type is recurrent. This recurrent phenomenon is known in the conceptual
modeling community as the powertype pattern. The relevance of the powertype
pattern has led to its adoption in many important modeling initiatives, including
the UML. To address the challenge of multi-level modeling, we have proposed
an axiomatic well-founded theory called MLT. In this paper, we demonstrate
how MLT can be used as a reference theory for capturing a number of nuances
related to the modeling of the powertype pattern in conceptual modeling.
Moreover, we show how this theory can be used to analyze, expose limitations
and redesign the UML support for modeling this pattern.

Keywords: Conceptual modeling � Multi-level modeling � Powertype � UML

1 Introduction

Three fundamental quality attributes that must be reinforced in all conceptual modeling
languages are expressivity, clarity and parsimony [1]. The first refers to the ability of
the language to capture all relevant aspects of the phenomena in reality it purports to
represent; the second to how easy it is for the language users to unambiguously
recognize which aspects of the underlying phenomena are represented; the third to how
economic a language is in not forcing the modeler to represent more than it is necessary
for a problem at hand. There is now a long tradition in conceptual modeling of using
Reference Theories to evaluate and (re) design conceptual modeling languages
according to these quality attributes [2]. Examples of fundamental conceptual modeling
constructs that have been analyzed and re-designed following this strategy include
types and taxonomic structures, part-whole relations, intrinsic and relational properties,
roles, etc. [3]. In this paper, we address a fundamental conceptual modeling notion,

© Springer International Publishing Switzerland 2016
S. Nurcan et al. (Eds.): CAiSE 2016, LNCS 9694, pp. 309–324, 2016.
DOI: 10.1007/978-3-319-39696-5_19



which is recurrent in a multitude of application domains, namely, the notion of multi-
level classification.

In several subject domains, the categorization scheme itself is part of the subject
matter. In these subject domains, experts make use of categories of categories in their
accounts. For instance, to describe the conceptualization underlying the software
development domain, one needs to represent entities of different (but nonetheless
related) classification levels, such as tasks (i.e., specific events occurring in time and
space), types of tasks, and types of types of tasks. Other examples of multiple classi-
fication levels come from domains such as biological taxonomy [4] and product types
[5]. The need to support the representation of subject domains dealing with multiple
classification levels has given rise to what has been referred to as multi-level modeling
[5, 6]. Techniques for multi-level conceptual modeling must provide modeling concepts
to deal with types in various classification levels and the relations that may occur
between those types. The interest in multi-level modeling has led to a number of
research initiatives in this subject (e.g. [5–9]).

In this paper, we address an early and important approach for multi-level modeling
named the powertype pattern [8, 9]. This pattern is manifested when we have a case in
which the instances of a type (the so-called “powertype”) are specializations of a
lower-level type (the so-called “base type”). Take, for instance, the case in which we
want to express that the instances of the powertype Bird Species are types that spe-
cialize the base type Bird, including the particular subtypes of bird Golden Eagle and
Emperor Penguin. The powertype pattern is extensively used in many important
modeling initiatives. An example is the ISO/IEC 24744 standard [10]. Moreover, this
pattern can regularly be found in many catalogues of modeling best practices, in which
it appears as an ingredient of other patterns (see, for instance, [11]). Finally, the
relevance of this pattern has led to its adoption in the current version of the Unified
Modeling Language (UML) [12], which allows modelers to specify a powertype in the
context of a “generalization set”.

Despite its intuitive characterization, there are many important and subtle aspects
of the relation between the “powertype” and “base type” in the powertype pattern that
are often neglected. For instance, when stating that the instances of Bird Species are
subtypes of Bird, do we mean that all subtypes of Bird are instances of Bird Species?
Do we mean that only subtypes of Bird are instances of Bird Species? Both? Moreover,
if the powertype can have as instances the subtypes of the base type then it follows that
the instances of the base type can be instances of instances of the powertype. But does
that mean, for example, that all instances of Bird must be instances of at least one
instance of Bird Species? Does that mean that the instances of Bird cannot be instances
of more than one instance of Bird Species? Both?

In order to explore the semantic issues involving the powertype pattern, we employ
here a multi-level modeling theory called MLT, which we have proposed originally in
[13]. MLT is a formal axiomatic theory founded on the notion of (ontological)
instantiation and is able to: (i) clarify and position conflicting definitions of powertype
in the literature; and, (ii) enrich the expressivity of multi-level modeling primitives, by
defining new structural relations for variants of the powertype pattern. So far, we have
used MLT in order to provide conceptual foundations for dealing with types at different
levels of classification in core [14] and foundational ontologies [15]. Here we apply
MLT to analyze the UML support for modeling the powertype pattern.

310 V.A. Carvalho et al.



UML is a de facto standard for conceptual modeling and information systems
engineering. Moreover, it is the basis for ontology-driven conceptual modeling lan-
guages such as OntoUML [3], which in the past years have gained increasing adoption
in the conceptual modeling and ontology engineering communities [16]. For this reason,
we believe that providing precise and unambiguous semantics and advancing the UML
support for modeling powertypes amounts to an important contribution for conceptual
modeling, in general, and for ontology-driven conceptual modeling and ontology
engineering, in particular.

By using MLT as a well-founded reference theory, we analyze and expose a
number of limitations in the existing UML support for modeling the powertype pattern.
In particular, we demonstrate that this support: (i) lacks expressivity, for example, for
representing different definitions of powertype that exist in the literature [8, 9], each of
which has relevant applications; (ii) that it lacks clarity, for example, because it con-
founds constraints that apply to powertype instantiation with those that apply to cor-
responding generalization sets; (iii) that it lacks parsimony, for example, because it
forces the modeler to explicitly represent at least one instance of each powertype. By
employing the results of this analysis, we propose a UML profile for addressing the
exposed limitations. We use the distinctions put forth by MLT to devise this profile and
we use the formal rules inherent to MLT to guide the development of the profile’s
syntactic constraints.

The remainder of this paper is structured as follows: Sect. 2 reviews briefly the
MLT multi-level theory; Sect. 3 discusses UML’s current support for powertypes,
revealing its limitations in light of MLT; Sect. 4 presents our proposal to extend a
fragment of UML reflecting the rules of MLT; Sect. 5 discusses related work and
Sect. 6 presents concluding remarks.

2 MLT: A Theory for Multi-level Modeling

MLT is formally defined using first-order logic, quantifying over all possible entities
(individuals and types). According to MLT, types are predicative entities that can
possibly be applied to a multitude of entities (e.g. Person, Car, Student). If a type
t applies to an entity e then it is said that e is an instance of t. In contrast, particular
entities, that have no instances, are considered individuals (e.g. John, Lassie, my car).

The instance of relation is represented in this formal theory by a binary predicate iof
(e,t) that holds if an entity e is instance of an entity t (denoting a type). MLT admits
types having individuals as instances as well as types that have other types as instances.
In order to accommodate these varieties of types, the notion of type order is used.
Types having individuals as instances are called first-order types, types whose
instances are first-order types are second-order types and so on.

The logic constant “Individual” is used to define the conditions for entities to be
considered individuals: an entity is an instance of “Individual” iff it does not have any
possible instance (Axiom A1 in Table 1). The constant “First-Order Type” (or shortly
“1stOT”) characterizes the type that applies to all entities whose instances are
instances of “Individual” (A2 in Table 1). Analogously, each entity whose possible

Using a Well-Founded Multi-level Theory 311



extension contains exclusively instances of “1stOT” is an instance of “Second-Order
Type” (or shortly “2ndOT”) (A3 in Table 1).

It follows from axioms A1, A2 and A3 that “Individual” is instance of “1stOT”
which, in turn, is instance of “2ndOT”. We call “Individual”, “1stOT” and “2ndOT”
the basic types of MLT. According to MLT, every possible entity must be instance of
exactly one of its basic types (except the topmost type) (A4 in Table 1). For our
purposes in this paper, first- and second-order types are enough. However, this scheme
can be extended to consider as many orders as necessary [13].

Some structural relations to support conceptual modeling are defined in MLT.
According to MLT, a type t specializes another type t’ iff all instances of t are also
instances of t’ (see definition D1 in Table 1). Since the reflexivity of the specialization
relation may be undesired in some contexts, we define in MLT the proper special-
ization relation as follows: t proper specializes t’ iff t specializes t’ and t is different
from t’ (see D2 in Table 1). The definitions presented thus far guarantee that both
specializations and proper specializations may only hold between types of the same
order.

From the axioms and definitions presented so far one can conclude that every type
that is not one of MLT’s basic types (e.g., a domain type) is an instance of one of the
basic higher-order types (e.g., “1stOT”, “2ndOT”), and, at the same time proper spe-
cializes the basic type at the immediately lower level (respectively, “Individual” and
“1stOT”) [13]. For example, consider a type “Person” that applies to all human beings.
Since “Person” applies to individuals, it is an instance of “1stOT” and proper spe-
cializes “Individual”. Further, consider a type named “Person Age Phase” whose
instances are specializations of “Person” (thus, instances of “1stOT”) that classify
persons according to their age (e.g. “Child” and “Adult”). Thus, “Person Age Phase” is
instance of “2ndOT” and proper specializes “1stOT”.

MLT also defines relations that occur between types of adjacent orders, the
so-called cross-level structural relations. These relations support an analysis of the
notions of powertype in the literature.

One prominent notion of powertype was proposed by Cardelli [9]. According to
Cardelli, the same way specializations are intuitively analogous to subsets, powertypes
are intuitively analogous to powersets: “if A is a type, then Power(A) is the type whose
elements are all the subtypes of A (including A)” [9]. Based on this notion, MLT
defines a powertype relation between a higher-order type and a base type at a lower
order as follows: a type t is powertype of a base type t’ iff all instances of t specialize t’
and all possible specializations of t’ are instances of t (see D3). For example, consider
a type called “Person Type” such that all possible specializations of “Person” are
instances of it and, conversely, all its instances specialize “Person”. In this case,
“Person Type” is the powertype of “Person”. Since “Person” is instance of “1stOT”,
“Person Type” is instance of “2ndOT” and specializes “1stOT”. Note that it follows
from the definition of powertype that “1stOT” is powertype of “Individual”. Analo-
gously, “2ndOT” is powertype of “1stOT”, and so on. In other words, the notion of
orders or levels in MLT can be seen as a result of the iterated application of Cardelli’s
notion of powertype to the basic types of MLT.

312 V.A. Carvalho et al.



An important variant of the notion of powertype was discussed by Odell [8]. Odell
defined powertype simply as a type whose instances are subtypes of another type (the
base type), excluding the base type from the set of instances of the powertype. Based on
Odell’s definition for powertypes [8], MLT defines the characterization relation
between types of adjacent levels: a type t characterizes a type t’ iff all instances of t are
proper specializations of t’ (definition D4). The characterization relation occurs
between a higher-order type t and a base type t’ when the instances of t specialize t’
according to a specific classification criteria. Thus, differently from the cases involving
(Cardelli’s) is powertype of, there may be specializations of the base type t’ that are not
instances of t. For example, we may define a type named “Person Role” (with instances
“Employee” and “Client”) that characterizes “Person”, but is not a powertype of
“Person” since there are specializations of “Person” that are not instances of “Person
Role” (e.g. “Child” and “Adult”).

Finally, MLT defines some refinements of the cross-level relation of characteri-
zation, which are useful to capture further constraints in multi-level models. We
consider that a type t completely characterizes t’ iff t characterizes t’ and every instance
of t’ is instance of, at least, an instance of t (D5). Moreover, iff t characterizes t’ and
every instance of t’ is instance of, at most, one instance of t it is said that t disjointly
characterizes t’ (D6). Finally, a common use for the notion of powertype in literature
considers a second-order type that, simultaneously, completely and disjointly charac-
terizes a first-order type. To capture this notion MLT defines the partitions relation.
Thus, t partitions t’ iff each instance of the base type t’ is an instance of exactly one
instance of t (D7). For example, we may consider a second-order type “Person Age
Phase” (with instances “Child”, “Adult” and “Elderly”) that partitions “Person”.
A complete formalization of MLT in first-order logic can be found in [13].

Table 1. MLT axioms

A1 8x iof x; Individualð Þ $ :9y iofðy; xÞ
A2 8t iof t; 1stOTð Þ $ ð9y iofðy; tÞ ^ ð8x iof x; tð Þ ! iof x; Individualð ÞÞÞ
A3 8t iof t; 2ndOTð Þ $ ð9y iofðy; tÞ ^ ð8t0iof t0; tð Þ ! iof t0; 1stOTð ÞÞÞ
A4 8x iof x; Individualð Þ _ iof x; 1stOTð Þ _ iof x; 2ndOTð Þð Þ _ ðx ¼ 2ndOTÞ
D1 8t; t0specializesðt; t0Þ $ ð9x iofðx; tÞ ^ 9y iofðy; t0Þ ^ 8e iof e; tð Þ ! iof e; t0ð Þð ÞÞ
D2 8t; t0properSpecializes t; t0ð Þ $ ðspecializes t; t0ð Þ ^ t 6¼ t0Þ
D3 8t; t0isPowertypeOf t; t0ð Þ $ ð9xiofðx; tÞ ^ ð8t00iof t00; tð Þ $ specializes t00; tð ÞÞÞ
D4 8t; t0characterizes t; t0ð Þ $ ð9x iofðx; tÞ ^ ð8t00iof t00; tð Þ ! properSpecializes t00; t0ð ÞÞÞ
D5 8t; t0completelyCharacterizesðt; t0Þ $ ðcharacterizesðt; t0Þ^

ð8e iofðe; t0Þ ! 9t00ðiofðe; t00Þ ^ iofðt00; tÞÞÞÞ
D6 8t; t0disjointlyCharacterizes ðt; t0Þ $ ðcharacterizesðt; t0Þ^

ð8e; t00; t000ðiofðt00; tÞ ^ iofðt000; tÞ ^ iofðe; t00Þ ^ iofðe; t000ÞÞ ! t00 ¼ t000ÞÞ
D7 8t; t0partitions t; t0ð Þ $ ðcompletelyCharacterizes t; t0ð Þ ^ disjointlyCharacterizes t; t0ð ÞÞ

Using a Well-Founded Multi-level Theory 313



3 UML’s Powertype Pattern Support in a Nutshell

The notion of generalization set is central to the UML’s powertype pattern support.
According to the UML 2.4.1 specification [12] each generalization set contains a
particular set of generalizations that collectively describe the way a specific classifier (a
class) is specialized into subclasses. To provide support to the powertype pattern, UML
includes in its “powertypes” package a meta-association that relates a classifier (the
so-called “powertype”) to a generalization set that is composed by the generalizations
that occur between the base classifier and the instances of the powertype [12]. The
relation between the powertype and the generalization set is represented in the UML
notation by placing the name of the classifier next to the generalization set preceded by
a colon. For example, in Fig. 1 three specializations of “Tree” are defined, namely
“Elm”, “Apricot” and “Saguaro”. The text “:Tree Species” denotes that the three
subtypes enumerated in the generalization set are instances of “Tree Species” and that
“Tree Species” is the “powertype” of the generalization set. Note that the term
“powertype” as used in UML does not correspond to the notion of “powertype” as
proposed by Cardelli. (This issue is discussed in Sect. 4.) The “disjoint” constraint
means that the subtypes have no instances in common while the “incomplete” con-
straint means that there are instances of “Tree” that are not instances of “Elm”,
“Apricot” and “Saguaro”. The relation between the powertype (e.g. “Tree Species”)
and the base type (e.g. “Tree”) may be represented using a regular association with no
special syntax and semantics.

A key observation is that for a classifier to be considered a “powertype” in UML, it
must be related to a generalization set. Thus, in UML, the powertype pattern can only
be applied when specializations of the base type are explicitly modeled (otherwise there
would be no generalization set). We consider this undesirable as it rules out simple
models such as one defining “Tree Species” as a “powertype” of “Tree”, without
forcing the modeler to define specific instances for “Tree Species”.

Furthermore, the only syntactic constraint defined in UML concerning powertypes
is that “the classifier that maps to a generalization set may neither be a specific nor a
general classifier in any of the generalization relationships defined for that general-
ization set” [12]. While this rule prevents the powertype from being involved in the
generalization set defined to represent its own relation with the base type, this con-
straint is insufficient to rule out scenarios in which the powertype is incorrectly related
by generalization with types of any other levels.

Fig. 1. The UML notation for the powertype pattern (adapted from [12]).

314 V.A. Carvalho et al.



4 Applying MLT to Revisit the Powertype Support in UML

The application of MLT to revise the powertype support in UML leads to the for-
mulation of modeling recommendations to ensure: (i) a precise interpretation for the
UML constructs used to express the powertype pattern, (ii) a comprehensive support
for the powertype pattern including its variants in the literature, and; (iii) a number of
syntactic rules to prevent the construction of inconsistent models.

First of all, we should observe that the UML specification is silent with respect to
whether Cardelli’s notion of powertype can be adopted. However, given that a gener-
alization set can be said to define the classification criteria used to specialize the general
type, the UML notion of powertype seems to correspond to the characterization relation
in MLT (not to the is powertype of relation), in particular as other generalization sets
may co-exist defining other classification criteria for the subtypes. This interpretation is
corroborated by statements in the specification that explain that the subtypes of a
basetype are the instances of the “powertype” (excluding the basetype itself).

Our first recommendation is to mark the association between the base type and the
higher order type with the «instantiation» stereotype, in order to distinguish it from
other domain relations that do not have an instantiation semantics. An association
stereotyped «instantiation» represents that instances of the target type are instantiated
by instances of the source type and, thus, denote that there is a characterization relation
between the involved types (regardless of possible generalization sets). For example, in
Fig. 2 an association stereotyped «instantiation» having “Tree” as source and “Tree
Species” as target type is used to represent that instances of “Tree” are instances of
instances of “Tree Species” and, conversely, that instances of “Tree Species” have
instances of “Tree” as instances. Therefore, in MLT terms, it denotes that “Tree
Species” characterizes “Tree”. Since this modeling structure does not rely on gener-
alization sets, the modeler is not forced to represent instances of the powertype, which
would have been required in the case of plain UML.

The multiplicities of the “target” side of an «instantiation» association can be used
to distinguish between the different variations of characterization. Whenever the lower
bound multiplicity of the target association end is set to one, each instance of the base
type is instance of, at least one instance of the powertype. Thus, the higher order type
completely characterizes the base type. In contrast, if the lower bound multiplicity of
the target association end is set to zero, the inferred characterization relation is not a
complete characterization. Analogously, if the upper bound multiplicity of the target
association end is set to one, each instance of the base type is instance of, at most one
instance of the higher order type. Thus, in this case, the higher order type disjointly
characterizes the base type. In contrast, if the upper bound multiplicity of the target

Fig. 2. Illustrating the use of «instantiation».

Using a Well-Founded Multi-level Theory 315



association end is set to many (*), the inferred characterization relation is not a disjoint
characterization.

Table 2 summarizes the suggested interpretation in terms of MLT, considering
different combinations of lower and upper bound multiplicities for the target associa-
tion end. The combinations of multiplicities of the «instantiation» association with the
values of the related generalization set attributes create additional challenges for
modelers using the powertype pattern. These combinations are discussed in each of the
following subsections, in which we expose some semantic issues.

Lower and upper bound multiplicities set to one. When both the lower and the
upper bound multiplicities of an «instantiation» association are set to one, we have that
the powertype simultaneously, completely and disjointly characterizes (i.e. partitions)
the base type. For example, according to Fig. 2 “Tree Species” partitions “Tree” (i.e.
each instance of “Tree” is instance of exactly one instance of “Tree Species”). If it is
used in tandem with a complete generalization set it means that all the instances of the
higher-order type are enumerated in the diagram. For example, the model in Fig. 3(a)
represents that: (i) every instance of “Person” must be either an instance of “Man” or an
instance of “Woman” and that (ii) “Man” and “Woman” are the only admissible
instances of “Person Gender”.

At a first superficial inspection, one could consider that «instantiation» associations
having the lower bound multiplicity (of the target association end) set to one could only
be combined with a complete generalization set (as in Fig. 3(a)). However, this is not

Table 2. The influence of the multiplicities in the semantics of «instantiation» associations.

Fig. 3. Using «instantiation» to denote partitions relations.

316 V.A. Carvalho et al.



the case because the “complete” constraint represents whether all instances of the
supertype are instances of one of the subtypes in the generalization set, and it is silent
with respect to whether the higher-order type completely characterizes the base type.
Thus, a combination of an «instantiation» association having both lower and upper
multiplicities set to one in a pattern with an incomplete generalization set is admissible,
and would mean that there are instances of the higher-order type that are not enu-
merated in the generalization set. For example, Fig. 3(b) represents that: (i) each
instance of “Tree” is instance of exactly one instance of “Tree Species” (represented by
the «instantiation» association), (ii) “Elm”, “Apricot” and “Saguaro” are instances of
“Tree Species” (see the generalization set name), (iii) there are instances of “Tree” that
are not instances of “Elm”, “Apricot” nor “Saguaro” (represented by the incomplete
constraint). Given the semantics of the «instantiation» stereotype in tandem with the
semantics of the incomplete generalization set we can infer that (iv) there are instances
of “Tree Species” that are not represented in the diagram.

Since the upper bound multiplicity of an «instantiation» association set to one
means that each instance of the base type is instance of at most one instance of the
higher-order type, a model combining it in a pattern with an overlapping generalization
set is inconsistent, and thus, deemed syntactically invalid.

Lower bound multiplicity set to zero and upper bound set to one. An association
stereotyped «instantiation» having the lower multiplicity set to zero and the upper
bound multiplicity set to one denotes that the target type disjointly characterizes but
does not completely characterize (in MLT sense) the source type. For example, sup-
pose that an organization defines a type of roles called “Management Role” such that
an employee cannot play more than one role of such type and it is not the case that all
employees play some “Management Role”. This scenario is illustrated in Fig. 4(a),
showing “Organization President” and “Department Dean” as examples of instances of
“Management Role”. The interpretation of the combination of an «instantiation»
association having zero as the lower bound and one as the upper bound multiplicity
with an incomplete generalization set is more subtle than the cases we have discussed
so far. In order to analyze this combination, we should first note that: (i) there are
instances of “Employee” which are not instances of any instance of “Management
Role” (as a consequence of the semantics of the «instantiation» association); and
(ii) there are instances of “Employee” which are neither “Organization President” nor
“Department Dean” (as a consequence of the semantics of incomplete generalization
sets). The model is still silent with respect to whether all instances of “Management
Role” are enumerated in this generalization set. It is possible that there are no other
instances of “Management Role”, but an interpretation in which there are other man-
agement roles not mentioned in the model (e.g. “Division Head”) is also admissible.

Since an «instantiation» association having zero as the lower bound multiplicity
implies that there are instances of the base type that are not instances of any instance of
the higher-order type, a model combining it in a pattern with a complete generalization
set is deemed syntactically invalid. Further, as previously discussed, the combination of
an «instantiation» association with upper bound multiplicity set to one in a pattern with
an overlapping generalization set is also deemed syntactically invalid.

Using a Well-Founded Multi-level Theory 317



Lower bound multiplicity set to one and upper bound set to many. An «instan-
tiation» association having the lower multiplicity set to one and the upper bound
multiplicity set to “many” (*) denotes that the target type completely characterizes but
does not disjointly characterize (in MLT sense) the source type. For example, suppose
that the rules of an organization define a type of roles called “Business Role” (having
instances as “Programmer”, “DB Designer” and “Sw Designer”) such that every
employee must play one or more roles of such type.

Associations stereotyped «instantiation» with “one” as lower bound multiplicity
and “many” as upper bound multiplicity can be combined with any generalization sets
despite they are complete or incomplete, disjoint or overlapping. However, the gen-
eralization sets constraints influence the semantics of the diagrams. For example, in
Fig. 4(b) the generalization set is complete and disjoint meaning each instance of
“Employee” plays exactly one of the represented instances of “Business Role”.
Therefore, since the multiplicities of the «instantiation» association between “Business
Role” and “Employee” denotes that the instances of the former are overlapping, we
conclude that there are non-represented instances of “Business Role” such that some of
these instances are overlapping between them or some of them are overlapping with the
represented ones. If the generalization set of Fig. 4(b) were defined incomplete we
could infer that there were non-represented instances of “Business Role” such that the
whole set of instances of “Business Role” classifies all instances of “Employee” having
some overlaps. Finally, considering the hypothesis in which the generalization set of
Fig. 4(b) were defined complete and overlapping we would have two possible inter-
pretations: (i) all instances of “Business Role” are represented in the model or (ii) there
are non-represented instances of “Business Role” but the represented ones already
classify all instances of “Employee” having overlaps between them.

Lower bound multiplicity set to zero and upper bound set to many. An «instan-
tiation» association having the lower multiplicity set to zero and the upper bound
multiplicity set to many (*) denotes that the target type characterizes (in MLT sense)
the source type, however it is neither a complete characterization nor a disjoint
characterization. Therefore, there may be instances of the base type that are instances
of more than one instance of the higher-order type and there may be instances of the
base type that are not instances of any instance of the higher-order type. For example,
Fig. 5(a) consider a second-order type named “Social Role” whose instances represent
roles that instances of “Person” may play in social relations, such as “Client”,
“Employee” and “Husband”. Some instances of “Person” may play more than one
“Social Role” and some other instances may play no social role.

Fig. 4. Using «instantiation» with different multiplicities.

318 V.A. Carvalho et al.



Note that it is not possible to infer whether all instances of “Social Role” are
represented or not in Fig. 5(a): (i) they may all be enumerated, or (ii) there may be
non-represented instances of “Social Role”. If the generalization set of Fig. 5(a) were
disjoint, the diagram would still be considered syntactically valid and we could infer
that there were non-represented instances of “Social Role” such that the whole set of
instances of “Social Role” have some overlaps. Finally, if the generalization set of
Fig. 5(a) were complete, the diagram would be considered syntactically invalid since
the whole set of instances of “Social Role” does not classify all instances of “Person”.

Table 3 summarizes the semantics of the combinations of the multiplicities of
«instantiation» associations with the possible constraints of generalization sets, clas-
sifying each possible combination as: (i) enumerated if one can infer that all instances
of the higher-order type are represented in the diagram; (ii) non enumerated if one can
infer that there are instances of the higher-order type not represented in the diagram;
(iii) silent: if it is not possible to infer whether the instances of the higher-order type are
enumerated or not; or (iv) invalid if the combination is syntactically invalid.

The «powerType» stereotype. Our second recommendation is to use the «power-
Type» stereotype to represent Cardelli’s notion of powertype [9]. If a class stereotyped
«powerType» is the target of an «instantiation» association this means that this type is
powertype of the source type, i.e. the source type and all its specializations are instances
of the target element. For example, in Fig. 5(b), all types that (directly or indirectly)
specialize “Person” are instances of “Person Type”.

According to Cardelli’s notion of powertype the base type itself is instance of the
higher-order type. Thus, in these cases, the lower bound multiplicity of the «instanti-
ation» association must be set to one and the upper bound to many (*). Moreover,
models in which the «powerType» stereotype is applied to types (classifiers) that are
not target of any «instantiation» association are deemed syntactically invalid.

Another important syntactic constraint involving «powerType» is that, since a
powertype (in MLT) does not define a classification criteria to be applied to instances
of the base type, there should be no generalization set anchored in types stereotyped
«powerType» (i.e. powertype relations do not give rise to generalization sets). For
example, considering the scenario illustrated in Fig. 5(b), a generalization set named
“:Person Type” is not admissible. However, all subtypes of “Person”, despite the
generalization sets in which they are involved, are instances of “Person Type”. Thus,
all instances of “Person Gender” and “Social Role” are instances of “Person Type”.

Table 3. Analyzing the combination of «instantiation» with generalization set constraints

Association
multiplicities

Generalization sets constraints

Lower Upper {disjoint} {overlapping}
{complete} {incomplete} {complete} {incomplete}

1 1 enumerated non enumerated invalid invalid
0 1 invalid silent invalid invalid
1 * non enumerated non enumerated silent non enumerated
0 * invalid non enumerated invalid silent

Using a Well-Founded Multi-level Theory 319



Syntactic constraints motivated by MLT rules. An important aspect of the proposed
interpretation is that it allows us to leverage the axioms and theorems of the MLT
formalization in order to guide the modelers in producing sound models. For instance,
given the definition of the is powertype of relation of MLT, a type may not have more
than one powertype and a higher order type may be a powertype of at most one other
type. This suggests a clear syntactic constraint: a class stereotyped «powerType» can
only be target of at most one «instantiation» association and a regular class can only be
the source of at most one «instantiation» association having as target a class stereo-
typed «powerType». Further, the MLT theorem stating that if a type t specializes a type
t’ then the powertype of t specializes the powertype of t’ may be used to check the
syntax of powertype hierarchies, and to generate the powertypes hierarchy corre-
sponding to the base types hierarchy. For example, in Fig. 6(a) the conjunction of the
facts that: (i) “Employee” specializes “Person”, (ii) “Person Type” is powertype of
“Person” and (iii) “Employee Type” is powertype of “Employee” implies that
“Employee Type” must specialize “Person Type”.

Considering the MLT definitions of powertype, characterization and proper spe-
cialization we conclude that if a type t’ is powertype of a type t and a type t’’ char-
acterizes the same base type t then all instances of t’’ are also instances of t’ and, thus,
t’’ proper specializes t’. This theorem also suggests a syntactic constraint. For example,
in Fig. 6(a) “Management Role” characterizes “Employee” and specializes “Employee
Type”, whereas “Person Gender” characterizes “Person” and specializes “Person
Type”. In this case, if the modeler fails to include any of the specializations between the
higher-order types, it would be possible to infer them automatically.

Another MLT theorem states that if two types t’ and t’’ both partition the same type
t then it is not possible for t’ to specialize t’’. Again this suggests a clear syntactic
constraint. For example, in Fig. 6(b), “Person Age Phase” partitions “Person”
according to their age having “Child” and “Adult” (and other non-represented types) as
instances. “Person Gender”, in turn, partitions “Person” according to their gender
having “Man” and “Woman” as instances. Thus, to be syntactically valid, the model
may not include a specialization between “Person Age Phase” and “Person Gender”.

Recall that the MLT cross-level relations (characterization and is powertype of)
hold between a higher-order type and another type at one order lower. Thus, if two
types are linked through an «instantiation» association the type at the source associ-
ation end is at an order lower than the one in the target (e.g. in Fig. 6(b) “Person” is one
order lower than “Person Age Phase”). Hence, cycles of associations stereotyped
«instantiation» are not allowed. For example, suppose A is the target in an «instanti-
ation» association in which B is the source while B is the target in another

Fig. 5. Using «instantiation» (a) with unbounded multiplicities, and (b) with «powerType».

320 V.A. Carvalho et al.



«instantiation» association in which A is the source. This scenario is absurd since
A must be at one order lower than B and, simultaneously, B must be at one order lower
than A.

Finally, we consider that all higher-order types represented in diagrams must have
cross-level relations with other types. Thus, we can determine the order of a type
considering the «instantiation» associations in which they are involved as target. Types
that are not targets of any «instantiation» association are first-order types (e.g. “Per-
son”, “Man”, “Woman”, “Adult” and “Child” in Fig. 6(b)). Types that are target in
«instantiation» associations in which the sources are first-order types are second-order
types (e.g. “Person Gender” and “Person Age Phase” in Fig. 6(b)), and so on.
The MLT axiom that states that each domain type must be instance of exactly one MLT
basic type (being thus at only one order) can be syntactically verified in our models.
Further, the MLT theorem that specialization relations may only hold between two
types at the same order may also be syntactically verified. For example, in Fig. 6(b)
there may not be specialization relations between a first-order type (i.e., “Person”,
“Man”, “Woman”, “Adult” or “Child”) and a second-order type (i.e. “Person Gender”
or “Person Age Phase”). Otherwise, the model would be considered syntactically
invalid. A prototype plugin for the Visual Paradigm modeling tool that implements the
proposed profile and performs syntactic verification of MLT rules is available at http://
github.com/nemo-ufes/MLT-VP-plugin.

5 Related Work

An early attempt to address multi-level modeling by Odell [8] defined the concept of
powertype informally using regular associations between the powertype and a base
type. This differs from our approach because we use constructs having specialized
semantics to denote the cross-level relations between types defined in MLT. This
allows us to prescribe syntactic rules for the models that use these relations following
the axioms in the formal theory.

Similarly to Odell [8], Gonzalez-Perez and Henderson-Sellers [7] use an associa-
tion labeled “partitions” between a powertype and a base type (called a “partitioned
type” in their terminology). The authors illustrate their technique with a diagram in
which “partitions” is modeled as a many-to-one association between “Task” and

Fig. 6. Syntactical constraints concerning specializations types and the types order.

Using a Well-Founded Multi-level Theory 321

http://github.com/nemo-ufes/MLT-VP-plugin
http://github.com/nemo-ufes/MLT-VP-plugin


“TaskKind”, meaning that every instance of the partitioned type (“Task”) is linked to
exactly one instance of the powertype (“TaskKind”). In the sequel, they discuss that the
“partitions association possesses instantiation semantics”, and that, because of this,
“Task” is a special instance of “TaskKind” (the most generic kind of task). However, if
“Task” itself is an instance of “TaskKind”, then the lower bound multiplicity of the
“partitions” association in the “TaskKind” end cannot be one. This is because all
instances of subtypes of “Task” are also instances of “Task”, and thus instances of at
least two “TaskKinds” (one which is “Task” itself). This is an example of a mistake,
which could be avoided with a richer language support for the powertype pattern and
its variants, as we propose here.

The concept of powertype is founded on the notion that “instances of types can also
be types” [8]. Motivated by a similar observation, Atkinson and Kühne [17] defined the
notion of clabject, which is valuable to our approach. They discuss that every
instantiable entity has both a type (or class) facet and an instance (or object) facet. In
our approach, instances of higher-order types may be considered clabjects. For
instance, considering the previous example all instances of “TaskKind” as well as all
instances of “TaskPowertype” have their own instances being, thus, clabjects.

Atkinson and Kühne have also proposed a deep instantiation based approach [6],
[18] as a means to provide for multiple levels of classification whereby an element at
some level can describe features of elements at each level beneath that level. The
authors consider the main benefit of deep instantiation is to support multi-level mod-
eling without the need of introducing the required base type in the powertype pattern,
which they consider superfluous [18]. For example, using this approach it is possible to
define mobile phone models, such as “IPhone6” and “GalaxyS6”, omitting the notion
of “Mobile Phone” from the domain model. Important consequences of omitting base
types are that the modeler become unable to express whether the instances of a
higher-order type (mobile phone model in this example) are disjoint and/or covering
types and we are also prevented from determining metaproperties (such as e.g., rigidity)
of the base type (mobile phone in this case). It is worth noticing that the deep
instantiation approach allows the modeler to represent the base type if it is deemed
desirable. However, if the modeler decides to represent the base type, the approach
does not provide constructs to represent the relation between it and the higher-order
type, not distinguishing thus between the different possible kinds of cross-level rela-
tions. As a consequence, the approach does not provide mechanisms to check if the
rules concerning these relations are respected, e.g., to guarantee that all instances of the
higher-order type (“Mobile Phone Model”) specialize the base type (“Mobile Phone”).

Telos [19] is a knowledge representation language that supports the representation
of types having other types as instances (i.e. clabjects). Roughly 30 axioms are defined
to formalize Telos’ principles for instantiation, specialization, object naming and
attribute definition [19]. Although it supports multi-level modeling through its notion
of type, it does not elaborate on the nature of cross-level relations between higher-order
types and base types. Further, it does not employ systematically the powertype pattern,
although we consider it would be possible to extend the Telos built-in support by using
its features of user-defined constraints and rules to formally define the cross-level
structural relations proposed in MLT.

322 V.A. Carvalho et al.



6 Final Considerations

In this paper, we have addressed multi-level modeling from the perspective of the
powertype pattern. We have used a well-founded reference theory to support the
analysis and revision of the powertype support, demonstrating that the current support
lacks expressivity, clarity, and parsimony. By employing the result of this analysis, we
propose a UML extension to address the exposed limitations. We use the formal rules
of MLT to systematically incorporate syntactic constraints in the profile thus guiding
the modeler to produce sound multi-level models. Our approach is able to distinguish
properties of the relation between higher-order and base types that cannot be expressed
in UML and that are required to represent multi-level classification schemes.

In [3], one of us has evaluated a fragment of UML at light of the Unified Foun-
dational Ontology (UFO). Based on this analysis, a UML extension for the purposes of
conceptual modeling (dubbed OntoUML) has been proposed. The ontology was used
as a theory to inform the definition of a profile with syntactic constraints that reflect the
UFO axioms. In this paper, we have applied a similar approach to extend UML class
diagrams using MLT as a theory to incorporate distinctions and constraints for
multi-level modeling. In [15], we have already combined MLT and UFO in order to
leverage both benefits of the foundational ontology and the multi-level modeling
theory. A natural extension of this work is to enrich OntoUML with the support for the
powertype pattern as discussed here. Finally, we aim at applying MLT to analyze and
enrich the semantics of the so-called deep modeling approaches [5, 18].

Acknowledgments. This research is funded by the Brazilian Research Funding Agencies CNPq
(grants number 311313/2014-0, 485368/2013-7, 312158/2015-7 and 461777/2014-2) and
CAPES. The authors would like to thank Claudenir M. Fonseca for implementing the Visual
Paradigm plugin for the UML profile presented here.

References

1. Halpin, T., Morgan, T.: Information Modeling and Relational Databases. Morgan
Kaufmann, San Francisco (2008)

2. Recker, J., Rosemann, M., Green, P., Indulska, M.: Do ontological deficiencies in modeling
grammars matter? MIS Q. 35(1), 57–79 (2011)

3. Guizzardi, G.: Ontological foundations for structural conceptual models. University of
Twente, Enschede, The Netherlands (2005)

4. Mayr, E.: The Growth of Biological Thought: Diversity, Evolution, and Inheritance.
Belknap Press, Cambridge (1982)

5. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with m-objects and
m-relationships. In: Proceedings of the 6th Asia-Pacific Conference on Conceptual
Modeling, pp. 107–116 (2009)

6. Atkinson, C., Kühne, T.: The essence of multilevel modeling. In: Proceedings of the 4th
International Conference on the Unified Modeling Language, pp. 19–33, Toronto, Canada
(2001)

Using a Well-Founded Multi-level Theory 323



7. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling framework.
Softw. Syst. Model. 5(1), 72–90 (2006)

8. Odell, J.: Powertypes. J. Object-Oriented Program. 7(2), 8–12 (1994)
9. Cardelli, L.: Structural subtyping and the notion of powertype. In: Proceedings of the 15th

ACM Symposium of Principles of Programming Languages, pp. 70–79 (1988)
10. ISO/IEC: ISO/IEC 24744: Software Engineering – Metamodel for Development

Methodologies. ISO, Geneva (2007)
11. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Boston (1997)
12. OMG: UML Superstructure Specification – Version 2.4.1 (2011)
13. Carvalho, V.A., Almeida, J.P.A.: Towards a Well-Founded Theory for Multi-level

Conceptual Modeling (2015, submitted). http://nemo.inf.ufes.br/mlt
14. Carvalho, V.A., Almeida, J.P.A.: A semantic foundation for organizational structures: a

multi-level approach. In: 19th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2015), pp. 50–59, Adelaide, Australia (2015)

15. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Extending the foundations
of ontology-based conceptual modeling with a multi-level theory. In: Johannesson, P., et al.
(eds.) ER 2015. LNCS, vol. 9381, pp. 119–133. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25264-3_9

16. Guizzardi, G., et al.: Towards ontological foundation for conceptual modeling: the unified
foundational ontology (UFO) story. Appl. Ontol. 10, 259–271 (2015). IOS Press

17. Atkinson, C., Kühne, T.: Meta-level independent modeling. In: International Workshop on
Model Engineering (in conjunction with ECOOP 2000), Cannes, France (2000)

18. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Softw. Syst.
Model. 7(3), 345–359 (2008). Springer

19. Jeusfeld, M.A.: Metamodeling and method engineering with conceptbase. In: Jeusfeld, M.
A., Jarke, M., Mylopoulos, J. (eds.) Metamodeling for Method Engineering, pp. 89–168.
MIT Press, Cambridge (2009)

324 V.A. Carvalho et al.

http://nemo.inf.ufes.br/mlt
http://dx.doi.org/10.1007/978-3-319-25264-3_9
http://dx.doi.org/10.1007/978-3-319-25264-3_9

	Using a Well-Founded Multi-level Theory to Support the Analysis and Representation of the Powertype Pattern in Conceptual Modeling
	Abstract
	1 Introduction
	2 MLT: A Theory for Multi-level Modeling
	3 UML’s Powertype Pattern Support in a Nutshell
	4 Applying MLT to Revisit the Powertype Support in UML
	5 Related Work
	6 Final Considerations
	Acknowledgments
	References


