
Choreographies in Practice

Lúıs Cruz-Filipe(B) and Fabrizio Montesi

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

{lcf,fmontesi}@imada.sdu.dk

Abstract. Choreographic Programming is a development methodology
for concurrent software that guarantees correctness by construction. The
key to this paradigm is to disallow mismatched I/O operations in pro-
grams, and mechanically synthesise process implementations.

There is still a lack of practical illustrations of the applicability of
choreographies to computational problems with standard concurrent
solutions. In this work, we explore the potential of choreographic pro-
gramming by writing concurrent algorithms for sorting, solving linear
equations, and computing Fast Fourier Transforms. The lessons learned
from this experiment give directions for future improvements of the par-
adigm.

1 Introduction

Choreographic Programming is an emerging paradigm for developing concur-
rent software based on message passing [16]. Its key aspect is that programs
are choreographies – global descriptions of communications based on an “Alice
and Bob” security protocol notation. Since this notation disallows mismatched
I/O actions, choreographies always describe deadlock-free systems by construc-
tion. Given a choreography, a distributed implementation can be projected auto-
matically (synthesis) onto terms of a process model – a transformation called
EndPoint Projection (EPP) [2,3]. A correct definition of EPP yields a
correctness-by-construction result: since a choreography cannot describe dead-
locks, the generated process implementations are also deadlock-free. Previous
works presented formal models capturing different aspects of choreographic pro-
gramming, e.g., web services [2,12], asynchronous multiparty sessions [3], run-
time adaptation [9], modular development [18], protocol compliance [3,4], and
computational expressivity [7]. Choreography models have also been investigated
in the realms of type theory [14], automata theory [11], formal logics [5], and
service contracts [1].

Despite the rising interest in choreographic programming, there is still a
lack of evidence about what nontrivial programs can actually be written with
this paradigm. This is due to its young age [17]. Indeed, most works on lan-
guages for choreographic programming still focus on showcasing representative

Supported by CRC (Choreographies for Reliable and efficient Communication soft-
ware), grant DFF–4005-00304 from the Danish Council for Independent Research.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 114–123, 2016.
DOI: 10.1007/978-3-319-39570-8 8

Choreographies in Practice 115

toy examples (e.g., [2,3,6,12,16,18]), rather than giving a comprehensive prac-
tical evaluation based on standard computational problems.

In this work, we contribute to filling this gap. Our investigation uses the
language of Procedural Choreographies (PC) [8], summarised in Sect. 2, which
extends previous choreography models with primitives for parameterised pro-
cedures. Like other choreography languages (e.g., [3,18]), PC supports implicit
parallelism: non-interfering communications can take place in any order. We pro-
vide an empirical evaluation of the expressivity of PC, by using it to program
some representative and standard concurrent algorithms: Quicksort (Sect. 3),
Gaussian elimination (Sect. 4), and Fast Fourier Transform (Sect. 5). As a con-
sequence of using choreographies, all these implementations are guaranteed to
be deadlock-free. We also illustrate how implicit parallelism has the surpris-
ing effect of automatically giving concurrent behaviour to traditional sequential
implementations of these algorithms. Our exploration brings us to the limits
of the expressivity of PC, which arise when trying to tackle distributed graph
algorithms (Sect. 6), due to the lack of primitives for accessing the structure of
process networks, e.g., broadcasting a message to neighbouring processes.

2 Background

In this section, we recap the language and properties of Procedural Choreogra-
phies (PC). We refer the reader to [8] for a more comprehensive presentation.

Procedural Choreographies. The syntax of PC is given below:

C :: = η;C | I;C | 0 η :: = p.e -> q.f | p -> q[l] | p start q | p : q <-> r
D :: = X(q̃) = C,D | ∅ I :: = if p.e thenC1 elseC2 | X〈p̃〉 | 0
A procedural choreography is a pair 〈D, C〉, where C is a choreography and

D is a set of procedure definitions. Process names, ranged over by p, q, r, . . .,
identify processes that execute concurrently. Each process p is equipped with a
memory cell storing a single value of a fixed type. In the remainder, we omit
type information since they can always be inferred using the technique given
in [8]. Statements in a choreography can either be communication actions (η)
or compound instructions (I), and both can have continuations. Term 0 is the
terminated choreography, often omitted, and 0;A is used only at runtime.

Processes communicate (synchronously) via direct references (names) to each
other. In a value communication p.e -> q.f , process p evaluates expression e and
sends the result to q; e can contain the placeholder c, replaced at runtime with
the data stored at p. When q receives the value from p, it applies to it the
(total) function f and stores the result. The body of f can also contain c, which
is replaced by the contents of q’s memory. Expressions and functions are written
in a pure functional language, left unspecified.

In a selection p -> q[l], p communicates to q its choice of label l.
In term p start q, process p spawns the new process q, whose name is bound in

the continuation C of p start q;C. After executing p start q, p is the only process

116 L. Cruz-Filipe and F. Montesi

who knows the name of q. This knowledge is propagated to other processes by
the action p : q <-> r, read “p introduces q and r”, where p, q and r are distinct.

In a conditional term if p.e thenC1 elseC2, process p evaluates expression e
to choose between the possible continuations C1 and C2.

The set D defines global procedures that can be invoked in choreographies.
Term X(q̃) = C defines a procedure X with body C, which can be used anywhere
in 〈D, C〉 – in particular, inside the definitions of X and other procedures. The
names q̃ are bound to C, and are assumed to be exactly the free process names
in C. The set D contains at most one definition for each procedure name. Term
X〈p̃〉 invokes procedure X, instantiating its parameters with the processes p̃.

The semantics of PC, which we do not detail, is a reduction semantics that
relies on two extra elements: a total state function that assigns to each process the
value it stores, and a connection graph that keeps track of which processes know
(are connected to) each other [8]. In particular, processes can only communicate if
there is an edge between them in the connection graph. Therefore, choreographies
can deadlock because of errors in the programming of communications: if two
processes try to communicate but they are not connected, the choreography gets
stuck. This issue is addressed by a simple typing discipline, which guarantees that
well-typed PC choreographies are deadlock-free [8].

Procedural Processes. Choreographies in PC are compiled into terms of the
calculus of Procedural Processes (PP), which has the following syntax:

B :: = q!e;B | p?f ;B | q!!r;B | p?r;B | q ⊕ l;B | p&{li : Bi}i∈I ;B | 0
| start q � B2;B1 | if e thenB1 elseB2;B | X〈p̃〉;B | 0;B

N,M :: = p �v B | N |M | 0 B :: = X(q̃) = B,B | ∅

A term p �v B is a process, where p is its name, v is the value it stores, and
B is its behaviour. Networks, ranged over by N,M , are parallel compositions
of processes, where 0 is the inactive network. Finally, 〈B, N〉 is a procedural
network, where B defines the procedures that the processes in N may invoke.

We comment on behaviours. A send term q!e;B sends the evaluation of
expression e to process q, and then proceeds as B. Dually, term p?f ;B receives
a value from process p, combines it with the value in memory cell of the process
executing the behaviour as specified by f , and then proceeds as B. Term q!!r
sends process name r to q and process name q to r, making q and r “aware”
of each other. The dual action is p?r, which receives a process name from p
that replaces the bound variable r in the continuation. Term q ⊕ l;B sends the
selection of a label l to process q. Selections are received by the branching term
p&{li : Bi}i∈I (I nonempty), which receives a selection for a label li and proceeds
as Bi. Term start q � B2;B1 starts a new process (with a fresh name) executing
B2, proceeding in parallel as B1. Other terms (conditionals, procedure calls, and
termination) are standard; procedural definitions are stored globally as in PC.

Term start q � B2;B1 binds q in B1, and p?r;B binds r in B. We omit the
formal semantics of PP, which follows the intuitions given above.

Choreographies in Practice 117

EndPoint Projection (EPP). In [8] we show how every well-typed choreog-
raphy can be projected into a PP network by means of an EndPoint Projection
(EPP). EPP guarantees a strict operational correspondence: the projection of a
choreography implements exactly the behaviour of the originating choreography.
As a consequence, projections of typable PC terms never deadlock.

3 Quicksort

In this section, we illustrate PC’s capability of supporting divide-and-conquer
algorithms, by providing a detailed implementation of (concurrent) Quicksort.

We begin by defining procedure split, which splits the (non-empty) list
stored at p among three processes: q< , q= and q> . We assume that all processes
store objects of type List(T), where T is some type, endowed with the follow-
ing constant-time operations: get the first element (fst); get the second ele-
ment (snd); check that the length of a list is at most 1 (short); append an
element (add); and append another list (append). Also, fst<snd and fst>snd
test whether the first element of the list is, respectively, smaller or greater than
the second. Procedure pop2 (omitted) removes the second element from the list.

We write p -> q1,...,qn[l] as an abbreviation for the sequence of selec-
tions p -> q1[l]; ...; p -> qn[l]. We can now define split.
split(p, q< , q= , q>) =

if p.short then p -> q< , q= , q> [stop]; p.fst -> q= .add
else if p.fst <snd then p -> q< [get]; p.snd -> q< .add; p -> q= , q> [skip]

else if p.fst >snd then p -> q> [get]; p.snd -> q> .add; p -> q< , q= [skip]
else p -> q= [get]; p.snd -> q= .add; p -> q< , q> [skip]

; pop2 <p>; split <p, q< , q= , q> >

When split terminates, we know that all elements in q< and q> are respec-
tively smaller or greater than those in q= .1 Using split we can implement a
robust version of Quicksort (lists may contain duplicates), the procedure QS
below. We write p start q1,..., qn for p start q1;...; p start qn. Note
that split is only called when p stores a non-empty list.
QS(p) = if p.short then 0

else p.start q< , q= , q> ;
split <p, q< , q= , q> >; QS < q< >; QS < q> >;
q< .c -> p.id; q= .c -> p.append; q> .c -> p.append

Procedure QS implements Quicksort using its standard recursive structure.
Since the created processes q< , q= and q> do not have references to each other,
they cannot exchange messages, and thus the recursive calls run completely in
parallel. Applying EPP, we get the following process procedures (among others).
split_p(p, q< , q= , q>) =

if short then q<⊕stop; q=⊕stop; q>⊕stop; q= !fst
else if fst <snd then q<⊕get; q< !snd; q=⊕skip; q>⊕skip

else if fst >snd then q>⊕get; q> !snd; q<⊕skip; q=⊕skip
else q=⊕get; q= !snd; q<⊕skip; q>⊕skip

; pop2 <p>; split_p <p, q< , q= , q> >

split_ q< (p,q) = p&{stop: 0, get: p?add;split_ q< (p,q), skip: split_ q< (p,q)}

1 The selections of label skip are required for projectability, see [8].

118 L. Cruz-Filipe and F. Montesi

QS_p(p) = if small then 0
else (start q< � split_ q< <p, q< >; QS_p < q< >; p!c);

(start q= � split_ q= <p, q= >; p!c);
(start q> � split_ q> <p, q> >; QS_p < q> >; p!c);
q< ?id; q= ?append; q> ?append

4 Gauss Elimination

Let Ax = b be a system of linear equations in matrix form. We define a proce-
dure gauss that applies Gaussian elimination to transform it into an equivalent
system Ux = y, with U upper triangular (so this system can be solved by direct
substitution). We use parameter processes aij , with 1 ≤ i ≤ n and 1 ≤ j ≤ n+1.
For 1 ≤ i, j ≤ n, aij stores one value from the coefficient matrix; ai,n+1 stores
the independent term in one equation. (Including b in the coefficient matrix sim-
plifies the notation.) After execution, each aij stores the corresponding term in
the new system. We assume A to be non-singular and numerically stable.

This algorithm cannot be implemented in PC directly, as gauss takes a
variable number of parameters (the aij). However, it is easy to extend PC so
that procedures can also take process lists as parameters, as we describe.

Syntax of PC and PP. The arguments of parametric procedures are now lists
of process names, all with the same type. These lists can only be used in
procedure calls, where they can be manipulated by means of pure functions
that take a list as their only argument. Our examples use uppercase letters
to identify process lists and lowercase letters for normal process identifiers.

Semantics of PC. We assume that a procedure that is called with an empty
list as one of its arguments is equivalent to the terminated process 0.

Connections. Connections between processes are uniform wrt argument lists,
i.e., if p and A are arguments to some procedure X, then X requires/guarantees
that p be connected to none or all of the processes in A.

The definition of gauss uses: hd and tl (computing the head and tail of a list
of processes); fst and rest (taking a list of processes representing a matrix and
returning the first row of the matrix, or the matrix without its first row); and
minor (removing the first row and the first column from a matrix). Processes
use standard arithmetic operations to combine their value with values received.
gauss(A) = solve(fst(A)); eliminate(fst(A),rest(A)); gauss(minor(A))

solve(A) = divide_all(hd(A),tl(A)); set_to_1(hd(A))

divide_all(a,A) = divide(a,hd(A)); divide_all(a,tl(A))
divide(a,b) = a.c -> b.div

eliminate(A,B) = elim_row(A,fst(B)); eliminate(A,rest(B))
elim_row(A,B) = elim_all(tl(A),hd(B),tl(B)); set_to_0(hd(B))
elim_all(A,m,B) = elim1(hd(A),m,hd(B)); elim_all(tl(A),m,tl(B))
elim1(a,m,b) = b start x; b: x <-> a; b: x <-> m;

a.c -> x.id; m.c -> x.mult; x.c -> b.minus

set_to_0(a) = a start p; p.0 -> a.id
set_to_1(a) = a start p; p.1 -> a.id

Choreographies in Practice 119

Procedure solve divides the first equation by the pivot. Then, eliminate uses
this row to perform an elimination step, setting the first column of the coefficient
matrix to zeroes. The auxiliary procedure eli row performs this step at the row
level, using elim all to iterate through a single row and elim1 to perform the
actual computations. The first row and the first column of the matrix are then
removed in the recursive call, as they will not change further.

This implementation follows the standard sequential algorithm for Gaussian
elimination (Algorithm 8.4 in [13]). However, it runs concurrently due to the
implicit parallelism in the semantics of choreographies. We explain this behaviour
by focusing on a concrete example. Assume that A is a 3 × 3 matrix, so there
are 12 processes in total. For legibility, we will write b1 for the independent
term a14 etc.; A=〈a11,a12,a13,b1,a21,a22,a23,b2,a31,a32,a33,b3〉 for the
matrix; A1=〈a11,a12,a13,b1〉 for the first row (likewise for A2 and A3); and,
A’2=〈a22,a23,b2〉 and likewise for A’3. Calling gauss(A) unfolds to
solve(A1); elim_row(A1,A2); elim_row(A1,A3);
solve(A’2); elim_row(A’2,A’3);
solve(〈a33 ,b3 〉)

Fully expanding the sequence elim row(A1,A3); solve(A’2) yields
elim1(a12 ,a31 ,a32); elim1(a13 ,a31 ,a33); elim1(b1,a31 ,b3); set_to_0(a31);
a21.c->a22.div; a21.c->a23.div; a21.c->b2.div; a21 start x2; x2.1->a21.id

and the semantics of PC allows the communications in the second line to be
interleaved with those in the first line in any possible way; in the terminology
of [7], the calls to elim row(A1,A3) and solve(A’2) run in parallel.

This corresponds to implementing Gaussian elimination with pipelined com-
munication and computation as in Sect. 8.3 of [13]. Indeed, as soon as any row has
been reduced by all rows above it, it can apply solve to itself and try to begin
reducing the rows below. It is a bit surprising that we get such parallel behaviour
by straightforwardly implementing an imperative algorithm; the explanation is
that EPP encapsulates the part of determining which communications can take
place in parallel, removing this burden from the programmer.

5 Fast Fourier Transform

We now present a more complex example: computing the discrete Fourier trans-
form of a vector via the Fast Fourier Transform (FFT), as in Algorithm 13.1
of [13]. We assume that n is a power of 2. In the first call, ω = e2πi/n.

procedure R FFT(X,Y ,n,ω)
if n = 1 then y0 = x0

else R FFT(〈x0, x2, . . . , xn−2〉,〈q0, q1, . . . , qn/2〉,n/2,ω2)
R FFT(〈x1, x3, . . . , xn−1〉,〈t0, t1, . . . , tn/2〉,n/2,ω2)
for j = 0 to n − 1 do yj = q(j%n

2) + ωjt(j%n
2)

Implementing this procedure in PC requires two procedures gsel then(p,Q)
and gsel else(p,Q), where p broadcasts a selection of label then or

120 L. Cruz-Filipe and F. Montesi

else, respectively, to every process in Q.2 We also use auxiliary procedures
intro(n,m,P), where n introduces m to all processes in P, and power(n,m,nm),
where at the end nm stores the result of exponentiating the value in m to the power
of the value stored in n (see [7] for a possible implementation in a sublanguage
of PC).

The one major difference between our implementation of FFT and the algo-
rithm R FFT reported above is that we cannot create a variable number of fresh
processes and pass them as arguments to other procedures (the auxiliary vectors
q and t). Instead, we use y to store the result of the recursive calls, and create
two auxiliary processes inside each iteration of the final for loop.
fft(X,Y,n,w) = if n.is_one

then gsel_then(n,join(X,Y)); n -> w[then]; base(hd(X),hd(Y))
else gsel_else(n,join(X,Y)); n -> w[else];

n start n’; n.half -> n’; intro(n,n’,Y);
w start w’; w.square -> w’; intro(w,w’,Y);
n: n’ <-> w; w: n’ <-> w’;
fft(even(X),half1(Y),n’,w’);
fft(odd(X),half2(Y),n’,w’);
n’ start wn; n’: w <-> wn; power(n’,w,wn);
w start wj; w.1 -> wj; intro(w,wj,Y);
combine(half1(Y),half2(Y),wn,w,wi)

base(x,y) = x.c -> y

combine(Y1,Y2,wn,w,wj) = combine1(hd(Y1),hd(Y2),wn,wj); w.c -> wj.mult;
combine(tl(Y1),tl(Y2),wn,w,wj)

combine1(y1,y2,wn,wj) = y1 start q; y1.c -> q; y1: q <-> y2;
y2 start t; y2.c -> t; y2: t <-> y1; y2: t <-> wj;
q.c -> y1; wj.c -> t.mult; t.c -> y1.add;
q.c -> y2; wn.c -> t.mult; t.c -> y2.add

The level of parallelism in this implementation is suboptimal, as both recur-
sive calls to fft use n’ and w’. By duplicating these processes, these calls can
run in parallel as in the previous example. (We chose the current formulation for
simplicity.) Process n’ is actually the main orchestrator of the whole execution.

6 Graphs

Another prototypical application of distributed algorithms is graph problems. In
this section, we focus on a simple example (broadcasting a token to all nodes of
a graph) and discuss the limitations of implementing these algorithms in PC.

The idea of broadcasting a token in a graph is very simple: each node receiving
the token for the first time should communicate it to all its neighbours. The
catch is that, in PC, there are no primitives for accessing the connection graph
structure from within the language. Nevertheless, we can implement our simple
example of token broadcasting if we assume that the graph structure is statically
encoded in the set of available functions over parameters of procedures. To be
precise, assume that we have a function neighb(p,V), returning the neighbours
of p in the set of vertices V. (The actual graph is encapsulated in this function.)
We also use ++ and \ for appending two lists and computing the set difference of
2 For EPP to work, the merge operator in [8] has to be extended with these procedures.

Choreographies in Practice 121

two lists. We can then write a procedure broadcast(P,V), propagating a token
from every element of P to every element of V, as follows.
broadcast(P,V) = bcast(hd(P),neighb(hd(P),V));

broadcast(tl(P)++ neighb(hd(P),V),V\neighb(hd(P),V))

bcast(p,V) = bcast_one(p,hd(V)); bcast(p,tl(V))

bcast_one(p,v) = p.c -> v.id

Calling broadcast(〈p〉,G), where G is the full set of vertices of the graph and
p is one vertex, will broadcast p’s contents to all the vertices in the connected
component of G containing p. Implicit parallelism ensures that each node starts
broadcasting after it receives the token, independently of the remaining ones.

This approach is not very satisfactory as a graph algorithm, as it requires
encoding the whole graph in the definition of broadcast, and does not generalise
easily to more sophisticated graph algorithms. Adding primitives for accessing
the network structure at runtime would however heavily influence EPP and the
type system of PC [8]. We leave this as an interesting direction for future work,
which we plan to pursue in order to be able to implement more sophisticated
graph algorithms, e.g., for computing a minimum spanning tree.

7 Related Work and Conclusions

To the best of our knowledge, this is the first experience report on using choreo-
graphic programming for writing real-world, complex computational algorithms.

Related Work. The work nearest to ours is the evaluation of the Chor lan-
guage [16], which implements the choreographic programming model in [3]. Chor
supports multiparty sessions (as π-calculus channels [15]) and their mobility,
similar to introductions in PC. Chor is evaluated by encoding representative
examples from Service-Oriented Computing (e.g. distributed authentication and
streaming), but these do not cover interesting algorithms as in here.

Previous works based on Multiparty Session Types (MPST) [14] have
explored the use of choreographies as protocol specifications for the coordination
of message exchanges in some real-world scenarios [10,19,20]. Differently from
our approach, these works fall back to a standard process calculus model for
defining implementations. Instead, our programs are choreographies. As a con-
sequence, programming the composition of separate algorithms in PC is done
on the level of choreographies, whereas in MPST composition requires using the
low-level process calculus. Also, our choreography model is arguably much sim-
pler and more approachable by newcomers, since much of the expressive power of
PC comes from allowing parameterised procedures, a standard feature of most
programming languages. The key twist in PC is that parameters are process
names.

Conclusions. Our main conclusion is that choreographies make it easy to pro-
duce simple concurrent implementations of sequential algorithms, by carefully
choosing process identifiers and relying on EPP for maximising implicit paral-
lelism. This is distinct from how concurrent algorithms usually differ from their

122 L. Cruz-Filipe and F. Montesi

sequential counterparts. Although we do not necessarily get the most efficient
possible distributed algorithm, this automatic concurrency is pleasant to observe.

The second interesting realisation is that it is relatively easy to implement
nontrivial algorithms in choreographies. This is an important deviation from the
typical use of toy examples, of limited practical significance, that characterises
previous works in this programming paradigm.

References

1. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

2. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

3. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 263–274.
ACM, Italy (2013)

4. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 47–62. Springer, Heidelberg
(2014)

5. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. In: Aceto, L., de Frutos-Escrig, D. (eds.) CONCUR, vol. 42
of LIPIcs, pp. 412–426. Schloss Dagstuhl, Germany (2015)

6. Chor. Programming Language. http://www.chor-lang.org/
7. Cruz-Filipe, L., Montesi, F.: Choreographies, computationally, CoRR,

abs/1510.03271. (2015, submitted)
8. Cruz-Filipe, L., Montesi, F.: Choreographies, divided and conquered, CoRR,

abs/1602.03729. (2016, submitted)
9. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic

choreographies. In: Holvoet, T., Viroli, M. (eds.) Coordination Models and Lan-
guages. LNCS, vol. 9037, pp. 67–82. Springer, Heidelberg (2015)

10. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: Ball, T., Sagiv,
M. (eds.) POPL, pp. 435–446. ACM, USA (2011)

11. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol.
7211, pp. 194–213. Springer, Heidelberg (2012)

12. Gabbrielli, M., Giallorenzo, S., Montesi, F.: Applied choreographies. CoRR,
abs/1510.03637 (2015)

13. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing, 2nd edn. Pearson, Noida (2003)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL, pp. 273–284. ACM, New York (2008)

15. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I, II. Inf. Com-
put. 100(1), 41–77 (1992)

16. Montesi, F.: Choreographic Programming, Ph.D. thesis, IT University of Copen-
hagen (2013). http://fabriziomontesi.com/files/choreographic programming.pdf

17. Montesi, F.: Kickstarting choreographic programming, CoRR, abs/1502.02519
(2015)

http://www.chor-lang.org/
http://fabriziomontesi.com/files/choreographic_programming.pdf

Choreographies in Practice 123

18. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R.,
Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052,
pp. 425–439. Springer, Heidelberg (2013)

19. Ng, N., Yoshida, N.: Pabble: parameterised scribble. SOCA 9(3–4), 269–284 (2015)
20. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session

types. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010)

	Choreographies in Practice
	1 Introduction
	2 Background
	3 Quicksort
	4 Gauss Elimination
	5 Fast Fourier Transform
	6 Graphs
	7 Related Work and Conclusions
	References

