
Bringing Complex Event Processing
into Multitree Modelling of Sensors

Alexandre Garnier1(B), Jean-Marc Menaud1, and Nicolas Montavont2

1 ASCOLA Research Group, Mines Nantes / Inria / LINA UMR 6241,
Nantes, France

{alexandre.garnier,jean-marc.menaud}@mines-nantes.fr
2 Institut Mines-Télécom / Télécom Bretagne, Irisa, Rennes, France

nicolas.montavont@telecom-bretagne.eu

Abstract. The recent advances in the Internet of Things allow deploy-
ing a large variety of applications for smart cities, home automation or
the industry of the future. These applications generate a large amount of
data that can be challenging to manage; identifying and parsing this data
become a prominent problem. In order to address this issue, we propose
a multitree model for the sensor representation which matches the need
for heterogeneous applications and user support. From there, we define
a complex event processor based on a new language and grammar, in
order to filter and identify user specific events. We show that we consid-
erably reduce the size of queries by focusing on end-users knowledges as
semantics for data streams.

Keywords: Sensor networks · Domain-specific languages · Complex
event processing

1 Introduction

From home automation to smart cities, from amateur weather stations to large
deployments of smart power meters in datacenters, Internet of Things (IoT)
applications target more and more end-users every day. The link between these
users and the IoT is usually provided by applications deployed over a sensor
network. A recurring problem concerning sensor networks is the heterogeneity,
not only of sensors, but also of the protocols used to access them, often char-
acterized by their low bandwidth and poor reliability. To address this issue, the
notion of data streams has emerged, leading to a change of paradigm around data
parsing, from traditional DataBase Management Systems (DBMS) to Complex
Event Processing (CEP). Instead of processing stored persistent data through
volatile queries, CEP parses volatile data stream as it comes through persistent
queries. However, parsing the raw data issued from sensors remains a complex

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 196–210, 2016.
DOI: 10.1007/978-3-319-39577-7 16

Bringing Complex Event Processing into Multitree Modelling of Sensors 197

task. This is due to the endless nature of the data stream and its growing het-
erogeneity, which reflects the variety of networked things. In order to address
this issue, ideally the data has to be adapted to the user’s knowledge.

Given that the number of users to consider grows with the IoT coverage, the
ability to provide a meaningful access to the data to each user is a prominent
problem. If CEP alone is able to notify specific users with data they are interested
in, it does not allow to pre-identify these data. To leverage this gap, some kind
of semantics, or context, can be attached to the data, in order to assist users
when identifying the information they need. To this end, various tracks have
been followed, from ontology-based enrichment to context-aware solutions. While
ontology-based solutions tend to be harsh to manage for non-expert end-users
and do not directly address their needs, context-aware solutions usually lack
interoperability between different user contexts. A good compromise could be
to provide a cross-context modelling of the data. Such a model would provide a
defining frame to the semantical enrichment, while avoiding context partitioning.
In order to fully provide to users a simple yet effective access to the data, CEP
should be merged with such a modelling of the data.

Our previous work, SensorScript [7], aimed at providing a cross-context mod-
elling of the data. In this paper, we propose to enhance it with a complex event
processor, addressable through a new Domain-Specific Language (DSL). The
DSL focuses on pre-identified uses and their combinations, relying on end-users
oriented knowledge. This allows to reduce lengths of queries an end-user can
express as they are able to manipulate nothing more than what he considers to
be relevant information. Moreover, decision making can be automated in order
to address actuators specific features in addition to sensors data gathering.

The remainder of the paper is organized as follows. Section 2 studies existing
work about data semantics and CEP. In Sect. 3 we draw up the motivation for
integrating CEP with SensorScript. Sections 4 and 5 introduce the model and
the language which ensure complex event processing. Section 6 evaluates the lan-
guage concision and the underlying query management through a demonstration
scenario. Finally, Sect. 7 concludes by presenting future work.

2 Related Work

Data identification has been a prominent track of research over the years. We can
divide the existing work into two categories: data semantical enrichment on one
hand; context aware data stream mining on the other hand. Several publications
about context awareness for the IoT are discussed in [13]. In this paper we will
focus on solutions which provide real-time processing of the data stream, as it
is a strong requirement for complex event processors.

In [18] data semantics are provided by a separated knowledge base, which
is a Resource Description Framework [9] (RDF) store. Thus event queries mix
raw events extracted from the data stream and background knowledge retrieved
from the knowledge base. That allows to establish relationships between the
raw events. RDF knowledge base access is done through SPARQL [20] queries.

198 A. Garnier et al.

This inevitably leads to hybrid queries, which mix SPARQL syntax with complex
event paradigm. Use of such semantically enriched complex events is addressed
in [17]. It relies on the notion of event stream from which raw data is pulled then
pushed back after semantical enrichment and event composition. Furthermore, a
partitioning of enriched data stream mining operators is proposed for both CEP
(e.g. filters or aggregators) and knowledge operators.

SCONSTREAM [10] aims at providing spatial enrichment over the data for
the specific case of users tracking in home automation. Queries continually parse
the raw data to generate spatialized events when triggered. UbiQuSE [16] pro-
poses a more generic contextual framework for data mining queries. It relies on
XML formalism for context-enriched data. Thus it uses XQuery [2] to express
queries that address both real-time and historical data querying. This broadens
the use of the DBMS, as it stores both contextual and historical data. These
two solutions however rely on pre-existing solutions to bundle both data min-
ing (being real-time or periodic) and context-awareness, which leads to hybrid
querying over the data. COPAL [11] aims at providing a DSL to broaden the
notion of context from sole location to handle processing environments in the
case of distributed processing. This DSL provides a complex event processor in
order to compose events through a declarative, and quite verbose, developer-
centric syntax, in the sense that a user has to learn the underlying model before
composing events. A common issue of these solutions remains in the context
storage, generally based on a decoupled DBMS, which impacts the simplicity
of queries. The runtime additional cost of addressing the DBMS and couple its
information with the raw data is addressed by none of these publications.

Concerning CEP languages, other contributions mainly aimed at adapting
Structured Query Languages (SQL) to manage data streams and event composi-
tion. CQL [1] is one of the first to do so. The change of paradigm from relational
databases to complex event processing focuses on the notion of a relation. A
relation is addressed in the from clause, like tables in SQL, and mapped over
time windows to a finite set of data from. Other than time windows, partitioned
windows can also be expressed, providing a partition over the data stream similar
to the SQL group by clause. TinyDB [12] provides time windows with a dedi-
cated additional clause rather than a mapping over data stream. It also allows
to specify a recovery rate for queries execution, jeopardizing efficiency as there is
no guarantee that the data will be updated at least the same rate of the accesses
defined in queries. Aiming at providing more flexibility over windows specifi-
cation, Esper [6] provides the notion of pattern which orchestrates both time
windows and data filtering with boolean operators. WildCAT [5] aims at cou-
pling Esper Processing Language (EPL) with data context awareness through
hierarchical contexts definition. However, this semantical enrichment of data
operates as on overlay to Esper rather than being fully integrated within EPL.

Another track focused on declarative event specification. AmbientTalk [19]
uses this concept for the actors within mobile ad-hoc networks, as a mean to
leverage the problematics specific to these infrastructures. TESLA [4] formal-
izes an event specification language. Following AmbientTalk, REScala [15] and

Bringing Complex Event Processing into Multitree Modelling of Sensors 199

EventCJ [8] integrate such a formalism within object-oriented and functional
programming. If these languages depart from traditional SQL, they however
concentrate on addressing a larger scope rather than simplifying their syntax.

3 Motivation

SensorScript was based on a previous work: btrScript [14]. btrScript is a datacen-
ter monitoring DSL inspired by XPath [3], in particular its queries which allow
implicit pathfinding within a tree. Indeed the DSL is backed to two static trees to
address both virtualized and physical aspects of a modern datacenter. In [7], we
altered the underlying model to manage any number of configurable intricated
trees, which allows SensorScript to address the diversity of sensor networks. The
trees intrication of the model will be detailed in Sect. 4.

The benefits of such a modelling are two-fold. On one hand it offers a good
semanticization over the data by integrating it within tree contexts. On the other
hand, queries remain concise as the model still relies on trees. Hence, we consider
these features make SensorScript a strong candidate to be integrated within a
complex event processor, as existing CEP languages suffer from verbose queries.
This led us to deeply alter SensorScript data and query management, and to
rethink key components of the DSL grammar.

4 Model

The model consists of two parts, which are the data modelling and the complex
event processor. The data modelling consists on a multitree modelling of the
data in which each tree corresponds to an end-user field of expertise, or a context.
Figure 1 illustrates a multitree model with five different contexts. These contexts
revolve around a conference site, with lighting monitoring and automation on
one hand, and presentations’ affluence tracking system on the other hand. These
use cases are described in more detail through some examples in Sect. 6.

Fig. 1. Example of a multitree model

200 A. Garnier et al.

To set up complex event processing, we propose to change the paradigm on
which is based traditional data management. Instead of considering the data as
persistent, we assume data streams on which queries are considered persistent.
These queries must be constantly aware of any data update. To achieve that,
a naive solution would be to rely on a periodic queries-executing process. This
is however unsatisfactory because of higher costs in terms of both efficiency
and responsiveness, according to the data stream rate. More realistically, both
problems will happen at different times, due to the various underlying networks
which are not all reliable, and the various number of queries impacting their
execution time. Hence, the query model must react dynamically to data changes.

Fig. 2. Query object model

We lean on the multitree model to lever-
age data accessibility. The hierarchy of nodes
within the multitree can and will be accessed
through the queries, as it provides mean-
ingful information about contexts, therefore
users specific knowledges. As a matter of fact,
queries results are updated on real time with
the data stream, but also with changes of the
multitree structure. Thus the multitree sets
a semantical structure down. Queries rely
on these semantics in order to access nodes
based on the constitutive contexts informa-
tion of the multitree model. To achieve that,
we propose the query object model as illus-
trated in the UML class diagram of Fig. 2.

In our query object model, a query con-
sists of three main concepts, which are the node selection, on which can be
expressed a condition, and the optional access to selected node attributes or
methods.

4.1 Selections

An arbitrary amount of sub-selections can be specified, as well as conditions
optionally filter the nodes in each selection or sub-selection. Considering that
nodes can be added, moved, removed, and conditions on them can change, selec-
tions will evolve with each change impacting its nodes.

4.2 Conditions

Conditions allow to filter the selected nodes. Two kinds of conditions can be
expressed:

– conditions on attributes (specified by name): for each node of the selection, a
comparison is done either between an access and a constant, or between two
accesses over the node;

Bringing Complex Event Processing into Multitree Modelling of Sensors 201

– conditions on connected nodes (specified by type): for each node of the selec-
tion, a boolean set operation is done on all the nodes of the given type that
are accessible, upwards or downwards, from this node; for instance, we can
restrict the selection of all sockets to the set of sockets with no powermeter.

4.3 Accesses

Accesses are made on each node of the selection, and can be delivered as is or
aggregated (thus the Aggregation access inheritance).

5 Language

The main objective of the SensorScript language is to allow users to express
CEP queries about their own field of expertise, regardless of the complexity of
the whole underlying multitree model. As we saw in Sect. 2, existing CEP DSL
derive from SQL, thus require users to know more of the underlying model than
what should be needed. In contrast, SensorScript comes with a language which
leans on the multitree model and takes advantage of the relations between its
nodes to provide implicit connections among them, regardless of the distance
separating them in the model. As we want to keep the language as concise as
possible, we choose to use character operators rather than english words based
syntax, which we hope significantly reduces the verbosity of queries. Naturally,
the language reflects the selection, access and condition concepts constituting a
query as presented in Sect. 4. It is essential however to keep the expression of
these three concepts as simple as possible.

Listing 1. SensorScript simplified grammar

1: Query → Selection (.Access)? |

Selection :Selection .AggregationMethod

2: Selection → AtomicSelection ({Condition })?(/Selection)?
3: Access → SimpleAccess | AggregationMethod

4: Condition → SimpleAccess Comparator SimpleAccess |

Condition BooleanOperator Condition |

(Condition , Duration)

5: SimpleAccess → Attribute | SimpleMethod | Constant

6: Comparator → = | != | < | > | <= | >=

7: BooleanOperator → & | | | ;

8: AtomicSelection → NodeName | NodeType

Non-terminal symbols

Grammar description operators

Terminal symbols

Considering these points, we propose a simplified grammar of the language
in Listing 1. We will go through the grammar rule by rule, following the non-
terminals as they occur within rules. Rule 1 reflects that a query is either a
selection or an access (simple or aggregated) over a selection.

202 A. Garnier et al.

5.1 Selection

The second rule shows that sub-selections over a selection are expressed by the
slash operator between super and sub-selections. Selections are expressed either
on node types or node names. For this reason, not only both names and types
are unique, but also a name cannot be equal to a type. Considering a sensor
network modelled with Fig. 1, the query listing the breakers of room 42, for
instance, would be: room42/breaker.

5.2 Condition

Rule 2 in Listing 1 also introduces the expression of conditions, within braces
operators, over selections. As shown in rule 4, conditions are either simple, con-
sisting of comparisons on accesses, or composed of sub-conditions by boolean
operators.

Besides traditional and and or operators, we introduce here the sequence
operator “;”, so that the condition <selection>{A;B} ensures that conditions A
then B are met on nodes of the selection. That does not mean that B has to
match after A is satisfied, but that, whether or not B was already satisfied when
A matches, B must be checked chronogically after A matches for the condition
to be met.

Another aspect of time management appears with time conditions, which
are simply conditions checked over a duration of time, both of them expressed
between parentheses and separated by a comma.

As an example, we consider that one wants to detect the room 42 powermeters
that go through an electrical overload. This can be described as the powermeters
that have a power consumption that outnumbers their capacity just before it
drops to zero, which can be expressed with this query:

room42/powermeter{power > capacity; power = 0}

As preventing an electrical overload seems to be a better solution, one could
create an alert of when a powermeter is soon to be overloaded, for instance when
its power consumption remains close to its capacity (with a minimum charge of
90 %) for at least one hour:

room42/powermeter {(power > capacity * 0.9, ’1 h’)}

5.3 Access

Accesses are done on each node of a selection, through the dot operator. The
access of a query occurs on two occasions on runtime:

– when a node is added to the selection, access on it occurs systematically;
– for a node already in the selection, each node update that affects the access

will trigger it.

Bringing Complex Event Processing into Multitree Modelling of Sensors 203

Rules 3 and 5 in Listing 1 show that they exist several possible accesses on nodes:

Attribute access for each node of a selection, the query will wait for the given
attribute to be updated. For instance, to be notified of each power update from
powermeters of room 42: room42/powermeter.power.
Constant access this access allows to express constants, which is mostly use-
ful for conditional expressions. As shown in rule 4, accesses within conditions
are expressed without the dot operator. Considering our previous example, this
corresponds to the zero in this query:
room42/powermeter{power > capacity; power = 0}
Method access for each node of a selection, the query will recall the method
for each node update that might affect the method result. This will exclusively
happen for method with parameters that correspond to attribute accesses. For
methods with no parameter or only constant parameters, accesses are only pro-
vided when nodes are added to the selection and for these nodes only. Two types
of methods exist:

– simple methods: similar to attributes accesses, they are called separately for
each node of the selection. For instance, this is the get method, which is
equivalent to an attribute access: /room42/powermeter.get(power)

– aggregation methods: on the contrary, aggregation methods provide a com-
putation which occur on all nodes from the selection to produce one result
only; an update on one node of the selection, as well as changes of the selec-
tion itself, will trigger the method to be called. As an example, let’s consider
that one wants to access the total consumption from room 42 powermeters:
room42/powermeter.sum(power).

5.4 Foreach

A particular aggregation use case allows to partition the selection to provide
a behavior similar to the group by clause in MySQL. This is what we call the
foreach aggregation method access, expressed by the colon operator in rule 1.
To explain how it is expressed, we will consider this example and its equivalent
in SQL:

We see here two selections around the colon operator, which are breakers
from room 42 for the first one, powermeters for the second one. Besides, the
sum method is called on the power attribute from powermeters. De facto, this
query will follow power updates for each room 42 powermeter. But rather than
summing the whole power consumption of the room, it will sum the power

204 A. Garnier et al.

consumption for each breaker accessible from the room 42, considering sock-
ets within a same room are attached to different breakers.

So, if we consider a query of the form A:B.method(access), considering that A
and B are selections, this means that for each node N from the selection A, the
specified aggregation method will be called on nodes from selection B accessible
from N (or the nodes corresponding to the N/B).

The difference in the concept’s name with SQL is to reflect the way it is
expressed and avoid confusion: the group by clause precedes an attribute, the
foreach operator follows a node selection.

6 Evaluation

This section proposes to evaluate the language concision through some examples
over the model from Fig. 1 and compare them with similar examples from the
literature. Then we propose a scenario which reflects a more complex yet realistic
use of the language. Both approaches focus only on syntactic concision of the
language, performance evaluation will be subject to future work. Futhermore, we
will specifically look at timed conditions management as they bring an additional
constraint over the model dynamicity. Finally, we will highlight the limitations
of SensorScript in terms of features, compared to other CEP languages.

6.1 Comparison with CQL

In the model from Fig. 1, more specifically around the track, speaker and par-
ticipant contexts, we consider a conference for which name tags distributed to
every attendee embed an RFID chip. For each presentation, they are invited to
check in by swiping their name tag in an RFID reader. Speakers (which is a role
that an attendee assumes for a presentation) also check in when beginning their
presentation. Each room of the conference has its own RFID reader. Technically,
the data stream is flowing with the presence of attendees in any of the conference
rooms.

To keep things as simple as possible, we concentrate here on the three afore-
mentioned contexts:

– the participant context, for attendees who attend a presentation;
– the speaker contexts, for the attendee who holds a presentation;
– the track contexts, that reflects the fact that presentations are part of a track

of the conference.

These three contexts are directly inspired from the example of CQL [1]. This
example considered an auction system, for which we propose the mapping Table 1
in order to stick to our conference tracking system.

Table 2 gives a comparison between SensorScript and CQL queries based on
the aforementioned mapping.

Bringing Complex Event Processing into Multitree Modelling of Sensors 205

Table 1. Mapping to CQL example

Conference attendance monitoring model Auction system model

Attendee User

Presentation Auction

Attendance Bid

Country U.S. state

Participant context Bidding context

Speaker context Seller context

Track context Auction context

1. The first query allows to select presentations that occur after noon. It is
conceptually very similar to the CQL query, as the condition between braces
corresponds to the one declared in the where clause.

2. This second query aims at maintaining a running count of attendees to tracks
1 and 2 over the last hour. There is an important difference here as time
windows can only be specified within conditions in SensorScript. This results
in two conditions specified over the two sub-selections of the whole selection.

3. With this query we want to maintain a list of the current presentations.
The main difference here is that SensorScript relies on attributes updated
with the data stream over the nodes of the multitree, where CQL backs to
table-like streams to manage the presentation state (ongoing or over).

4. Given that we want here to list the present attendees, we only need to add
a sub-selection to the previous query with SensorScript, considering that a
present attendee is an attendee that checked in a current presentation. On the
other hand, CQL proposes a whole new, though significantly longer, query,
based once again on streams that reflect presence or absence of attendees.

5. As presentations can be rescheduled during the conference, we consider now
that speakers check-ins affect directly the state of presentations. This allows
us to get a list of non-keynote presentations, as we can follow the presenta-
tions that started then stopped in a window range of less than 35 min. We
see here that the pathfinding mechanism of the language allows to get rid of
any explicit join condition.

6. This last query keeps the age of the youngest speaker for completed pre-
sentations. An interesting point here relies on the multitree structure. As
we saw in Fig. 1, the graph follows two routes from attendee to attendance,
depending on whether the attendee is the speaker or assists to the considered
presentation. In fact, the multitree allows partially ordered sets (or posets) in
the graph, as long as absolute order can be decided between every couple of
types from a poset. Actually, we rely on this property here to get the list of
speakers. When following the orientation of connections between types, the
nearest matching nodes are selected. Therefore, for presentations attendee

206 A. Garnier et al.

Table 2. Comparison with CQL

SensorScript CQL

1. presentation{starttime > ’12:00’ Select * From Ongoing Where

starttime > ’12:00’

2 track{name.in(’tr1’, ’tr2’)}/
attendance{checkintime > now()

- 3600}.sum(1)

Select Count(*) From

attendance[Range 1 Hour] Where

trackname In (’tr1’, ’tr2’)

3. presentation {starttime +

duration > now()}
Select * From Ongoing Where pres id

Not In (Select * From Over)

4. presentation{startime + duration

> now()}/attendee
Select name, state From Present

[Partition By attendee id Rows 1]

Where attendee id Not In (Select

* From Absent)

5. presentation{(status=’ongoing’ ;

status=’over’, ’35 min’)}
Select Istream(Over.pres id) From

Over[Now], Ongoing[Range 35 Min]

Where Over.pres id =

Ongoing.pres id

6. presentation{status=’over’}/
attendee.min(age)

Select Istream(Over.pres it, A.age)

From Over[Now], (Select

attendee id, age From attendee)

[Partition by pres id Rows 1] as

A Where Over.pres id = A.pres id

nodes, this is the speaker. That said, if one wants to look at the age of
the youngest audience member of completed presentations, this can be done
with the following query, as attendance nearest attendee nodes are accessed
through the participant context rather than the speaker context:

presentation{status=’over’}/attendance/attendee.min(age)
In comparison, CQL requires both a nested condition and an explicit join.

As we can see, SensorScript expressions minimize the concepts that are spe-
cific to the language. In fact, selections, accesses and conditions are specified
by operators rather than english words. Moreover, it simplifies multi-stream
selections based on the implicit link provided between nodes by the multitree,
compared to union specifications of SQL. Finally, conditions and timed condi-
tions are expressed the same way, as the language was designed to implement
them, whereas CQL introduces a new syntax dedicated to time windows.

6.2 Rooms Lighting Scenario

We propose here to consider the whole model from Fig. 1 in order to orchestrate
all the sensors, aiming at automating the conference rooms lighting management.
These different sensors allow to monitor light, participants presence and power

Bringing Complex Event Processing into Multitree Modelling of Sensors 207

consumption. The room lighting management addresses a typical problematic
of home automation, which brings our example closer to both [11,17] examples.
We also consider that blinds and powermeters are equipped with actuators. This
will allow us to illustrate SensorScript’s actions specification in order to address
functions of these actuators.

In this scenario we will consider that ambient light of the conference has to
be adapted according to several concerns:

– First of all, to save energy we would like the lighting of room to automatically
turn off when all attendees have left it:

/room{!has(attendee)}/ lighting/powermeter.turnoff ()

We see in the model that two paths exist between the room and attendee
types. However, only one condition is required here. In fact, on one hand,
if a speaker is found using the shortest path, the condition is false without
having to check the assistance using the longer path. On the other hand, if
the room has no speaker but still some people in the audience, listing these
attendees will be the only path existing within the model, therefore it will be
the shortest one. This saves us having to express and test the two different
accesses within the condition.

– Second, for rooms with open blinds, when the daylight (measured by an out-
side light sensor named daylight for each room) falls below a certain threshold,
we want the blinds to close and, if the room is not empty, the inside light to
turn on. This is provided by the following two queries:

daylight{light < out_threshold }/ blinds.close ()

daylight{light < out_threshold }/ attendee/room/lighting/

powermeter.turnon ()

As a non-empty room is a room bound to at least one attendee, it is more
efficient here to use implicit filtering on sub-selections (the /attendee/room/

part of the query) rather than an explicit condition on the rooms.
– As ambient light, i.e. the light measured within a room, can incommode the

readability of projected slides during a presentation, the following two queries
propose to close the blinds, if open, and turn off the lights, if required, when
a presentation starts:

presentation{status = ’scheduled ’ ; status = ’ongoing ’}/

blinds{status = ’closed ’}. close ()

presentation{status = ’scheduled ’ ; status = ’ongoing ’}/

lighting/powermeter{status = ’on ’}. turnoff ()

– Finally, we want the blinds to open or the light to turn on, according to
daylight, when a presentation is over:

presentation{status = ’ongoing ’ ; status = ’over ’}/

daylight{light > out_threshold }/ blinds.open()

presentation{status = ’ongoing ’ ; status = ’over ’}/

daylight{light <= out_threshold }/ lighting/

powermeter.turnon ()

208 A. Garnier et al.

As we saw, actuators functions are called as methods on nodes within the
language. The method specification is provided through inheritance over the
Node class in the system, which implements the multitree nodes. For instance,
Listing 2 illustrates the way to specify the open method for blinds. The system
is able to detect classes that extend the Node class, which allows it to use these
classes to instantiate according typed nodes, blinds in this example.

Listing 2. Action specification example

public class Blinds extends Node {

[...]

@SensorScriptMethod

public boolean open() {

// call to actuator switch to open the blinds

}

}

6.3 Limitations

CQL [1], TinyDB [12] and Esper [6] take advantage of SQL to address both
dynamic and persistent data. Considering SensorScript is designed over data
streams only and ensures real-time processing of data, we could not afford to
keep a history over the data. In fact, even timed conditions do not require a
history to be checked. As we only have to make sure that the condition holds for
the specified time, this is the unique information to keep during the lifetime of
the condition, which is also discarded as soon as the condition is unsatisfied or
the time is over. However, we do not aim at replacing traditional DBMS, that
can be used in parallel, whether storing the whole data stream or data prefiltered
by SensorScript.

Languages as AmbientTalk [19], REScala [15] or EventCJ [8] aim at integrat-
ing event specification into existing programming paradigms. In this sense, their
scope extends far beyond the one studied here, as we focus on the multitree only
as the underlying model of the language. Nevertheless this limitation is what
gives SensorScript its concise language based on implicit model parsing.

7 Conclusions and Future Work

We presented here the evolution of SensorScript towards a language for complex
event processing dedicated to sensor networks. While the model mainly relies on
previous works, we highlighted how the new language builds on the multitree in
order to provide complex event processing mechanisms. We are able to balance
the syntactic concision of the language with a real-time complex event processor
for sensor networks. By providing flexible selections over the nodes, with the
possibility to filter them on complex conditions, possibly over a time window,
we offer a strong alternative to traditional SQL used in the literature. Moreover,
SensorScript does not focus only on data access. In fact it provides the possibility

Bringing Complex Event Processing into Multitree Modelling of Sensors 209

to widen the scope of the methods accessible on nodes to other features than
sensors monitoring, including but not limited to addressing actuators functions.
Finally we showed that SensorScript is able to address examples proposed in
the literature, with simpler results than SQL, while highlighting its limitations,
especially on history management.

Future works will focus on deploying SensorScript over a sensor network
spread over two distant sites. This will allow us to test both scalability and
performance. Another lead would focus on interfacing with a traditional DBMS
in order to integrate history management.

References

1. Arasu, A., Babu, S., Widom, J.: CQL: a language for continuous queries over
streams and relations. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol.
2921, pp. 1–19. Springer, Heidelberg (2004)

2. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.,
Stefanescu, M.: XQuery 1.0: an XML query language (2002)

3. Clark, J., DeRose, S., et al.: Xml path language (xpath) version 1.0 (1999)
4. Cugola, G., Margara, A.: Tesla: a formally defined event specification language. In:

Proceedings of the Fourth ACM International Conference on Distributed Event-
Based Systems, pp. 50–61. ACM (2010)

5. David, P.C., Ledoux, T.: Wildcat: a generic framework for context-aware appli-
cations. In: Proceedings of the 3rd International Workshop on Middleware for
Pervasive and Ad-hoc Computing, pp. 1–7. ACM (2005)

6. EsperTech: Esper (2015). http://www.espertech.com/esper
7. Garnier, A., Pottier, R., Menaud, J.M.: Sensorscript: a domain-specific language

for sensor networks. In: International Conference on Future Internet of Things and
Cloud (FiCloud-2015) (2015)

8. Kamina, T., Aotani, T., Masuhara, H.: Eventcj: a context-oriented program-
ming language with declarative event-based context transition. In: Proceedings
of the Tenth International Conference on Aspect-Oriented Software Development,
pp. 253–264. ACM (2011)

9. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and
abstract syntax (2006)

10. Kwon, O., Song, Y.S., Kim, J.H., Li, K.J.: Sconstream: a spatial context stream
processing system. In: 2010 International Conference on Computational Science
and Its Applications (ICCSA), pp. 165–170. IEEE (2010)

11. Li, F., Sehic, S., Dustdar, S.: Copal: An adaptive approach to context provisioning.
In: 2010 IEEE 6th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), pp. 286–293. IEEE (2010)

12. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. (TODS)
30(1), 122–173 (2005)

13. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the internet of things: a survey. IEEE Commun. Surv. Tutorials 16(1),
414–454 (2014)

14. Pottier, R., Menaud, J.M.: Btrscript: a safe management system for virtual-
ized data center. In: The Eighth International Conference on Autonomic and
Autonomous Systems, ICAS 2012, pp. 49–56 (2012)

http://www.espertech.com/esper

210 A. Garnier et al.

15. Salvaneschi, G., Hintz, G., Mezini, M.: Rescala: Bridging between object-oriented
and functional style in reactive applications. In: Proceedings of the 13th Interna-
tional Conference on Modularity, pp. 25–36. ACM (2014)

16. Shaeib, A., Cappellari, P., Roantree, M.: A framework for real-time context provi-
sion in ubiquitous sensing environments. In: 2010 IEEE Symposium on Computers
and Communications (ISCC), pp. 1083–1085. IEEE (2010)

17. Textor, A., Meyer, F., Thoss, M., Schaefer, J., Kroeger, R., Frey, M.: An architec-
ture for semantically enriched data stream mining. In: Bhulai, S., Zernik, J., Dini,
P. (eds.) Proceedings of the First International Conference on Data Analytics,
Barcelona, Spain (2012)

18. Teymourian, K., Paschke, A.: Enabling knowledge-based complex event processing.
In: Proceedings of the 2010 EDBT/ICDT Workshops, p. 37. ACM (2010)

19. Van Cutsem, T., Mostinckx, S., Boix, E.G., Dedecker, J., De Meuter, W.: Ambi-
enttalk: object-oriented event-driven programming in mobile ad hoc networks. In:
XXVI International Conference of the Chilean Society of Computer Science, SCCC
2007, pp. 3–12. IEEE (2007)

20. W3C: SPARQL 1.1 Overview. (2013). http://www.w3.org/TR/sparql11-overview/

http://www.w3.org/TR/sparql11-overview/

	Bringing Complex Event Processing into Multitree Modelling of Sensors
	1 Introduction
	2 Related Work
	3 Motivation
	4 Model
	4.1 Selections
	4.2 Conditions
	4.3 Accesses

	5 Language
	5.1 Selection
	5.2 Condition
	5.3 Access
	5.4 Foreach

	6 Evaluation
	6.1 Comparison with CQL
	6.2 Rooms Lighting Scenario
	6.3 Limitations

	7 Conclusions and Future Work
	References

