
On the Power of Attribute-Based
Communication

Yehia Abd Alrahman1(B), Rocco De Nicola1, and Michele Loreti2

1 IMT School for Advanced Studies Lucca, Lucca, Italy
yehia.abdalrahman@imtlucca.it

2 Università degli Studi di Firenze, Florence, Italy

Abstract. In open systems exhibiting adaptation, behaviors can arise as
side effects of intensive components interaction. Finding ways to under-
stand and design these systems, is a difficult but important endeavor. To
tackle these issues, we present AbC , a calculus for attribute-based com-
munication. An AbC system consists of a set of parallel agents each of
which is equipped with a set of attributes. Communication takes place in
an implicit multicast fashion, and interactions among agents are dynam-
ically established by taking into account “connections” as determined by
predicates over the attributes of agents. First, the syntax and the seman-
tics of the calculus are presented, then expressiveness and effectiveness
of AbC are demonstrated both in terms of modeling scenarios featur-
ing collaboration, reconfiguration, and adaptation and of the possibility
of encoding channel-based interactions and other interaction patterns.
Behavioral equivalences for AbC are introduced for establishing formal
relationships between different descriptions of the same system.

1 Introduction

In a world of Internet of Things (IoT), of Systems of Systems (SoS), and of
Collective Adaptive Systems (CAS), most of the concurrent programming models
still rely on communication primitives based on point-to-point, multicast with
explicit addressing (i.e. IP multicast [13]), or on broadcast communication. In our
view, it is important to consider alternative basic interaction primitives and in
this paper we study the impact of a new paradigm that permits selecting groups
of partners by considering the (predicates over the) attributes they expose.

The findings we report in this paper have been triggered by our interest in
CAS, see e.g. [10], and the recent attempts to define appropriate linguistic prim-
itives to deal with such systems, see e.g. TOTA [17], SCEL [7] and the calculi
presented in [3,28]. CAS consists of large numbers of interacting components
which exhibit complex behaviors depending on their attributes and objectives.
Decision-making is complex and interaction between components may lead to

This research has been partially supported by the European projects IP 257414
ASCENS and STReP 600708 QUANTICOL, and by the Italian project PRIN
2010LHT4KM CINA.

c© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 1–18, 2016.
DOI: 10.1007/978-3-319-39570-8 1



2 Y. Abd Alrahman et al.

unexpected behaviors. Components work in an open environment and may have
different (potentially conflicting) objectives; so they need to dynamically adapt
to their contextual conditions. New engineering techniques to address the chal-
lenges of developing, integrating, and deploying such systems are needed [26].

To move towards this goal, in our view, it is important to develop a the-
oretical foundation for this class of systems that would help in understanding
their distinctive features. In this paper, we present AbC , a calculus comprising a
minimal set of primitives that permit attribute-based communication. AbC sys-
tems are represented as sets of parallel components, each is equipped with a set
of attributes whose values can be modified by internal actions. Communication
actions (both send and receive) are decorated with predicates over attributes
that partners have to satisfy to make the interaction possible. Thus, communi-
cation takes place in an implicit multicast fashion, and communication partners
are selected by relying on predicates over the attributes in their interfaces. The
semantics of output actions is non-blocking while input actions are blocking.

Many communication models addressing distributed systems have been intro-
duced so far. Some of the well-known approaches include: channel-based models
(e.g., CCS [18], CSP [12], π-calculus [20], etc.), group-based models [1,5,13],
and publish/subscribe models [4,9]. The advantage of AbC over channel-based
models is that interacting partners are anonymous to each other. Rather than
agreeing on channels or names, they interact by relying on the satisfaction of
predicates over their attributes. This makes AbC more suitable for modeling scal-
able distributed systems as anonymity is a key factor for scalability. Furthermore,
the spaces (i.e., groups) in group-based models like Actorspace [1] are regarded
as containers of actors and should be created and deleted with explicit con-
structs, while in AbC , there is no need for such constructs. The notion of group
in AbC is quite abstract and can be specified by means of satisfying the sender’s
predicate at the time of interaction. On the other hand, the publish/subscribe
model is a special case of AbC where publishers attach attributes to messages
and send them with empty predicates (i.e., satisfied by all). Subscribers check
the compatibility of the attached attributes with their subscriptions.

The concept of attribute-based communication can be exploited to provide
a general unifying framework to encompass different communication models.
Extended discussion for this paper can be found in the technical report in [2].

Contributions. (i) In Sects. 2 and 3, we present the AbC calculus, a refined and
extended version of the one in [3]. The latter is a very basic calculus with a
number of limitations, see Sect. 6 in [2]; (ii) we study the expressive power of
AbC both in terms of the ability of modeling scenarios featuring collaboration,
reconfiguration, and adaptation and of the possibility of modeling different inter-
action patterns, see Sect. 4; (iii) we define behavioral equivalences for AbC by
first introducing a context based barbed congruence relation and then the cor-
responding extensional labelled bisimilarity, see Sect. 5; (iv) we show how to
encode channel-based communication and prove the correctness of the encoding
up to the introduced equivalence, see Sect. 6.



On the Power of Attribute-Based Communication 3

Table 1. The syntax of the AbC calculus

C ::= Γ :P | C1‖C2 | !C | νxC

P ::= 0 | Π(x̃).P | (Ẽ)@Π.P | [ã := Ẽ]P | 〈Π〉P | P1 + P2 | P1|P2 | K

Π ::= tt | ff | E1 �� E2 | Π1 ∧ Π2 | Π1 ∨ Π2 | ¬Π

E ::= v | x | a | this.a

2 The AbC Calculus

Table 2. The predicate satisfaction
The syntax of the AbC calculus is
reported in Table 1. The top-level enti-
ties of the calculus are components (C), a
component consists of either a process P
associated with an attribute environment
Γ , denoted Γ : P , a parallel composition
C1‖C2 of two components, a replication
!C which can always create a new copy of
C. The attribute environment Γ : A �→ V
is a partial map from attribute identifiers a ∈ A to values v ∈ V where A∩V = ∅.
A value could be a number, a name (string), a tuple, etc. The scope of a name
say n, can be restricted by using the restriction operator νn. For instance, the
name n in C1 ‖ νnC2 is only visible within component C2. Attribute values can
be restricted while attribute identifiers1 cannot, because they represent domain
concepts. Each component in a system is aware of the set of attribute identifiers
that represents the domain concepts.

A process is either the inactive process 0, an action-prefixed process •.P
(where “•” is replaced with an action), an attribute update process [ã := Ẽ]P ,
an awareness process 〈Π〉P , a choice between two processes P1 + P2, a parallel
composition between two processes P1|P2, or a recursive call K. We assume
that each process has a unique process definition K � P . The attribute update
construct in [ã := Ẽ]P sets the value of each attribute in the sequence ã to the
evaluation of the corresponding expression in the sequence Ẽ.

The awareness construct in 〈Π〉P is used to test awareness data about a com-
ponent status or its environment by inspecting the local attribute environment
where the process resides. This construct blocks the execution of process P until
the predicate Π becomes true. The parallel operator “|” models the interleav-
ing between processes. In what follows, we shall use the notation �Π�Γ (resp.
�E�Γ ) to indicate the evaluation of a predicate Π (resp. an expression E) under
the attribute environment Γ . The evaluation of a predicate consists of replacing
variable references with their values and returns the result.

There are two kinds of actions: the attribute-based input Π(x̃) which binds
to sequence x̃ the corresponding received values from components whose commu-
nicated attributes or values satisfy the predicate Π. The attribute-based output

1 Occasionally, we will use “attribute” to denote “attribute identifier” in this paper.



4 Y. Abd Alrahman et al.

(Ẽ)@Π which evaluates the sequence of expressions Ẽ under the attribute envi-
ronment Γ and then sends the result to the components whose attributes satisfy
the predicate Π.

A predicate Π is either a binary operator �� between two values or a proposi-
tional combination of predicates. Predicate tt is satisfied by all components and
is used when modeling broadcast while ff is not satisfied by any component and
is used when modeling silent moves. The satisfaction relation |= of predicates
is presented in Table 2. In the rest of this paper, we shall use the relation � to
denote a semantic equivalence for predicates as defined below.

Definition 1 (Predicate Equivalence). Two predicates are semantically
equivalent, written Π1 � Π2, iff for every environment Γ , it holds that:
Γ |= Π1 iff Γ |= Π2.

Clearly, the predicate equivalence, defined above, is decidable because we
limit the expressive power of predicates by considering only standard boolean
expressions and simple constraints on attribute values as shown in Table 2.

An expression E is either a constant value v ∈ V, a variable x, an attribute
identifier a, or a reference to a local attribute value this.a. The properties
of self-awareness and context-awareness that are typical for CAS are guaran-
teed in AbC by referring to the values of local attributes via a special name
this. (i.e., this.a). These values represent either the current status of a compo-
nent (i.e., self-awareness) or the external environment (i.e.,context-awareness).
Expressions within predicates contain also variable names, so predicates can
check whether the sent values satisfy specific conditions. This permits a sort of
pattern-matching. For instance, component Γ :(x > 2)(x, y) receives a sequence
of values “x, y” from another component only if the value x is greater than 2.

We assume that processes are closed, and the constructs νx and Π(x̃) act
as binders for names. We write bn(P ) to denote the set of bound names of P .
The free names of P are those that do not occur in the scope of any binder and
are denoted by fn(P ). The set of names of P is denoted by n(P ). The notions
of bound and free names are applied in the same way to components, but free
names also include attribute values that do not occur in the scope of any binder.

3 AbC Operational Semantics

The operational semantics of AbC is defined in two steps: first we define a com-
ponent level semantics and then we define a system level semantics.

3.1 Operational Semantics of Component

We use the transition relation �−−−→⊆Comp × CLAB × Comp to define the
local behavior of a component where Comp denotes a component and CLAB is
the set of transition labels α generated by the following grammar:

α ::= λ | ˜Π(ṽ) λ ::= νx̃Πṽ | Π(ṽ)



On the Power of Attribute-Based Communication 5

Table 3. Component semantics

The λ-labels are used to denote AbC output and input actions respectively. The
output and input labels contain the sender’s predicate Π, and the transmitted
values ṽ. An output is called “bound” if its label contains a bound name (i.e., if
x̃ �= ∅). The α-labels include an additional label ˜Π(ṽ) to denote the case where
a process is not able to receive a message. This label is crucial to keep dynamic
constructs (i.e., +) from dissolving after performing input refusal as it will be
shown later in this section. Free names in α are specified as follows:

– fn(νx̃Π(ṽ)) = fn(Π(ṽ))\x̃ and fn(Π(ṽ)) = fn(Π) ∪ ṽ

– fn( ˜Π(ṽ)) = fn(Π) ∪ ṽ.

The fn(Π) denotes the set of names occurring in the predicate Π except
for attribute identifiers. Notice that this.a is only a reference to the value
of the attribute identifier a. Only the output label has bound names (i.e.,
bn(νx̃Πṽ) = x̃).

Component Semantics. The set of rules in Table 3 describes the behavior of
a single AbC component. We omitted the symmetric rules for (Sum) and (Int).

Rule (Brd) evaluates the sequence of expressions Ẽ to ṽ and the predicate
Π1 to Π by replacing any occurring reference (i.e., this.a) to its value under Γ ,
sends this information in the message, and the process evolves to P .

Rule (Rcv) replaces the free occurrences of the input sequence variables x̃ in
the receiving predicate Π with the corresponding message values ṽ and evaluates
Π under Γ . If the evaluation semantically equals to tt and Γ satisfies the sender
predicate Π ′, the input action is performed and the substitution [ṽ/x̃] is applied
to the continuation process P . Rule (Upd) evaluates the sequence Ẽ under Γ ,
apply attribute updates i.e., Γ [ã �→ ṽ] where ∀a ∈ ã and ∀v ∈ ṽ, Γ [a �→ v](a′) =
Γ (a′) if a �= a′ and v otherwise, and then performs an action with a λ label if
process P under the updated environment can do so.

Rule (Aware) evaluates the predicate Π under Γ . If the evaluation semanti-
cally equals to tt, process 〈Π〉P proceeds by performing an action with a λ-label
and continues as P ′ if process P can perform the same action.



6 Y. Abd Alrahman et al.

Table 4. Discarding input

Rule (Sum) and its symmetric version represent the non-deterministic choice
between the subprocesses P1 and P2. Rule (Rec) is standard for process defini-
tion. Rule (Int) models the standard interleaving between two processes.

Discarding Input. The set of rules in Table 4 describes the meaning of the
discarding label ˜Π(ṽ). Rule (FBrd) states that any sending process discards
messages from other processes and stays unchanged. Rule (FRcv) states that if
one of the receiving requirements is not satisfied then the process will discard
the message and stay unchanged.

Rule (FUpd) state that process [ã := Ẽ]P discards a message if process
P is able to discard the same message after applying attribute updates. Rule
(FAware1) states that process 〈Π〉P discards a message even if Π evaluates to
(tt) if process P is able to discard the same message. Rule (FAware2) states
that if Π in process 〈Π〉P evaluates to ff, process 〈Π〉P discards any message
from other processes.

Rule (FZero) states that process 0 always discards messages. Rule (FSum)

states that process P1 + P2 discards a message if both its subprocesses P1 and
P2 can do so. Notice that the choice and awareness constructs do not dissolve
after input refusal. Rule (FInt) has a similar meaning of Rule (FSum).

3.2 Operational Semantics of System

AbC system describes the global behavior of a component and the underlying
communication between different components. We use the transition relation
−−−→ ⊆ Comp × SLAB × Comp to define the behavior of a system where
Comp denotes a component and SLAB is the set of transition labels γ which
are generated by the following grammar:

γ ::= νx̃Πṽ | Π(ṽ) | τ

The γ-labels extend λ with τ to denote silent moves. The τ -label has no free
or bound names. The definition of the transition relation −−−→ depends on



On the Power of Attribute-Based Communication 7

Table 5. System semantics

the definition of the relation �−−−→ in the previous section in the sense that
the effect of local behavior is lifted to the global one. The transition relation
−−−→ is formally defined in Table 5. We omitted the symmetric rules for τ-Int

and Com.
Rule (Comp) states that the relations �−−−→ and −−−→ coincide when

performing either an input or output action. Rule (C-Fail) states that any com-
ponent Γ : P can discard an input if its local process can do so. Rule (Rep) is
standard for replication. Rule (τ-Int) models the interleaving between compo-
nents C1 and C2 when performing a silent move (i.e., a send action (ṽ)@Π with
Π � ff). In this paper, we will use ()@ff to denote a silent action/move.

Rule (Res) states that component νxC with a restricted name x can still
perform an action with a γ-label as long as x does not occur in the names of
the label and component C can perform the same action. If necessary, we allow
renaming with conditions to avoid name clashing.

Rule (Sync) states that two parallel components C1 and C2 can synchronize
while performing an input action. This means that the same message is received
by both C1 and C2. Rule (Com) states that two parallel components C1 and
C2 can communicate if C1 can send a message with a predicate that is different
from ff and C2 can possibly receive that message.

Rules (Hide1) and (Hide2) are peculiar to AbC and introduce a new concept
that we call predicate restriction “• � x” as reported in Table 6. In process
calculi with multiparty interaction like CSP [12] and bπ-calculus [20], sending
on a private channel is not observed. For example in bπ-calculus, assume that
P = νa(P1‖ P2)‖ P3 where P1 = āv.Q, P2 = a(x).R, and P3 = b(x). Now
if P1 sends on a then only P2 can observe it since P2 is included in the scope



8 Y. Abd Alrahman et al.

of the restriction. P3 and other processes only observe an internal action, so
P

τ−→ νa(Q‖R[v/x])‖ b(x).
This idea is generalized in AbC to what we call predicate restriction “•�x”

in the sense that we either hide a part or the whole predicate using the predicate
restriction operator “•�x” where x is a restricted name and the “•” is replaced
with a predicate. If the predicate restriction operator returns ff then we get the
usual hiding operator like in CSP and bπ-calculus because the resulting label is
not exposed according to (τ-Int) rule (i.e., sending with a false predicate).

Table 6. Predicate restriction •�x
If the predicate restriction operator

returns something different from ff then the
message is exposed with a smaller predi-
cate and the restricted name remains pri-
vate. Note that any private name in the
message values (i.e., x̃) remains private if
(Π � y) � ff as in rule (Hide1) otherwise
it is not private anymore as in rule (Hide2).
In other words, messages are sent on a chan-
nel that is partially exposed.

For example, if a network sends a mes-
sage with the predicate (keyword = this.topic ∨ capability = fwd) where the
name “fwd” is restricted then the message is exposed to users at every node
within the network with forwarding capability with this predicate (keyword =
this.topic). Network nodes observe the whole predicate but they receive the mes-
sage only because they satisfy the other part of the predicate (i.e., (capability =
fwd)). In the following Lemma, we prove that the satisfaction of a restricted
predicate Π�x by an attribute environment Γ does not depend on the name x
that is occurring in Γ .

Lemma 1. Γ |= Π � x iff ∀v. Γ [v/x] |= Π � x for any environment Γ ,
predicate Π, and name x.

Rule (Open) states that a component has the ability to communicate a pri-
vate name to other components. The scope of the private name x only dissolves
in the context where the rule is applied. Notice that, a component that is sending
on a false predicate (i.e., Π � ff) cannot open the scope.

4 Expressiveness of AbC Calculus

In this section, we provide evidence of the expressive power of AbC by modeling
systems featuring collaboration, adaptation, and reconfiguration and stress the
possibility of using attribute-based communication as a unifying framework to
encompass different communication models.

4.1 A Swarm Robotics Model in AbC

We consider a swarm of robots spreads in a given disaster area with the goal of
locating and rescuing possible victims. All robots playing the same role execute



On the Power of Attribute-Based Communication 9

the same code, defining their behavior, and a set of adaptation mechanisms, reg-
ulating the interactions among robots and their environments. Initially all robots
are explorers and once a robot finds a victim, it changes its role to “rescuer”
and sends victim’s information to nearby explorers. if another robot receives
this information, it changes its role to “helper” and moves to join the rescuers-
swarm. Notice that some of the robot attributes are considered as the projection
of the robot internal state that is monitored by sensors and actuators (i.e.,
victimPerceived, position, and collision).

We assume that each robot has a unique identity (id) and since the robot
acquires information about its environment or its own status by means of read-
ing the values provided by sensors, no additional assumptions about the initial
state are needed. It is worth mentioning that sensors and actuators are not mod-
eled here as they represent the robot internal infrastructure while AbC model
represents the programmable behavior of the robot (i.e., its running code).

The robotics scenario is modeled as a set of parallel AbC components, each
component represents a robot (Robot1‖ . . . ‖Robotn) and each robot has the fol-
lowing form (Γi :PR). The behavior of a single robot is modeled in the following
AbC process PR:

PR � (Rescuer + Explorer)| RandWalk

The robot follows a random walk in exploring the disaster arena. The robot
can become a “Rescuer” when recognizing a victim by mean of locally reading
the value of an attribute controlled by its sensors or stay as “explorer” and keep
sending queries for information about the victim from nearby robots whose role
is either “rescuer” or “helper”.

If a victim is perceived (i.e., the value of “victimPerceived = tt”, the robot
updates its “state” to “stop” which triggers halting the movement, computes
the victim position and the number of the required robots to rescue the victim
and stores them in the attributes “vPosition” and “count” respectively, changes
its role to “rescuer”, and waits for queries from nearby explorers. Once a query
is received, the robot sends back the victim information to the requesting robot
addressing it by its identity “id” and the swarm starts forming.

Rescuer � 〈this.victimPerceived = tt〉[this.state := stop, this.count := 3,
this.vPosition := < 3, 4 >, this.role := rescuer]()@ff.

(y = qry ∧ z = explorer)(x, y, z).
(this.vPosition, this.count, ack, this.role)@(id = x)

If no victim is perceived, the robot keeps sending queries about victims to nearby
robots whose role is either “rescuer” or “helper”. This query contains the robot
identity “this.id”, a special name “qry” to indicate the request type, and the
robot role “this.role”. If an acknowledgement arrives containing victim’s infor-
mation, the robot changes its role to “helper” and start the helping procedure.

Explorer � (this.id, qry, this.role)@(role = rescuer ∨ role = helper).
(((z = rescuer ∨ z = helper) ∧ x = ack)(vpos, c, x, z).
[this.role := helper]()@ff.Helper + Rescuer + Explorer)



10 Y. Abd Alrahman et al.

The helping robot stores the victim position in the attribute “vPosition” and
updates its target to be the victim position. This triggers the actuators to move
to the specified location. The robot waits until it reaches the victim and at the
same time is willing to respond to other robots queries, if more than one robot is
needed for the rescuing procedure. Once the robot reaches the victim, the robot
changes its role to “rescuer” and joins the rescuer-swarm.

Helper � [this.vPosition := vpos, this.target := vpos]()@ff.

(〈this.position = this.target〉[this.role := rescuer]()@ff

| 〈c > 1〉(y = qry ∧ z = explorer)(x, y, z).
(this.vPosition, c − 1, ack, this.role)@(id = x))

The “RandWalk” process is defined below. This process computes a ran-
dom direction to be followed by the robot. Once a collision is detected by the
proximity sensor, a new random direction is calculated.

RandWalk � [this.direction := 2πrand()]()@ff.

〈this.collision = tt〉RandWalk

For more details, a runtime environment for the linguistic primitives of AbC
can be found in the following website http://lazkany.github.io/AbC.

4.2 Encoding Interaction Patterns

In this section, we show how group-based [1,5,13] and publish/subscribe-based
[4,9] interaction patterns can be naturally rendered in AbC . Since these interac-
tion patterns do not have formal descriptions, we proceed by relying on examples.

We start with group-based interaction patterns and show that when modeling
a group name as an attribute in AbC , the constructs for joining or leaving a given
group can be modeled as attribute updates, see the following example:

Γ1 : (msg, this.group)@(group = a) ‖ Γ2 : ((y = b)(x, y)) ‖ . . .

‖ Γ7 : ((y = b)(x, y) | [this.group := a]()@ff)

initially Γ1(group) = b, Γ2(group) = a, and Γ7(group) = c. Component 1 wants
to send the message “msg” to group “a”. Only Component 2 is allowed to
receive it as it is the only member of group “a”. If Component 7 leaves group
“c” and joins group “a” before “msg” is emitted then both of Component 2 and
Component 7 will receive the message.

A possible encoding of group interaction into bπ-calculus has been introduced
in [8]. The encoding is relatively complicated and does not guarantee the causal
order of message reception. “Locality” is neither a first class construct in bπ-
calculus nor in AbC . However, “locality” (in this case, the group name) can be
modeled as an attribute in AbC while in bπ-calculus, it needs much more effort.

Publish/subscribe interaction patterns can be considered as special cases of
the attribute-based ones. For instance, a natural modeling of the topic-based

http://lazkany.github.io/AbC


On the Power of Attribute-Based Communication 11

publish/subscribe model [9] into AbC can be accomplished by allowing publish-
ers to broadcast messages with “tt” predicates (i.e., satisfied by all) and only
subscribers can check the compatibility of the exposed publishers attributes with
their subscriptions, see the following example:

Γ1 : (msg, this.topic)@(tt) ‖ Γ2 : (y = this.subscription)(x, y) ‖
. . . ‖ Γn : (y = this.subscription)(x, y)

The publisher broadcasts the message “msg” tagged with a specific topic for
all possible subscribers (the predicate “tt” is satisfied by all), subscribers receive
the message if the topic matches their subscription.

5 Behavioral Theory for AbC

In this section, we define a behavioral theory for AbC . We start by introducing
a barbed congruence, then we present an equivalent definition of bisimulation.
In what follows, we shall use the following notations:

– ⇒ denotes τ−→∗ where τ = νx̃Πṽ with Π � ff.
–

γ
=⇒ denotes =⇒ γ−→=⇒ if (γ �= τ).

–
γ̂
=⇒ denotes =⇒ if (γ = τ) and

γ
=⇒ otherwise.

– � denotes { γ−→ | γ is an output or γ = τ} and �∗ denotes (�)∗.

A context C[•] is a component term with a hole, denoted by [•] and AbC contexts
are generated by the following grammar:

C[•] ::= [•] | [•]‖C | C‖[•] | νx[•] | ![•]

Barbed Congruence. We define notions of strong and weak barbed congruence
to reason about AbC components following the definition of maximum sound
theory by Honda and Yoshida [14]. This definition is a slight variant of Milner
and Sangiorgi’s barbed congruence [21] and it is also known as open barbed
bisimilarity [25].

Definition 2 (Barb). A predicate Π2 is observable (is a barb) in component

C, denoted as C↓Π , if C can send a message with a predicate Π ′ (i.e., C
νx̃Π′ṽ−−−−→

where Π ′ � Π and Π ′ �� ff). We write C ⇓Π if C �∗ C ′ ↓Π .

Definition 3 (Barbed Congruence). A symmetric relation R over the set of
AbC components is a weak barbed congruence if whenever (C1, C2) ∈ R,

– C1↓Π implies C2 ⇓Π ;
– C1 � C ′

1 implies C2 �∗ C ′
2 and (C ′

1, C
′
2) ∈ R;

– for all contexts C[•], (C[c1], C[c2]) ∈ R.

2 From now on, we use the predicate Π to denote only its meaning, not its syntax.



12 Y. Abd Alrahman et al.

Two components are weak barbed congruent, written C1
∼= C2, if (C1, C2) ∈ R

for some barbed congruent relation R. The strong barbed congruence “�” is
obtained in a similar way by replacing ⇓ with ↓ and �∗ with � .

Bisimulation. We define an appropriate notion of bisimulation for AbC com-
ponents and prove that bisimilarity coincides with barbed congruence, and thus
represents a valid tool for proving that two components are barbed congruent.

Definition 4 (Weak Bisimulation). A symmetric binary relation R over the
set of AbC components is a weak bisimulation if for every action γ, whenever
(C1, C2) ∈ R and γ is of the form τ,Π(ṽ), or (νx̃Πṽ with Π �� ff), it holds that:

C1
γ−→ C ′

1 implies C2
γ̂
=⇒ C ′

2 and (C ′
1, C

′
2) ∈ R

where every predicate Π occurring in γ is matched by its semantics meaning
in γ̂. Two components C1 and C2 are weak bisimilar, written C1 ≈ C2 if there
exists a weak bisimulation R relating them. Strong bisimilarity, “∼”, is defined
in a similar way by replacing =⇒ with −→.

Bisimilarity can be used as a reasoning tool and as a proof technique to
compare systems at different levels of abstractions. For instance, the behavior
of the robotic scenario in Sect. 4.1 can be compared with a centralized version
where robots exchange information through a central node using an internet
connection. Bisimilarity can also be used as a tool for state space reduction and
minimization.

It is easy to prove that ∼ and ≈ are equivalence relations by relying on the
classical arguments of [19]. However, our bisimilarity enjoys a much more inter-
esting property: the closure under any context. So, in the next three lemmas, we
prove that our bisimilarity is preserved by parallel composition, name restriction,
and replication.

Lemma 2 (∼ and ≈ are preserved by parallel composition). Let C1 and
C2 be two components, then

– C1 ∼ C2 implies C1‖C ∼ C2‖C for all components C
– C1 ≈ C2 implies C1‖C ≈ C2‖C for all components C.

Lemma 3 (∼ and ≈ are preserved by name restriction). Let C1 and C2

be two components, then

– C1 ∼ C2 implies νxC1 ∼ νxC2 for all names x.
– C1 ≈ C2 implies νxC1 ≈ νxC2 for all names x.

Lemma 4 (∼ and ≈ are preserved by replication). Let C1 and C2 be two
components, then

– C1 ∼ C2 implies !C1 ∼ !C2

– C1 ≈ C2 implies !C1 ≈ !C2.



On the Power of Attribute-Based Communication 13

As an immediate consequence of Lemmas 2, 3, and 4, we have that ∼ and ≈
are congruence relations (i.e., closed under any context). We are now ready to
show that our bisimilarity represents a proof technique for establishing barbed
congruence. The proofs follow in a standard way.

Theorem 1 (Soundness). Let C1 and C2 be two components, then

– C1 ∼ C2 implies C1 � C2

– C1 ≈ C2 implies C1
∼= C2.

Lemma 5 (Completeness). Let C1 and C2 be two components, then

– C1 � C2 implies C1 ∼ C2

– C1
∼= C2 implies C1 ≈ C2.

Theorem 2 (Characterization). Bisimilarity and barbed congruence
coincide.

6 Encoding Channel-Based Interaction

The interaction primitives in AbC are purely based on attributes rather than
explicit names or channels. Attribute values can be locally modified. Modifying
attribute values introduces opportunistic interactions between components by
means of changing the set of possible interaction partners. The reason is because
selecting interaction partners depends on the predicates over attributes and this
is why modeling adaptivity in AbC is quite natural. This possibility is missing
in channel-based communication since internal actions and the opportunity of
interaction are orthogonal in those models.

We argue that finding a compositional encoding for the following simple
behavior is very difficult if not impossible in channel-based process calculi.

Γ1 : (msg, this.b)@(tt) ‖ Γ2 : ([this.a := 5]()@ff.P | (y ≤ this.a)(x, y).Q)

Table 7. Encoding bπ-calculus into AbC
Initially Γ1(b) = 3 and Γ2(a) = 2.
Changing the value of the local
attribute a to “5” by the left-hand side
process in the second component pro-
vides an opportunity of receiving the
message “msg” from the first compo-
nent.

On the other hand, in channel-
based communication, a channel
instantly appears at the time of
interaction and disappears afterwards.
This feature is not present in AbC
since attributes are persistent in the
attribute environment and cannot dis-
appear at any time. However, this is not



14 Y. Abd Alrahman et al.

a problem in that we can exploit the fact that AbC predicates can check the
received values. We simply add the channel name as a value in the message and
the receiver checks its compatibility with its receiving channel.

To show the correctness of this encoding, we choose bπ-calculus [8] as a
representative for channel-based process calculi. The bπ-calculus is a good choice
because it is based on broadcast rather than binary communication which makes
it a sort of variant of value-passing CBS [23]. Also, channels in bπ-calculus can
be communicated like in π-calculus [20]. We consider two level syntax for bπ-
calculus (i.e., only static contexts [19] are considered) as shown below.

P ::= G | P1‖P2 | νxP

G ::= nil | a(x̃).G | āx̃.G | G1 + G2 | (rec A〈x̃〉.G)〈ỹ〉
Dealing with one level bπ-syntax would not add difficulties related to channel

encoding, but only related to the encoding of parallel composition and name
restriction when occurring under a prefix or a choice. As reported in Table 7, the
encoding of a bπ-calculus process P is rendered as an AbC component �P �c with
Γ = ∅. The channel is rendered as the first element in the sequence of values.
For instance, in the output action (a, x̃)@(a = a), a represents the interaction
channel, so the input action (y = a)(y, x̃) will always check the first element of
the received sequence to decide whether to accept or discard the message. Notice
that the predicate (a = a) is satisfied by any Γ , however including the channel
name in the predicate is crucial to encode name restriction correctly.

Now, we prove that the encoding is faithful, i.e., preserves the semantics of
the original process. More precisely, we will prove the following Theorem:

Theorem 3 (Operational Correspondence). For any bπ process P ,

– (Operational completeness): if P �bπ P ′ then �P �c�
∗ � �P ′�c.

– (Operational soundness): if �P �c � Q then ∃P ′ such that P�∗
bπP ′

and Q �∗ � �P ′�c.
– (Barb preservation): both P and �P �c exhibit similar barbs i.e.,

P ↓bπ and �P �c ↓AbC.

The proof proceeds by induction on the shortest transition of →bπ. It shows
that we can mimic each transition of bπ-calculus by exactly one transition in
AbC. This implies that the completeness and the soundness of the operational
correspondence can be even proved in a stronger way as in corollaries 1 and 2.

Corollary 1 (Strong Completeness). if P �bπ P ′ then ∃Q such that
Q≡�P ′�c and �P �c � Q.

Corollary 2 (Strong Soundness). if �P �c � Q then Q ≡ �P ′�c and
P �bπ P ′

As a result of Theorems 2 and 3 and of the strong formulations of Corollaries 1
and 2, this encoding is sound and complete with respect to bisimilarity as stated
in the following corollaries.



On the Power of Attribute-Based Communication 15

Corollary 3 (Soundness w.r.t Bisimilarity).

– �P �c ∼ �Q�c implies P ∼ Q
– �P �c ≈ �Q�c implies P ≈ Q.

Corollary 4 (Completeness w.r.t Bisimilarity).

– P ∼ Q implies �P �c ∼ �Q�c

– P ≈ Q implies �P �c ≈ �Q�c.

7 Related Work

In this section, we report related works concerning languages and calculi with
primitives that either model multiparty interaction or enjoy specific properties.

AbC is inspired by the SCEL language [6,7] that was designed to support
programming of autonomic computing systems [24]. Compared with SCEL, the
knowledge representation in AbC is abstract and is not designed for detailed
reasoning during the model evolution. This reflects the different objectives of
SCEL and AbC . While SCEL focuses on programming issues, AbC concentrates
on a minimal set of primitives to study attribute-based communication.

Many calculi that aim at providing tools for specifying and reasoning about
communicating systems have been proposed: CBS [22] captures the essential
features of broadcast communication in a simple and natural way. Whenever a
process transmits a value, all processes running in parallel and ready to input
catch the broadcast. The CPC calculus [11] relies on pattern-matching. Input
and output prefixes are generalized to patterns whose unification enables a two-
way, or symmetric, flow of information and partners are selected by matching
inputs with outputs and testing for equality. The attribute π-calculus [16] aims
at constraining interaction by considering values of communication attributes.
A λ-function is associated to each receiving action and communication takes
place only if the result of the evaluation of the function with the provided input
falls within a predefined set of values. The imperative π-calculus [15] is a recent
extension of the attribute π-calculus with a global store and with imperative
programs used to specify constraints. The broadcast Quality Calculus of [27]
deals with the problem of denial-of-service by means of selective input actions.
It inspects the structure of messages by associating specific contracts to inputs,
but does not provide any mean to change the input contracts during execution.

AbC combines the learnt lessons from the above mentioned languages and
calculi in the sense that AbC strives for expressivity while preserving minimality
and simplicity. The dynamic settings of attributes and the possibility of inspect-
ing/modifying the environment gives AbC greater flexibility and expressivity
while keeping models as much natural as possible.

8 Concluding Remarks

We have introduced a foundational process calculus, named AbC , for attribute-
based communication. We investigated the expressive power of AbC both in



16 Y. Abd Alrahman et al.

terms of its ability to model scenarios featuring collaboration, reconfiguration,
and adaptation and of its ability to encode channel-based communication and
other interaction paradigms. We defined behavioral equivalences for AbC and
finally we proved the correctness of the proposed encoding up to some reason-
able equivalence. We demonstrated that the general concept of attribute-based
communication can be exploited to provide a unifying framework to encompass
different communication models. We developed a centralized prototype imple-
mentation for AbC linguistic primitives to demonstrate their simplicity and flex-
ibility to accommodate different interaction patterns.

We plan to investigate the impact of bisimulation in terms of axioms, proof
techniques, etc. for working with the calculus and to consider alternative behav-
ioral relations like testing preorders.

Another line of research is to investigate anonymity at the level of attribute
identifiers. Clearly, AbC achieves dynamicity and openness in the distributed
settings, which is an advantage compared to channel-based models. In our model,
components are anonymous, however the “name-dependency” challenge arises at
another level, that is, the attribute environments. In other words, the sender’s
predicate should be aware of the identifiers of receiver’s attributes in order to
explicitly use them. For instance, the sending predicate (loc =< 1, 4 >) targets
the components at location < 1, 4 >, however, different components might use
different identifiers to denote their locations; this requires that there should be
an agreement about the attribute identifiers used by the components. For this
reason, appropriate mechanisms for handling attribute directories together with
identifiers matching/correspondence will be considered. These mechanisms will
be particularly useful when integrating heterogeneous applications.

Further attention will be also dedicated to provide an efficient distributed
implementation for AbC linguistic primitives. We also plan to investigate the
effectiveness of AbC not only as a tool for encoding calculi but also for dealing
with case studies from different application domains.

References

1. Agha, G., Callsen, C.J.: ActorSpace: an open distributed programming paradigm,
vol. 28. ACM (1993)

2. Alrahman, Y.A., De Nicola, R., Loreti, M.: On the power of attribute-based com-
munication, extended report (2016)

3. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, SAC 2015, pp. 1840–1845. ACM (2015)

4. Bass, M.A., Nguyen, F.T.: Unified publish and subscribe paradigm for local and
remote publishing destinations, US Patent 6,405,266, 11 June 2002

5. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: a
comprehensive study. ACM Comput. Surv. 33, 427–469. ACM (2001). doi:10.1145/
503112.503113

6. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach to
autonomic computing. In: Boer, F.S., Bonsangue, M.M., Beckert, B., Damiani, F.
(eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)

http://dx.doi.org/10.1145/503112.503113
http://dx.doi.org/10.1145/503112.503113


On the Power of Attribute-Based Communication 17

7. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the scel language. ACM Trans. Auton. Adapt. Syst. 9, 1–29
(2014)

8. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In:
Parallel and Distributed Processing Symposium, International, vol. 3, p. 30149b.
IEEE Computer Society (2001)

9. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. (CSUR) 35(2), 114–131 (2003)

10. Ferscha, A.: Collective adaptive systems. In: Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2015 ACM International Symposium on Wearable Computers, pp. 893–895
(2015)

11. Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus. In: Calude,
C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 244–258. Springer,
Heidelberg (2010)

12. Antony Richard Hoare, C.: Communicating sequential processes. Commun. ACM
21(8), 666–677 (1978)

13. Holbrook, H.W., Cheriton, D.R.: Ip multicast channels: express support for large-
scale single-source applications. In: ACM SIGCOMM Computer Communication
Review, vol. 29, pp. 65–78. ACM (1999)

14. Honda, K., Yoshida, N.: On reduction-based process semantics. Theor. Comput.
Sci. 151(2), 437–486 (1995)

15. John, M., Lhoussaine, C., Niehren, J.: Dynamic compartments in the imperative
π-calculus. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp.
235–250. Springer, Heidelberg (2009)

16. John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M.: The attributed Pi-
calculus with priorities. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M.,
Uhrmacher, A.M. (eds.) Transactions on Computational Systems Biology XII.
LNCS, vol. 5945, pp. 13–76. Springer, Heidelberg (2010)

17. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations with the tota middleware. In: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications, 2004. PerCom 2004,
pp. 263–273. IEEE (2004)

18. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). doi:10.1007/3-540-10235-3

19. Milner, R.: Communication and Concurrency. Prentice-Hall Inc, Upper Saddle
River (1989)

20. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, ii. Inf. Comput.
100(1), 41–77 (1992)

21. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

22. Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2),
285–327 (1995)

23. Prasad, K.V.S.: A calculus of broadcasting systems. In: Abramsky, S. (ed.) CAAP
1991 and TAPSOFT 1991. LNCS, vol. 493, pp. 338–358. Springer, Heidelberg
(1991)

24. Sanders, J.W., Smith, G.: Formal ensemble engineering. In: Wirsing, M., Banâtre,
J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems. LNCS, vol.
5380, pp. 132–138. Springer, Heidelberg (2008)

25. Sangiorgi, D., Walker, D.: The pi-calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge (2003)

http://dx.doi.org/10.1007/3-540-10235-3


18 Y. Abd Alrahman et al.

26. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.,
Mcdermid, J., Paige, R.: Large-scale complex it systems. Commun. ACM 55(7),
71–77 (2012)

27. Vigo, R., Nielson, F., Nielson, H.R.: Broadcast, denial-of-service, and secure com-
munication. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
412–427. Springer, Heidelberg (2013)

28. Viroli, M., Damiani, F., Beal, J.: A calculus of computational fields. In: Canal,
C., Villari, M. (eds.) Advances in Service-Oriented and Cloud Computing, pp.
114–128. Springer, Heidelberg (2013)


	On the Power of Attribute-Based Communication
	1 Introduction
	2 The AbC Calculus
	3 AbC Operational Semantics
	3.1 Operational Semantics of Component
	3.2 Operational Semantics of System

	4 Expressiveness of AbC Calculus
	4.1 A Swarm Robotics Model in AbC
	4.2 Encoding Interaction Patterns

	5 Behavioral Theory for AbC
	6 Encoding Channel-Based Interaction
	7 Related Work
	8 Concluding Remarks
	References


