
‘Mathematical’ Does Not Mean ‘Boring’:
Integrating Software Assignments to Enhance
Learning of Logico-Mathematical Concepts

Anna Zamansky1(B) and Yoni Zohar2

1 University of Haifa, Haifa, Israel
annazam@is.haifa.ac.il

2 Tel Aviv University, Tel-Aviv, Israel
yoni.zohar@cs.tau.ac.il

Abstract. Insufficient mathematical skills of practitioners are hypoth-
esized as one of the main hindering factors for the adoption of formal
methods in industry. This problem is directly related to negative atti-
tudes of future computing professionals to core mathematical disciplines,
which are perceived as difficult, boring and not relevant to their future
daily practices. This paper is a contribution to the ongoing debate on how
to make courses in Logic and Formal Methods both relevant and engaging
for future software practitioners. We propose to increase engagement and
enhance learning by integrating ‘hands-on’ software engineering assign-
ments based on cross-fertilization between software engineering and logic.
As an example, we report on a pilot assignment given at a Logic and For-
mal Methods course for Information Systems students at the University
of Haifa. We describe the design of the assignment, students’ feedback
and discuss some lessons learnt from the pilot.

Keywords: Education · Teaching · Automated reasoning · Software
engineering · Logic · Testing · Engagement

1 Introduction

Core mathematical disciplines, such as discrete mathematics and logic, provide
the foundations for application of formal methods (FM) in the software engineer-
ing domain. Deficient mathematical skills, and as a result, inability to cope with
formal notations, are hypothesized as hindering factors for wider adoption of
formal methods in industry ([4,12]). However, the question of how to teach core
disciplines to future software engineering and information systems practitioners
remains a subject of a fierce debate.

Recent voices [10,20,21] call for rethinking the traditional syllabi of mathe-
matical courses, adapting them to the needs of practitioners and making them
more tuned towards application of formal methods in the software domain. A
notable study in this context is the Beseme project ([14]), which provides empir-
ical evidence that studying discrete mathematics through examples focused on
c© Springer International Publishing Switzerland 2016
J. Krogstie et al. (Eds.): CAiSE 2016, LNBIP 249, pp. 103–108, 2016.
DOI: 10.1007/978-3-319-39564-7 10



104 A. Zamansky and Y. Zohar

reasoning about software can improve students’ programming skills. As pointed
out by [17], software-related examples are also useful for increasing the moti-
vation of students, who can see the applications of the studied material in the
domain of their interest. And yet, although the importance of building bridges
from logico-mathematical courses to software engineering seems to be widely
acknowledged, discussions on practical ways of how this should be done are
scarce in the literature.

Empirical studies have shown that students experience more difficulty with
concepts from logic than with other computer science topics [1]. Together with
a general tendency towards “softening” the teaching of engineering principles
noted by [12], it leads to a vicious circle of students’ lack of motivation, and
perception of logico-mathematical courses as ‘boring’, ‘difficult’, ‘detached and
esoteric’.

In this paper we address the problem of increasing engagement and enhancing
learning of logico-mathematical concepts by future software engineering practi-
tioners in a practical way. More concretely, we propose to integrate in logic
courses ‘hands-on’ software-related assignments. Such assignments could involve
solving a given algorithmic problem with the help of a FM tool (e.g., SAT-
solver or theorem prover). Alternatively, it could involve applying SE techniques
already familiar to the students to FM systems and tools (e.g., designing a test
plan or writing an SRS for a theorem prover). The rationale behind this idea is
quite self-explanatory: logical concepts such as satisfiability, theorem, proof sys-
tem, usually taught in a theoretical, ‘paper and pencil’-like way, are transformed
and “come to life” in the world of software, made into runnable, testable objects,
which feel more real to most SE students. Specifying, validating, running and
testing these objects can provide new insights into the nature of these concepts,
as the students have a different angle of thinking about them. Having qualitative
means to measure success in such assignments may also introduce an element of
competitiveness and naturally increases engagement.

As simple as the above idea may sound, the devil is in the details, and the
design and realization of such assignments calls for careful consideration with
respect to both the educator and the student. Not all logic educators (especially
those from math departments) are familiar with the intricacies of software tools.
Moreover, many logic-related tools have heavy implementations, involve complex
heuristics and may easily cause the “not seeing the forest for the trees” effect.
The assignments, therefore, should be easy to replicate and not overflowing with
technical details, while still being engaging and fun.

As a first step to implementing the above ideas, in what follows we report on
an assignment we have designed and experimented with in two different Logic
courses at the University of Haifa. The assignment is based on testing the generic
theorem prover Gen2sat.1 We describe the outcome and the feedback received
from students and discuss lessons learnt from running this pilot.

1 The tool, developed by the second author, is available at http://www.cs.tau.ac.il/
research/yoni.zohar/gen2sat.html. The implementation is based on the algorithm
in [9].

http://www.cs.tau.ac.il/research/yoni.zohar/gen2sat.html
http://www.cs.tau.ac.il/research/yoni.zohar/gen2sat.html


‘Mathematical’ Does Not Mean ‘Boring’ 105

2 Previous Works

Mathematics anxiety is a well-studied phenomenon in education, described as
involving feelings of tension and anxiety that interfere with the manipulation of
numbers and the solving of mathematical problems (cf. [15]); This phenomenon
may be particularly severe in the domain of mathematical logic: empirical studies
show that students struggled more with questions related to logic than with those
related to other computer science topics (cf. [1]). There have been attempts to
develop more intuitive formalisms for teaching logic (e.g., Sowa’s conceptual
graphs [16]).

In the context of software engineering education, while numerous works
discuss teaching of more advanced formal methods, basic logico-mathematical
courses have received less attention in this context. Recently, however, more
voices are calling for reconsideration of the traditional syllabi in these courses
and its adaptation to the needs of future practitioners [10,11,19,21] . As noted
by [11], “The current syllabus is often justified more by the traditional narrative
than by the practitioners needs.” [19] further notes: “...we still face the edu-
cational challenge of teaching mathematical foundations like logic and discrete
mathematics to practicing or aspiring software engineers. We need to go beyond
giving the traditional courses and think about who the target students are.”

The Beseme project ([14]) provides an empirical validation to the common
belief that studying logico-mathematical courses may improve software develop-
ment skills. In a three-year study empirical data on the achievements of two stu-
dent populations was collected: those who studied discrete mathematics (includ-
ing logic) through examples focused on reasoning about software, and those who
studied the same subject illustrated with more traditional examples. An analysis
of the data revealed significant differences in the programming effectiveness of
these two populations in favor of the former.

Tavolato and Friedrich [17] offers insights into integrating basic formal meth-
ods courses at universities of applied sciences, where there are usually limiting
factors which are relevant to the IS context as well: (i) students have very limited
theoretical background, and (ii) they are strongly focused on the direct applica-
bility of what they are taught. In this context the authors stress the importance
of making the practical applicability of the theory understandable to students,
and making use of real software-related examples.

3 The Gen2sat Assignment

The first author has been teaching the Logic and Formal Methods course for
Information Systems students at the University of Haifa for several years. The
course covers introduction to logic and formal specification for the target audi-
ence of graduate students, many of whom already work in the industry, and a
long time has passed since they took the basic mathematical courses (see [21] for
further details on the challenges of logic course design for this target audience).

Looking for means to boost their motivation, we came up with the idea of
an assignment that would have the “look and feel” of a software engineering



106 A. Zamansky and Y. Zohar

assignment, so that its domain would be logic. We hoped that “tricking” the
students into exercising their SE skills in the subject matter of logic would in
fact encourage them to think of logical concepts in a way that would be both
fun and beneficiary. Our main challenge was finding the right balance between
requiring the students to dive into software technical details to keep the assign-
ment interesting and related to SE, while still emphasizing enough the logical
content as their main take-away message. In what follows we describe a concrete
way we attempted to address this challenge.

3.1 Gen2sat

The choice of an appropriate software tool for ‘hands-on’ assignments in logic
courses depends on what it is that we want to teach, and how we want to teach
it. An interesting direction to consider in this context is the ‘logic engineering’
paradigm, ([2,13]) which aims to provide tools for automatic support of investi-
gation of logics. In the spirit of this paradigm, various tools (e.g., MultLog ([3]),
TINC ([5]), MetTeL ([18]) etc.) address large families of logics, thereby provid-
ing a “bird-view” of such logical concepts as semantics, proof system, axiom,
theorem, etc. The tool Gen2sat is also a contribution to this paradigm, aiming
to support the use of sequent calculi for the specification of logics. Sequent cal-
culi are a prominent proof-theoretic framework, suitable for a wide variety of
different logics, and quite a mainstream topic in logic and automated reasoning
courses. Most efficient theorem provers based on sequent calculi utilize complex
proof search algorithms which require a great deal of ingenuity and heuristic
considerations (see, e.g., [6]). In contrast, Gen2sat uses a uniform method for
deciding derivability using the polynomial reduction of [9] to SAT. Shifting the
intricacies of implementation and heuristic considerations to the realm of off-
the-shelf SAT solvers, the tool is lightweight and focuses solely on the logical
content. For these reasons we chose Gen2sat as a tool for enhancing learning of
the concept of sequent calculi. In addition, our deep familiarity with the code
allowed us to introduce changes (e.g., planting bugs, changing the way the tool
is called etc.) quickly and efficiently.

3.2 The Assignment

After teaching sequent calculi (in a two hour lecture), we introduced Gen2sat
in class and explained its functionality and features. The students were then
requested to play the role of testers of the tool. More concretely, they were
requested to provide a test plan (as small as possible) which would cover all
possible scenarios the tool could encounter. For a quantifiable measure for success
we used a standard approach of measuring code coverage, instructing them to
install the Eclemma plug-in for Eclipse ([7]) in order to determine the percentage
of code activated for a given input. Thus, basically the students’ assignment
was producing a minimal test plan that would achieve maximal code coverage.
While writing and analyzing different inputs to the tool, the students would



‘Mathematical’ Does Not Mean ‘Boring’ 107

potentially gain insights into the wide variety of non-classical logics defined in
terms of sequent calculi.

In the second pilot we went one step further, introducing several easily
detectable2 bugs into Gen2sat code in the style of mutation testing ([8]), and
encouraged the students to report as many bugs as they could find.

3.3 Results and Feedback

Eight students participated in the first pilot, all of them ended up submitting3

test plans which achieved between 70 % – 85 % coverage, and included non-trivial
sequent calculi for different languages. Five students participated in the second
pilot, all of them got at least 70 % coverage, and two of them revealed two (out
of three) bugs.

After submission they filled in an anonymous feedback questionnaire. Several
students pointed out that the assignment was helpful in understanding logical
concepts, e.g., “it helped me see the variety of different connectives and rules”,
“for me thinking of the extreme cases was really illuminating”. The majority of
students found the assignment engaging and fun: “Really fun and challenging!”,
“It’s like a logical riddle, a game I enjoyed playing.”, “I was sucked into this
assignment and did not quit until I found a bug”, etc. Notably, after receiving
detailed instructions how to install Eclemma and use the code of the tool, no
technical difficulties were reported by the students.

4 Summary and Future Research

In this paper we have described a practical way of enhancing the learning of
concepts in formal logic using software-related assignments. Although drawing
concrete conclusions is still premature, we believe that the pilot reported above
is an indication of the potential of integrating hands-on assignments based on an
interplay between software engineering and logic. It is our hope that this paper
will initiate discourse on collecting and evaluating easy-to-use and shareable
teaching resources which could be used in a ‘plug-and-play’ manner for teaching
logico-mathematical concepts in ways relevant for modern software practitioners.

References

1. Almstrum, V.L.: Investigating student difficulties with mathematical logic.
In: Dean, N., Hinchey, M.G. (eds.) Teaching and Learning Formal Methods,
pp. 131–160. Academic Press, Cambridge (1996)

2 The were two types of bugs: (i) those which caused unexpected messages to be
printed, and (ii) those which produced unexpected results, e.g., refuting an axiom.

3 Interestingly, seven students employed new connectives with arity greater than 2 and
three employed also 0-ary connectives (which indeed increased coverage), although
they have not seen any such example in class.



108 A. Zamansky and Y. Zohar

2. Areces, C.E.: Logic Engineering: The Case of Description and Hybrid Logics. Insti-
tute for Logic, Language and Computation (2000)

3. Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: Multlog 1.0: towards an expert
system for many-valued logics. In: McRobbie, M.A., Slaney, J.K. (eds.) Automated
Deduction–Cade-13. LNCS, vol. 1104, pp. 226–230. Springer, Heidelberg (1996)

4. Bjørner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42–61. Springer, Heidelberg (2014)

5. Ciabattoni, A., Spendier, L.: Tools for the investigation of substructural and para-
consistent logics. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761,
pp. 18–32. Springer, Heidelberg (2014)

6. Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 179–272. MIT Press,
Cambridge (2001)

7. Hoffmann, M., Iachelini, G.: Code coverage analysis for eclipse. Eclipse Summit
Europe (2007)

8. Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Trans.
Softw. Eng. SE–8(4), 371–379 (1982)

9. Lahav, O., Zohar, Y.: SAT-based decision procedure for analytic pure sequent
calculi. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS,
vol. 8562, pp. 76–90. Springer, Heidelberg (2014)

10. Makowsky, J.: Teaching logic for computer science: are we teaching the wrong
narrative? In: Fourth International Conference on Tools for Teaching Logic, TTL
(2015)

11. Johann, A.: Makowsky.: from Hilberts program to a logic tool box. Ann. Math.
Artif. Intell. 53(1–4), 225–250 (2008)

12. Mandrioli, D.: On the heroism of really pursuing formal methods. In: 2015
IEEE/ACM 3rd FME Workshop on Formal Methods in Software Engineering
(Formalise), pp. 1–5. IEEE (2015)

13. Ohlbach, H.J.: Computer support for the development and investigation of logics.
Logic J. IGPL 4(1), 109–127 (1996)

14. Page, R.L.: Software is discrete mathematics. In: ACM SIGPLAN Notices, vol. 38,
pp. 79–86. ACM (2003)

15. Sherman, B.F., Wither, D.P.: Mathematics anxiety and mathematics achievement.
Math. Educ. Res. J. 15(2), 138–150 (2003)

16. Sowa, J.F.: Conceptual graphs as a universal knowledge representation. Comput.
Math. Appl. 23(2), 75–93 (1992)

17. Tavolato, P., Vogt, F.: Integrating formal methods into computer science curricula
at a university of applied sciences. In: TLA+ Workshop at the 18th International
Symposium on Formal Methods, Paris, Frankreich (2012)

18. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: Mettel2: towards a tableau prover
generation platform. In: PAAR@ IJCAR, pp. 149–162 (2012)

19. Wing, J.M.: Teaching mathematics to software engineers. In: Proceedings 4th Inter-
national Conference Algebraic Methodology and Software Technology, AMAST
1995, Montreal, Canada, 3–7 July, 1995, pp. 18–40 (1995)

20. Wing, J.M.: Invited talk: weaving formal methods into the undergraduate com-
puter science curriculum. In: Rus, T. (ed.) Algebraic Methodology and Software
Technology. LNCS, vol. 1816, pp. 2–7. Springer, Heidelberg (2000)

21. Zamansky, A., Farchi, E.: Teaching logic to information systems students: chal-
lenges and opportunities. In: Fourth International Conference on Tools for Teach-
ing Logic, TTL (2015)


	`Mathematical' Does Not Mean `Boring': Integrating Software Assignments to Enhance Learning of Logico-Mathematical Concepts
	1 Introduction
	2 Previous Works
	3 The Gen2sat Assignment
	3.1 Gen2sat
	3.2 The Assignment
	3.3 Results and Feedback

	4 Summary and Future Research
	References


