
A Visual Logical Language for System Modelling
in Combinatorial Test Design

Maria Spichkova1, Anna Zamansky2(B), and Eitan Farchi3

1 RMIT University, Melbourne, Australia
maria.spichkova@rmit.edu.au

2 University of Haifa, Haifa, Israel
annazam@is.haifa.ac.il

3 IBM Haifa Research Lab, Haifa, Israel

Abstract. This position paper addresses some weaknesses of the stan-
dard logical languages used for specification of system models in com-
binatorial test design. To overcome these weaknesses, we propose a new
logical language which uses visual elements with the aim to lower the
cognitive load of the modeller and thereby reduce the risk of modelling
errors.

Keywords: Cognitive aspects of modelling · Combinatorial test design

1 Introduction

Combinatorial Test Design (CTD) is an effective methodology for test design of
complex software systems, in which a system is modelled using a combinatorial
model [6,16]. The CTD approach aims to systematically optimise the number of
test cases, while ensuring the coverage of given conditions.

There is a large body of works on different aspects of CTD (see [6] for a
comprehensive survey), and numerous tools have been developed (e.g., 40 tools
are currently listed in [7]). However, according to [6], only 5 % of publications on
CTD address the process of constructing combinatorial models. As noted in [13],
“An under-explored challenge for wide deployment of CTD in industry is the
manual process for modelling and maintaining the test space”. Indeed, the task
of combinatorial model construction for complex systems heavily relies on tacit
human knowledge, and therefore will always remain the task of a human tester.
The complexity and error-prone nature of this task calls for more emphasis on
human-centric approaches for supporting CTD.

In previous works we have considered two directions for more human-centric
support of the manual process of combinatorial model construction: agile error
correction [15] and support of modelling with multiple levels of abstraction [11,
12]. In this paper, we focus on the logical language for specifying the restrictions
in combinatorial models and discuss how it can be modified to better serve the
needs of the human modeller.

c© Springer International Publishing Switzerland 2016
J. Krogstie et al. (Eds.): CAiSE 2016, LNBIP 249, pp. 116–121, 2016.
DOI: 10.1007/978-3-319-39564-7 12



A Visual Logical Language for System Modelling in CTD 117

The logical languages currently used in CTD tools are based on the standard
Boolean semantics. This semantics has been criticised as inadequate for support-
ing model evolution in [13], where a more sophisticated lattice-based semantics
was proposed. In this position paper we point out some implicit assumptions
which are made when using Boolean semantics in the context of CTD. We pro-
pose simple visual constructs to make these assumptions more explicit, thereby
reducing the cognitive load of the modeller when specifying the logical restric-
tions, as well as the chances for human errors. We show how these constructs
can be used as an alternative solution to the problems pointed out in [13].

2 Logical Restrictions in CTD Models

A combinatorial model, consists of a set of parameters, their respective pos-
sible values and a set of logical restrictions on the value combinations [6,16].
Thus, in CTD a system is modelled using a finite set of system parame-
ters A = {A1, . . . ,An} together with their corresponding associated values
V = {V(A1), . . . ,V(An)}. A scenario (or test) is an assignment of a value
from V(Ai) to each Ai. A combinatorial model for A is defined as a set of
scenarios (tests).

For an example, consider the standard toy combinatorial model often used in
CTD literature, cf. [13]. Suppose our system is modelled using three parameters:

– ItemStatus (denoted by IS)
– OrderShipping (denoted by OS)
– DeliveryTimeframe (denoted by DT)

Thus, the set of parameters is specified by A = {IS,OS,DT}, where the corre-
sponding values of the parameters are defined by

IS = {InStock,OutOfStock,NoSuchProduct}
OS = {Air,Ground}
DT = {Immediate, 3Days, 1Month}

Assuming that there are only three parameters in this example, a combinatorial
model of the system is a set of scenarios, (which are assignments of values to
parameters), such as:

s1 : (IS = InStock,OS = Air,DT = Immediate)
s2 : (IS = InStock,OS = Ground,DT = Immediate)

There are overall 18 possible scenarios in this example. However, in practice not
all the scenarios are executable: e.g., it is not possible to have an immediate
delivery time when the item is sent via ground. Therefore, the most challeng-
ing manual task in combinatorial modelling is separating the valid (executable)
scenarios, and ruling out the invalid ones.

Usually this is done by using some dialect of classical logic. Figure 1 presents
logical restrictions from a model for the above example, constructed using IBM
FoCuS tool (IBM Functional Coverage Unified Solution), cf. [10,14].



118 M. Spichkova et al.

Fig. 1. Logical restrictions in IBM FoCuS

The semantics of the logical languages used in the context of combinato-
rial modelling is (implicitly) assumed to be the standard Boolean semantics.
As we explain below, this implicit assumption may cause ambiguity and confu-
sion at the time of model construction. In [13] the Boolean semantics is also crit-
icised as inadequate for supporting model evolution. One of the main criticisms
is an inconsistent interpretation of test validity in case a new value is added.
Considering, e.g., the following logical restriction which can used to specify a
combinatorial model: R1 : DT = Immediate → OS �= Ground.

If a new value, e.g., Sea, is added to V(OS), then the test (scenario) s3 =
(IS = InStock,OS = Sea,DT = Immediate) is valid, according to R1. Now
the following restriction is equivalent to R1 in the sense that it induces the same
set of valid tests: R2 : DT = Immediate → OS = Air. But using R2 instead of
R1 renders s3 invalid, leading to an inconsistent interpretation of tests including
the new value Sea.

Tzoref-Brill and Maoz [13] propose an alternative, lattice-based semantics
to deal with the above problem, as well as another problem related to splitting
values of a parameter. Referring to alternative solutions, they note: “One may
suggest to remove the negation operator from the constraint language made avail-
able to the practitioner. While this will resolve the inconsistent interpretation, it
will extremely limit the flexibility of the practitioner to specify constraints in a
concise manner, and is thus infeasible in practice”.

We believe that the problematic negation operator is a symptom of a much
deeper problem: lack of explicit representation of extra assumptions made in the
CTD domain. The logic of CTD is related to classical logic in roughly the same
way as in database theory: quite similar, but the devil is in the details. More
concretely, a standard approach in database theory assumes the closed world
assumption (CWA), cf. [8], according to which whatever is not entailed by the
database is assumed to be false. A formalisation of this assumption, therefore,
consists in adding to the database the negations of all literals not entailed by it.
Another important issue in database theory is that of integrity constraints [9].
The idea is that only certain database states are considered acceptable, and an
integrity constraint is meant to enforce these legal states.

Assumptions close in spirit to the above are mirrored in the CTD domain.
The first is that whatever tests are not excluded by the logical restrictions, are
considered valid. The second is that each parameter A of the model may assume
exactly one of its possible values V(A).

We can now note the following: the two logical restrictions R1 and R2 are not
logically equivalent in first-order classical logic (with equality). They are equiva-
lent under the explicit integrity constraint IC1 : OS = Air∨OS = Ground. Note
also that after adding the new value Sea to V(OS), the integrity constraint IC1



A Visual Logical Language for System Modelling in CTD 119

becomes invalid. Hence, the answer to the question whether the test s3 is valid
depends on the assumed integrity constraint. Under the constraint IC1 above, it
is invalid. Under the refined constraint IC2 : OS = Air∨OS = Ground∨OS =
Sea. it is valid. Therefore, what is called in [13] inconsistent interpretation, can
be viewed as merely a change in the assumed integrity constraints.

3 A New Visual Logical Language

In light of the problems discussed above, our aim is to make the logical language
of CTD modelling less ambiguous by integrating explicitly the assumption that
any parameter A assumes exactly one value from V(A). In other words, given
V(A) = {v1, . . . , vn}, it holds that A = v1 ∨ A = v2 ∨ . . .A = vn. Thus,
if A �= vi, then the value of A belongs to the set {v1, . . . , vi−1, vi+1, . . . , vn}.
Drawing inspiration from the syntax of labelled formulas in non-classical logics
(cf. [1,2]), we think of the basic atomic formula in the proposed language as an
expression of the form: A : L, where L ⊆ V(A). This formula is supposed to be
true (or to hold) iff the value of A is an element of the set L.

The visual element corresponding to A : L explicitly contains both L and
V(A)\L. More concretely, any such element is represented a partition of V(A)
into valid and invalid elements, to remind the tester explicitly about the assump-
tions discussed above, cf. Fig. 2.

Fig. 2. Basic partition formula for a parameter A (Color figure online)

The above visual formula is equivalent to the Boolean formula (A = v1∨A =
v2 ∨A = v3 ∨A = v4) ∧A �= v3 ∧A �= v4, and so also entails A = v1 ∨A = v2.

It is important to note that negation is built-in already, by using different
colours to denote the valid and invalid values. This resolves the problematic
issues with using negation discussed above. This is not accidental that we used
light green colour to denote valid values, and grey to denote invalid values. This
conforms to the common standards in interface design, cf. [4]: grey is often used
to denote options that exist but are not accessible for some reasons. Moreover, we
would like to avoid combinations like green/red, which are perceived as aggressive
by many users, and, moreover, are not distinguishable by colour-blind users.
We also aim to avoid having areas of strong colour and high contrast, as they
can produce afterimages when the viewer looks away from the screen, which
increases the cognitive load and visual stress from prolonged viewing [3]. On



120 M. Spichkova et al.

addition to the (implicit) negation, the basic elements (or partitions) such as
the one demonstrated on Fig. 2 can be connected via the usual binary logical
operators of implication, conjunction and disjunction, whose semantics remains
standard (and self-explanatory). Figure 3 shows that, e.g., the logical restrictions
R1 and R2 described above have the same representation in our visual language:

Fig. 3. Representation of the logical conditions R1/R2

Note that our visual language provides simple and intuitive support for han-
dling the problems of refinement and splitting, discussed in [13]. For instance,
adding a new value ‘Sea’ to the Order Shipping (OS) parameter values should
enforce the modeller to make a decision where to place it in the formula: either
in the valid or invalid zone, see Fig. 4:

Fig. 4. Refining the logical condition when a new value is added

4 Summary and Future Research

The need for human-centric approaches in supporting the process of combina-
torial test design is increasingly acknowledged [6,13]. This paper explores how
standard logical languages used for the specification of model constraints can
be better adapted to the needs of the human modeller. We propose a variation
of a classical logic dialiect, in which implicit assumptions made in the context
of CTD are explicitly represented using visual elements. Our next step will be
implementing and evaluating a tool based on the principles proposed in this
paper. We also plan to extend this work to support model evolution [13], update
[10] and refinement [11]. Another interesting direction is investigating the ways
in which human-centric approaches of combinatorial test design can benefit from
the large body of research on cognitive effectiveness of visual notations, cf. [5].



A Visual Logical Language for System Modelling in CTD 121

References

1. Baaz, M., Fermüller, C., Salzer, G., Zach, R.: Labeled calculi and finite-valued
logics. Stud. Logica. 61(1), 7–33 (1998)

2. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled
calculi. J. Autom. Reasoning 51(4), 401–430 (2013)

3. MacDonald, L.: Using color effectively in computer graphics. IEEE Comput.
Graph. Appl. 19(4), 20–35 (1999)

4. Marcus, A.: Siggraph’93 tutorial notes: graphic design for user interfaces (1993)
5. Moody, D.: The “physics” of notations: toward a scientific basis for constructing

visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

6. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. (CSUR)
43(2), 11 (2011)

7. Pairwise Testing Website. http://www.pairwise.org/tools.asp
8. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic

and Data Bases, pp. 55–76. Springer, Heidelberg (1978)
9. Reiter, R.: On integrity constraints. In: Proceedings of the 2nd Conference on The-

oretical Aspects of Reasoning about Knowledge, pp. 97–111. Morgan Kaufmann
Publishers Inc. (1988)

10. Segall, I., Tzoref-Brill, R.: Interactive refinement of combinatorial test plans.
In: 2012 34th International Conference on Software Engineering (ICSE),
pp. 1371–1374 (2012)

11. Spichkova, M., Zamansky, A.: A human-centred framework for combinatorial test
design. In: Proceedings of ENASE (2016)

12. Spichkova, M., Zamansky, A., Farchi, E.: Towards a human-centred approach in
modelling and testing of cyber-physical systems. In: Proceedings of the Interna-
tional Workshop on Automated Testing of Cyber-Physical Systems in the Cloud
(2015)

13. Tzoref-Brill, R., Maoz, S.: Lattice-based semantics for combinatorial model evolu-
tion. In: Finkbeiner, B., et al. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 276–292.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24953-7 22

14. Wojciak, P., Tzoref-Brill, R.: System level combinatorial testing in practice-the
concurrent maintenance case study. In: Proceedings of the 2014 IEEE International
Conference on Software Testing, Verification, and Validation, pp. 103–112. IEEE
Computer Society (2014)

15. Zamansky, A., Farchi, E.: Helping the tester get it right: towards supporting agile
combinatorial test design. In: 2nd Human-Oriented Formal Methods workshop
(HOFM 2015) (2015)

16. Zhang, J., Zhang, Z., Ma, F.: Introduction to combinatorial testing. In: Zhang,
J., Zhang, Z., Ma, F. (eds.) Automatic Generation of Combinatorial Test Data.
SpringerBriefs in Computer Science, pp. 1–16. Springer, Heidelberg (2014)

http://www.pairwise.org/tools.asp
http://dx.doi.org/10.1007/978-3-319-24953-7_22

	A Visual Logical Language for System Modelling in Combinatorial Test Design
	1 Introduction
	2 Logical Restrictions in CTD Models
	3 A New Visual Logical Language
	4 Summary and Future Research
	References


