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Abstract. We study the feasibility of touch gesture behavioural biomet-
rics for implicit authentication of users on smart glasses by proposing a
continuous authentication system on Google Glass using two classifiers:
SVM with RBF kernel, and a new classifier based on Chebyshev’s concen-
tration inequality. Based on data collected from 30 users, we show that
such authentication is feasible both in terms of classification accuracy
and computational load on Glass. We achieve a classification accuracy
of up to 99 % with only 75 training samples using behavioural biomet-
ric data from four different types of touch gestures. To show that our
system can be generalized, we test its performance on touch data from
smartphones and found the accuracy to be similar to Glass. Finally,
our experiments on the permanence of gestures show that the negative
impact of changing user behaviour with time on classification accuracy
can be best alleviated by periodically replacing older training samples
with new randomly chosen samples.

1 Introduction

Since many wearable devices store highly sensitive user information such as
health data, a secure and usable authentication mechanism to restrict access
to unauthorized users is paramount. A straightforward solution is entry-point
authentication relying on personal identification numbers (PINs), passwords or
graphical patterns [18]. However, frequent use of entry-point authentication
potentially disrupts user activities [2,4]. Moreover, in comparison to smart-
phones, unlocking patterns on wearable devices such as Google Glass are more
vulnerable to shoulder-surfing [14,19] since the Glass touchpad is easily observ-
able from a distance.

An alternative is to use an implicit and continuous authentication system,
which runs in the background without disrupting the user, and authenticates
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the user whenever he/she performs a designated action, which in our case is
using the touchpad. The system only triggers entry-point authentication if an
intrusion is detected. Provided the method is reliable, this approach reduces
the number of times a legitimate user needs to undergo entry-point authenti-
cation. Many continuous authentication schemes have previously been proposed
in the literature for smartphones [7,9,10,19], however, they may not provide
similar accuracy or may be computationally heavy on wearables such as Glass.
A smaller touchpad of Glass compared to a smartphone is likely to show less
variation in gestures across different users, thereby impacting accuracy. Also,
running computationally expensive applications can deplete the battery faster
on Glass [11].

These factors motivate a feasibility study of continuous authentication on
wearables. Towards this goal, in this paper, we assess the feasibility of contin-
uous authentication on Glass. Our key contributions are as follows. First, to
the best of our knowledge, we are the first to study the feasibility of touch ges-
ture based continuous authentication on smart glasses in terms of classification
accuracy and computational cost by using Google Glass as a use case. Although
Glass itself may or may not be continued as a product, our work is still rele-
vant since our scheme can be extended to other smart glasses with touchpads
namely RECON, SiME, GlassUP, ORA-S and Icis, as well as other touchpad
devices, e.g., smartphones. Second, we model a touch gesture as one or more
forces applied on the touchpad by the user’s finger over the duration of the ges-
ture. A resulting novel feature is the downward force feature which is a product
of pressure and size values extracted from the device’s touch event.

Third, to authenticate the user, besides using support vector machine (SVM)
with Gaussian radial basis function (RBF) classifier (widely used for con-
tinuous authentication on smartphones), we introduce a new classifier based
on Chebyshev’s concentration inequality. Previous research on touch gesture
based continuous authentication on smartphones has shown that during test-
ing (authentication), instead of using features from a single sample of a gesture,
using features from a block of samples of the gesture shows improved classi-
fication accuracy [7,10,15]. We note that this observation implicitly uses the
assumption that the average value of a feature over a block is more likely to
be concentrated around the mean. The justification of this comes from con-
centration inequalities, which give probabilistic bounds on the deviation of the
average of identically distributed random variables from their true mean. This
led us to propose the Chebyshev classifier. Lastly, by extending our experiments
to smartphone touch data, we find that the size of the touchpad has an effect
on classification accuracy; smaller touchpads, as in smart glasses, exhibit less
variation across users.

2 Related Work

Entry Point Authentication: Zheng et al. [20] collected the tapping behaviour
of 80 different users when entering PINs on smartphones and extracted four
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features (acceleration, pressure, size, and time) from the collected data, achieving
a 3.65 % equal error rate. Shahzad et al. [16] created a system named GEAT.
However, unlike the scheme proposed by Zheng et al., GEAT differentiates the
user on the basis of their sliding behaviour and uses unique features such as
finger velocity, device acceleration, and slide time, achieves a 0.5 % equal error
rate. Similarly, Luca et al. [6] exploit user sliding behaviour while unlocking
smartphone patterns, achieving an accuracy of around 50 %. In comparison to
the these works, our study focuses on continuous authentication.

Continuous Authentication: Numerous schemes [3,7,10,19] have been proposed
for continuous authentication on smartphones. Hui et al. [19] collected data from
31 volunteers for different touch operations such as keystroke, slide, pinch and
handwriting to test their continuous authentication scheme and showed that
the slide gesture is the best in classifying users, while handwriting performs the
worst. Similarly, Frank et al. [7] proposed a scheme using a set of 30 touch-based
features and tested it on 41 users. Their classifier achieved a median equal error
rate of 0 % within the same usage session and 2–3 % across different sessions. The
reason why these two schemes achieve exceptionally high authentication accuracy
might be due to the fact that users were static and were given specific tasks to be
performed. In comparison, we did not enforce any such restriction on the users.
Li et al. tested a continuous authentication scheme based on sliding and tap
gestures [10] and extracted features such as the position and area of first touch,
duration and average curvature of slide. SilentSense [3] used finger movements
and user motion patterns and achieved 99 % accuracy. In contrast to our study,
the temporal effect of user behaviour on accuracy is not studied in the last two
schemes. A more recent work from Mondal and Bours [12] uses a trust-based
approach for continuous authentication, where instead of waiting for a fixed
number of gestures from the user before making a decision, the system updates
its trust value, about the current user being the target user, with every gesture
and locks the user when the trust value falls below a pre-defined threshold. This
approach can be applied to any continuous authentication mechanism including
ours.

A somewhat related topic is the recently introduced sensor-enhanced key-
stroke dynamics [8], which augments traditional timing-based keystroke dynam-
ics with motion sensors available on smart devices. Not only does this approach
increase the accuracy of traditional keystroke dynamics and gesture-based
authentication [8], it has also been shown to be more resistant to statistical
attacks using general population statistics [17].

Overall our work is different from previous works in three major ways: (1) we
assess the feasibility of touch gestured based continuous authentication on smart
glasses. Smart glasses, such as Google Glass, present unique challenges such as
smaller form factor and lesser computational power compared to smartphones,
(2) we propose a new classifier based on concentration inequalities, and (3) we
propose new force-based features.
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3 Background

The Google Glass: Google Glasses (cf. Fig. 1a) contain an optical display
mounted on the lens, which contains a small screen (cf. Fig. 1b). The user can
navigate using voice commands or by interacting with the touchpad located on
the side through taps or swipes (forward, backward or downward). Swipes can
be done through one, two or three fingers. Note that not all apps (cards) and
their menu items can be interacted using voice and require a touch gesture.

(a) Frame (b) Display

Fig. 1. The Google glass (images courtesy of Wikipedia and Google).

Definitions: For the rest of this paper, a gesture is defined as a tap or a swipe
with one finger on the touchpad. For each gesture, the set of data recorded
by the Glass touchpad, e.g., the point of contact, is called a sample. A sample
contains a time-ordered sequence of one or more readings, which correspond
to data recorded at different discrete time intervals during the duration of a
gesture. Each reading contains data corresponding to one or more variables called
features. The authentication mechanism takes as input a set of gestures and
either (implicitly) accepts or rejects the user depending on whether or not the
set matches the gestures of the target user. True positive rate (TPR) is defined
as the fraction of times the target user is correctly accepted. False positive rate
(FPR) is defined as the fraction of times the attacker is (wrongly) accepted as
the target user. Equal error rate (EER) is defined as the rate at which both
acceptance and rejection errors are equal, i.e., when 1 − TPR = FPR. EER is
widely used as a measure of classification accuracy. A related measure is the
average error rate (AER), which is defined as 1

2 (1 − TPR + FPR) and is useful
when EER is unknown. Receiver operating characteristic (ROC) curve shows the
trend of TPR against FPR. Variability in these rates is introduced by changing
different parameter values of the authentication system.

4 Continuous Authentication for Google Glass

4.1 Architecture

The proposed system architecture, as shown in Fig. 2, has a training and a testing
phase. The system listens for gesture events that are triggered whenever the
user performs gestures on the touchpad. Once an event is triggered, elementary
features such as the start and end point of gestures are extracted. From the
start and end points, the gesture type (tap, forward, backward or downward
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swipe) is identified, after which higher-level features, e.g., force exerted on the
touchpad, are derived. Some of the features in our system are derived as a
function of time and require further processing for consistent inter-comparison.
After going through this post-processor, our system feeds the resulting features
to the classifier. During training, the classifier generates different classification
models for different gesture combinations. During the testing phase, real-time
gesture data from the current user is processed to obtain the feature sets as
above, which are then fed to the classifier for prediction.
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event
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feature 

extractor

Derived 
feature 

extractor

Classifier: 
Model 

generator

Classifier:
Predictor Attack?

Notify user
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Fig. 2. System architecture.

4.2 Data Collection

We collected data for four gestures: tap, forward swipe, backward swipe, and
downward swipe from the Glass touchpad (v 18.1, Android) using a background
process, which reads the raw touch data values at runtime. Glass is equipped
with the Synaptics T1320 touchpad. More technical details, such as the structure
of touch packets, are given in the full paper. We selected 30 volunteers consisting
of 8 females and 22 males within the 18–45 age bracket and asked them to use
Google Glass for a few hours. All were colleagues and students with a computer
science background. They were free to explore Glass as they liked and use any
application installed on the device. Each user was trained how to operate Glass
prior to data collection. Table 1 shows the quantity of gesture data collected from
the users. Forward swipe is the most frequently used gesture, followed by the tap;
downward swipe being the least frequent gesture. Backward swipes can be used
in place of forward swipes to navigate in the opposite direction, explaining their
relatively less usage. Moreover, downward swipes are mostly used for quitting
an app or cancelling an action and hence their frequency is the lowest.

Table 1. Total number of samples, average and minimum sample size per user, and
average gap (in seconds) for gestures obtained in our user study.

Gesture Total Ave. sample size Min. sample size Average gap

Tap (T) 4932 164.4 60 13

Forward swipe (F) 7874 262.46 67 8

Backward swipe (B) 3257 108.56 37 17

Downward swipe (D) 1525 50.83 11 32
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Fig. 3. Force based gesture models: (a) the tap force, (b) the magnitude of the force
curve Fz(t) over the interval Δt, (c) the two forces active during a swipe, and (d) the
source of the force Fxy estimated through the angle θ.

4.3 Gesture Model and Feature Extraction

We model the touchpad as a rectangle R on a two dimensional xy-plane, where
the origin is the bottom-left corner. We distinguish between two types of gestures,
tap (T) and swipe. Swipe is further divided into forward (F), backward (B) and
downward (D). We model each gesture as one or more forces (exerted by user’s
finger) acting over the course of a gesture. Our main assumption is that the
magnitude and source of these forces over the time duration of the gesture are
characteristics of a user.

Modelling the Tap Gesture: The tap is characterised by the downward force
applied by the finger on the touchpad. This force, denoted Fz, acts downwards
on R, i.e., along the z-axis. The source is the point on R where the user taps.
This is shown in Fig. 3a. The magnitude of Fz is calculated using pressure P
and area (size) A readings from the touch event as Fz = PA. Note that our
hypothesis is that it is the correlation between the pressure and area values that
is expected to be consistent across samples, instead of treating the two separately,
as is done in [6] for instance. As the tap is performed over a time interval, say
Δt, we denote the magnitude of Fz over time as Fz(t), which is a time series.
Figure 3b visualises the possible shape of Fz over the duration of tap. Fz(t) can
be calculated over discrete points t in the interval Δt through corresponding
pressure and area values. We also use tap duration (Δt) as a feature.

Modelling the Swipe Gesture: We model a swipe as two forces acting on R simul-
taneously. The first is Fz, the force acting downwards on R, as in the case of
tap. The second, denoted Fxy, is a force acting along the direction of swipe (xy-
plane). These two forces are visualized in Fig. 3c. To estimate the source of Fz,
we use the start point (x0, y0) and the end point (x1, y1) of the swipe. The source
of the force Fxy is estimated as the angle θ between the straight line joining these
two points and the y-axis as shown in Fig. 3d. To estimate the duration of the
forces, in addition to the swipe duration Δt, we also include the swipe length
l. The magnitude of Fz is again estimated as the time series Fz(t) of individ-
ual pressure and area (PA) values. The magnitude of Fxy is also modelled as a
time series Fxy(t) with the difference that individual values are the magnitude of
velocity at discrete time intervals. This is done since in classical mechanics, force
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Table 2. List of features.

Gesture # Feature Symbol Gesture # Feature Symbol

Tap 1 tap x-coordinate x Swipe 1 start pt. x-coordinate x0

2 tap y-coordinate y 2 start pt. y-coordinate y0

3 down. force time series Fz(t) 3 end pt. x-coordinate x1

4 tap duration Δt 4 end pt. y-coordinate y1

5 angle θ

6 down force time series Fz(t)

7 planar force time series Fxy(t)

8 swipe duration Δt

9 swipe length l

is considered proportional to acceleration which can be determined by change in
velocity. Table 2 summarizes the list of features.

Post-processing the Time Series: The time series for the magnitude of force
(Fz(t) and Fxy(t)) can be misaligned due to the non-uniform sampling rate of the
device and difference in duration of the gesture. To get a consistent comparison
of time series from different readings, we do the following: (a) we align the first
sample of the two time series at time t = 0; (b) we resample each time series
at intervals of tint = 0.01 s (slightly lower than the system average of ≈ 0.012 s)
similar to the approach is used in [16]; (c) we use a cut-off point toff = 0.3, after
which all values are discarded. Most time series span an interval Δt, which is
less than toff . For such cases, all values at time Δt < t < toff are mapped to 0.

4.4 Chebyshev Classifier

Many researchers have indicated that a block of samples used for testing shows an
improved performance over using individual samples [7,10,15], where the aver-
age reading of the feature over the block is used as a single instance for input to
the classifier. We note that if a sample block is to be used, a classifier based on
concentration inequalities can be employed. A concentration inequality bounds
the probability that a random variable deviates from its expected value. The
deviation from the expected value decreases (probabilistically) with an increase
in the block size of identically distributed random variables. We thus propose
a one class classifier based on the concentration inequality called Chebyshev’s
inequality. The use of this inequality is not unprecedented in anomaly or outlier
detection in a somewhat different manner [1]. A further advantage of Cheby-
shev’s inequality is that it does not make any assumptions on the probability
distribution of data (which may be unimodal or multimodal).

Let X be a random variable representing a unitary feature, i.e., any feature
other than a time-series based feature. Let x = (x1, . . . , xn) denote n samples of
this unitary feature. The corresponding random variables are denoted X1, . . . , Xn.
We assume that these random variables are independent and identically distrib-
uted (i.i.d.), since they correspond to different samples (of the same gesture type).
Let E[X] = μX and Var[X] = σ2

X denote the expected value (mean) and
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variance of X, respectively. Then for any τ > 0, Pr [|X − E[X]| ≥ τ ] ≤ Var[X]
τ2 ⇒

Pr [|X − μX | ≥ τ ] ≤ σ2
X

τ2 is known as Chebyshev’s inequality [13, Sect. 8, p. 431].
Consider the random variable Sn = 1

n

∑n
i=1 Xi. Since the Xi’s are i.i.d., we have

E[Sn] = 1
n

∑n
i=1 E[Xi] = n

nμX = μX , and Var[Sn] = Var
[
1
n

∑n
i=1 Xi

]
=

1
n2 Var [

∑n
i=1 Xi] = 1

n2

∑n
i=1 Var[Xi] = n

n2 σ2
X = σ2

X

n . Using Chebyshev’s inequal-
ity on Sn and the above two results, we get

Pr
[∣
∣Sn − E[Sn]

∣
∣ ≥ τ

] ≤ Var[Sn]
τ2

⇒ Pr

[∣
∣
∣
∣
∣

1
n

n∑

i=1

Xi − μX

∣
∣
∣
∣
∣
≥ τ

]

≤ σ2
X

nτ2
(1)

for any τ > 0. A qualitative explanation of this inequality is that as n increases,
the average of a sample is more likely to be concentrated around the mean. Now,
let ρ = σ2

X

nτ2 . Rearranging we get τ = σX√
nρ . By specifying a value of ρ in this

equation, i.e., a bound on probability, we can obtain a corresponding threshold
τ . This then gives us a straightforward classification method for features: Given
a sample x′

1, x
′
2, . . . , x

′
n, purported to be generated from the same distribution

as X, we calculate the sample mean and see if this lies within the threshold
τ determined by ρ. If yes, then the sample is classified as belonging to the
target user; otherwise it is rejected. Similarly, for a time-series based feature
we can use this classifier with slight modification as detailed in the full version
of the paper. Thus given an n-element sample x = (x1, x2, . . . , xn) and the
parameter ρ, we have the Chebyshev feature classifier f(x, ρ) which outputs 1
if the sample belongs to the target user and 0 otherwise. To make an overall
decision given samples from a set of m features χ = {x1, . . . ,xm}, we have the
following classifier, which we call the Chebyshev classifier :

g(χ, ρ, ε) =

{
1, if

∑m
i=1 f(xi, ρ) > εm

0, otherwise
(2)

We call ε the decision threshold and εm the decision boundary. Through our
experiments we found ε = 2

3 to give the best EER.

4.5 SVM Classifier

Our second classifier is the binary class SVM with Gaussian radial basis func-
tion (RBF) kernel. We used its implementation available through the LIBSVM
library [5].To construct the feature space for SVM, we represented the time series
based features as toff

tint
= 30 dimensional vectors. The whole feature space of the

SVM is then a vector of all unitary features and time series based features rep-
resented in the aforementioned way. Constructed in this way, the SVM classifier
is given training data. To obtain the best classification results, we performed a
grid search with 10-fold cross validation on the training data to find the optimal
values for its parameters, i.e., C and γ [5]. Notice that the training phase needs
data both from the legitimate (target) user and other users (represented as the
second class). As this type of data represents unbalanced data (more data from
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the second class), we used a weighted scheme SVM. After a user model has been
created by the SVM, the authentication phase or testing phase can be carried
out. Let χ be a set of samples of features to be tested against the user model,
where we assume the sample size of each feature to be n ≥ 1. For each feature
x ∈ χ with n samples denoted by x = (x1, . . . , xn), the average value 1

n

∑n
i=1 xi

is used in the final feature vector.

5 Evaluation and Results

5.1 Experimental Setup

To evaluate the performance of Chebyshev classifier, we consider three sets of
users denoted by U1, U2, and U3, containing 10, 20 and 30 users, respectively. For
all user sets, our experimental setup is as follows. To obtain the True Positive
Rate (TPR), we randomly select a target user, and use a random set of 50
samples from this user as the training set. The test set used for authentication,
consists of the remaining samples. Given a fixed value of n, a random sample of
length n is obtained from the test set. The random test sample is then fed to
the classifier, which was trained using the training data. The decision from the
classifier is then logged. This process was repeated 500 times each with a new
random target user. Note that due to randomness, the training set for the same
user is different over different trials. Finally, the number of times, out of the 500
tests, the target user was accepted was used to compute TPR.

The False Positive Rate (FPR) is calculated in the same manner as TPR
except that the classifier was given a test sample of size n from all the samples of
a random attacker selected from U1 (respectively from U2, and U3), excluding the
target user. FPR was calculated as the rate at which the attacker was accepted.
The size of the training set for tap and forward swipe was 50, whereas backward
swipe and downward swipe had training set sizes of 25 and 10, respectively, since
for these gestures we had lower number of available samples (see Table 1).

For the SVM classifier we divided the pool of 30 users into three disjoint sets.
The first set, labelled U1, consists of 10 target users for whom we had at least 75
samples for all gesture types and is fixed. The remaining 20 users are modelled
as attackers and are assigned to two sets labelled U2 (10 attackers) and U3 (20
attackers). For each user in U1, the training data consists of a random sample of
a fixed size from the user’s data. This constitutes positive samples for the target
user required for binary class SVM training. The negative samples for the target
user came from the data of the remaining 9 target users in U1. That is, the data
from the remaining 9 users was used in the training phase to model the mock
attacker. The data of the users from U2 and U3 is used to compute FPR.

5.2 Chebyshev Classifier Results

First, we empirically determined the decision threshold ε in Eq. 2. For this, we
used the user set U1, and chose tap and forward swipes as gestures. Since tap
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and forward swipes have a total of m = 13 features (cf. Table 2), εm ranges
from 6 (majority decision) to 12 (unanimous decision). We construct a ROC
curve for each of these cases. As n increases we observe that majority decision
does not produce the best result. Figure 4a shows the ROC curves when n = 15.
The different values of FPR and TPR are obtained by varying the probability
parameter ρ in the Chebyshev classifier from 1.00 to 0.1 with steps of 0.05. The
dashed line in the figure is the line with TPR = 1−FPR, which meets the ROC
curve at the EER value.

(a) Different values of �εm� (b) Different values of n

Fig. 4. ROC curves - Chebyshev classifier.

We can see no significant improvement beyond m = 9. Since εm = 9 implies
ε ≈ 0.69, we use the nearest approximation ε = 2

3 and the decision boundary
�εm� for the Chebyshev classifier in Eq. 2. This corresponds to the two-third
majority rule. Table 3 shows the decision boundaries for various combination of
gestures used in our evaluation which are obtained by choosing ε = 2

3 .

Table 3. The decision boundaries corresponding to the decision threshold ε = 2
3

for
different combination of gestures from the Chebyshev classifier.

Combination �εm� m Combination �εm� m

T 3 4 T + F + B 15 22

F/B/D 6 9 T + F + B + D 21 31

T + F 9 13

Next, we studied the impact of n on the EER. Figure 4b shows the EER
for the combination T + F against different values of n with the user set U1

(notice that there are n taps and n forward-swipes in each test sample). The
ROC curves show improvement as n increases, starting with an EER of about
30 % for n = 1 and an EER of around 3 % for n = 25. The trend of improving
EER with increasing n is shown by all gesture combinations and all user sets, U1,
U2 and U3, as shown in Table 4. Note that for a gesture combination containing
multiple gestures, e.g., T + F, authentication can trigger as soon as it collects a
minimum of n samples for each gesture. From Table 4, we observe that the tap
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gesture as a standalone gesture performs worse in terms of EER as compared
to the swipes. The EER of the forward and backward swipes are comparable,
with forward swipes narrowly edging out. The downward swipe performs worse
than the other two swipe types, which is potentially due to fewer data points
available for training. The EER deteriorates by 3 to 4 percent when using the
data sets U2 (20 users) and U3 (30 users) as compared to data set U1 (10 users).
However, we do not see a noticeable deterioration in EER when comparing data
sets U2 and U3, which suggests that adding more number of users to the system
does not deteriorate the accuracy of the system by a huge factor. Our most
important gesture combination is T+ F since the bulk of activities on Glass can
be performed by a combination of these two gestures. With n = 10 taps and
forward swipes each, EER is less than 10 %.

Table 4. EER for different gesture combinations and n - Chebyshev classifier (Glass).

Combination Set n Set n Set n

1 3 5 7 10 15 25 1 3 5 7 10 1 3 5 7 10

T U1 0.35 0.27 0.23 0.21 0.18 0.16 0.13 U2 0.38 0.32 0.25 0.23 0.19 U3 0.37 0.29 0.25 0.22 0.20

F 0.32 0.23 0.15 0.14 0.12 0.07 0.07 0.35 0.23 0.18 0.16 0.13 0.33 0.25 0.18 0.18 0.14

B 0.32 0.22 0.17 0.14 0.12 - - 0.34 0.26 0.21 0.18 0.16 0.36 0.28 0.24 0.22 0.19

D 0.33 0.26 0.20 0.19 0.17 - - 0.32 0.26 0.20 0.18 0.17 0.34 0.23 0.20 0.20 0.14

T + F 0.29 0.18 0.14 0.09 0.09 0.05 0.03 0.33 0.21 0.16 0.13 0.12 0.32 0.20 0.18 0.14 0.10

T + F + B 0.27 0.16 0.09 0.08 0.04 - - 0.30 0.17 0.13 0.11 0.07 0.30 0.22 0.15 0.10 0.07

T + F + B + D 0.25 0.13 0.09 0.07 0.03 - - 0.27 0.13 0.11 0.07 0.06 0.26 0.16 0.09 0.07 0.06

Finally we also looked at the relationship of EER with ρ, and found that for
a given n and gesture combination a fixed value of ρ can be used which appears
independent of the size of the user set. Details are in the full version of the paper.

5.3 SVM Classification Results

The accuracy of the SVM classifier as measured by the average error rate (AER)
is shown in Table 5. The classification accuracy is varied against two parameters:
training size |T | and testing size n for each gesture combination listed in the table.
The training set size was varied from 25 to 75 at intervals of 25. Note that AER for
all gesture combinations decreases with increasing training size, since it gives the
classification algorithm more information for accurate prediction. However, this
may also lead to overfitting, which is indeed the case with downward swipe with
training set of size 75. The AER of the SVM classifier also improves with increasing
number of test samples, i.e., n. The tap gesture performs the worst amongst all
the individual gestures and forward swipe outperforms all other gestures, which is
consistent with the observation from the Chebyshev classifier. As observed with
Chebyshev classifier earlier, the AER does not significantly deteriorate with more
number of users in the system (U3 against U2).

5.4 Distinguishing Features

To determine if individual features have distinguishing capabilities, we use the
Chebyshev feature classifier f on user set U2 to obtain true positive (TP) and
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Table 5. AER for different gesture combinations and n - SVM classifier (Glass).

Combination Training Size Set n Set n

1 3 5 7 10 1 3 5 7 10

T 25 U2 0.40 0.32 0.30 031 0.26 U3 0.37 0.34 0.32 0.29 0.30

50 0.30 0.32 0.28 0.29 0.30 0.36 0.31 0.30 0.26 0.27

75 0.30 0.29 0.27 0.28 0.27 0.32 0.31 0.30 0.28 0.27

F 25 0.32 0.25 0.20 0.20 0.19 0.31 0.26 0.21 0.19 0.18

50 0.27 0.21 0.21 0.22 0.20 0.26 0.21 0.19 0.18 0.18

75 0.28 0.21 0.18 0.19 0.15 0.23 0.22 0.19 0.18 0.16

B 25 0.33 0.32 0.31 0.31 0.30 0.33 0.35 0.29 0.31 0.29

50 0.28 0.27 0.26 0.27 0.23 0.32 0.29 0.26 0.23 0.21

75 0.29 0.27 0.27 0.25 0.21 0.31 0.28 0.25 0.24 0.21

D 25 0.33 0.27 0.23 0.20 0.16 0.34 0.26 0.20 0.19 0.16

50 0.30 0.21 0.18 0.16 0.17 0.30 0.22 0.17 0.16 0.14

75 0.30 0.28 0.27 0.30 0.32 0.31 0.28 0.29 0.29 0.29

T + F 25 0.35 0.24 0.20 0.18 0.17 0.32 0.23 0.19 0.19 0.18

50 0.30 0.21 0.18 0.16 0.17 0.29 0.21 0.17 0.17 0.15

75 0.26 0.17 0.12 0.11 0.11 0.30 0.13 0.12 0.11 0.10

T + F + B 25 0.28 0.20 0.16 0.14 0.14 0.29 0.21 0.18 0.16 0.15

50 0.29 0.14 0.11 0.10 0.07 0.27 0.14 0.10 0.08 0.06

75 0.23 0.12 0.10 0.10 0.09 0.20 0.14 0.10 0.09 0.08

T + F + B + D 25 0.25 0.18 0.16 0.13 0.12 0.28 0.17 0.16 0.15 0.15

50 0.21 0.09 0.06 0.04 0.03 0.22 0.12 0.09 0.08 0.07

75 0.15 0.08 0.04 0.03 0.01 0.16 0.09 0.06 0.05 0.03

false positive (FP) frequencies for the features of all four gestures as shown in
Fig. 5. The x-axis shows 31 features (4 for tap plus 9 each for forward, backward
and downward swipes). The TP frequencies are above 400 (out of 500) for all
gesture types except the downward swipe (last nine features in the figure), which
is most likely due to its small training set size, i.e., 10. Nevertheless, observe that
the FP frequencies are lower than the corresponding TP frequencies for all fea-
tures. We therefore included all features for classification as each can effectively
distinguish between users. For more details of the setup and exact frequencies,
see the full version of the paper.

5.5 Comparison of the Two Classifiers

To compare the two classifiers in terms of classification accuracy, we use EER
readings from the Chebyshev classifier based on the set of 20 users, i.e., the set
U2 shown in Table 4, and we use the AER readings from SVM based on training
set of size 50 from Table 5.1 We first consider n = 10 for the purpose of our
1 Note that when 1 − TPR = FPR (as is the case with EER), AER and EER are the

same and hence comparable.
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Fig. 5. TP & FP frequencies obtained via Chebyshev feature classifier for all features.

comparison. By looking at Tables 4 and 5 we can see that compared to the SVM
classifier, Chebyshev’s error rate is lower for taps, forward swipes and backward
swipes. For all other combinations the two classifiers have similar error rates. For
other values of n, we observe that the SVM classifier performs slightly better
when n = 1, but the Chebyshev classifier’s performance rapidly improves with
increasing n, outperforming SVM in the three aforementioned gesture types.
For combination of gestures, the performance of the two is very similar. These
findings suggest that in terms of accuracy both classifiers are effective on Glass
and hence can be used on similar wearables.

To compare the computational overhead of the two classifiers, we evaluated
the time taken by model generation and prediction. Both these components are
illustrated in Fig. 2. We first implemented both components of the two classi-
fiers on a desktop computer. The SVM classifier was implemented in Java (via
LIBSVM), whereas we used Python to implement the Chebyshev classifier. The
results of the model generation and prediction time are shown in Table 6.

Table 6. Model generation and prediction time (ms) for gestures on a PC.

Tap Swipe Tap Swipe

Chebyshev Model 11 20 Chebyshev Predictor 0.04 0.095

SVM Model 38,000 49,000 SVM Predictor 9 9.4

Not surprisingly, for both the classifiers model generation takes longer than
prediction. For both model generation and prediction, the Chebyshev classifier
is many orders of magnitude faster than SVM. This suggests that using SVM for
training on Glass can be computationally expensive in terms of power and heat
generation. However, three important points need to be considered here. First,
high model generation time is not inherent to SVM. In fact, it is due to the use
of the RBF kernel; a linear SVM is likely to yield much lower model generation
time. Secondly, we do not consider the high model generation time as a drawback
of the SVM classifier, as (a) model generation is done infrequently, and (b) model
generation can be outsourced to the Cloud (depending on connectivity). Lastly,
a smaller grid search, i.e., restricting the ranges of the parameters C and γ,
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may result in faster model generation time, at the possible expense of accuracy.
Alternatively, although the optimum range of these SVM parameters depend on
user data, it may be possible to experimentally determine whether the optimum
values lie within narrow ranges for touch based gestures. Nevertheless, our focus
was more on accuracy than speed.

We, therefore, chose to implement only the predictor component of SVM on
Glass to check the actual performance. The classification models were generated
offline on a desktop computer and loaded on to the Glass. On the other hand,
for Chebyshev classifier we implemented both the model generator and predictor
on Glass. The results from our experiment are shown in Table 7. As can be seen,
Chebyshev is faster than SVM in terms of prediction time and needs little time
for model generation on Glass. Having said that, the prediction time for SVM is
also small enough to be practical. In terms of space requirements, both classifiers
require storing gesture data which is in the order of a few kilobytes. For the
model, Chebyshev classifier needs to store the means, variances and co-variances
for all features, whereas the SVM classifier needs to store the support vectors.
The model space complexity also increases with gesture combinations. Typically,
the model size ranges from 15 KB for a simple tap to 400 KB for all gestures.
In any case, Glass has 8 GB of storage capacity, and the total space required by
the classifiers is only in the order of a few megabytes. The main advantage of
using the Chebyshev classifier, in our opinion, is its ease of implementation (as
it requires standard functions and therefore does not require external libraries).

Table 7. Model generation and prediction time (ms) for different gestures on Glass.

T F T + F T + F + B T + F + B + D

Chebyshev Model 150 325 499 838 1,172

Chebyshev Predictor 0.80 0.32 1.13 1.89 2.74

SVM Predictor 24 40 70 90 110

5.6 Generalization: Results on Smartphone Data

To test the generalizability of our proposed system on smartphones, we used
publicly available smartphone gesture data which was collected by the authors
of [19].2 The data consists of 120 taps, and 20 forward, backward and downward-
swipes each for 31 users. We chose 30 of the 31 users for our study. We further
fixed training size of 50 for taps and 10 for all swipe gestures. The rest of the
data was used as the testing set. The other details of the experimental setup
remain the same as in Sect. 5.1. The results of applying Chebyshev and SVM on
the smartphone data are shown in Tables 8 and 9, respectively.

The trends observed in the results for both the classifiers on the smartphone
data remain similar to Glass data. We observe that the accuracy of the system

2 The data is available from http://xuhui.me/.

http://xuhui.me/
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Table 8. EER for different gesture combinations and n - Chebyshev classifier (phone).

Combination Set n Set n Set n

1 3 5 7 10 1 3 5 7 10 1 3 5 7 10

T U1 0.43 0.30 0.24 0.23 0.15 U2 0.39 0.27 0.21 0.18 0.15 U3 0.36 0.26 0.22 0.17 0.16

F 0.17 0.05 0.06 0.03 0.03 0.16 0.07 0.07 0.06 0.04 0.16 0.10 0.07 0.07 0.04

B 0.20 0.13 0.12 0.11 0.09 0.16 0.12 0.10 0.11 0.10 0.22 0.15 0.11 0.10 0.11

D 0.20 0.11 0.08 0.06 0.06 0.21 0.13 0.09 0.08 0.07 0.18 0.10 0.09 0.08 0.07

T + F 0.16 0.09 0.06 0.04 0.03 0.16 0.08 0.05 0.05 0.04 0.16 0.08 0.06 0.04 0.05

T + F + B 0.15 0.05 0.02 0.03 0.03 0.12 0.04 0.02 0.02 0.02 0.12 0.05 0.04 0.03 0.02

T + F + B + D 0.09 0.03 0.01 0.02 0.01 0.08 0.03 0.02 0.01 0.01 0.09 0.03 0.02 0.01 0.02

Table 9. AER for different gesture combinations and n - SVM classifier (phone).

Combination Set n Set n

1 3 5 7 10 1 3 5 7 10

T U2 0.43 0.41 0.38 036 0.35 U3 0.44 0.40 0.38 0.38 0.36

F 0.12 0.06 0.05 0.04 0.04 0.10 0.05 0.04 0.04 0.04

B 0.21 0.14 0.12 0.11 0.11 0.19 0.16 0.15 0.11 0.10

D 0.14 0.08 0.07 0.05 0.03 0.12 0.08 0.06 0.05 0.05

T + F 0.28 0.19 0.10 0.05 0.03 0.27 0.19 0.08 0.05 0.03

T + F + B 0.19 0.10 0.06 0.04 0.03 0.20 0.10 0.05 0.04 0.03

T + F + B + D 0.15 0.10 0.04 0.03 0.02 0.20 0.10 0.04 0.04 0.02

increases with increasing testing size, i.e., n. The system is able to achieve accu-
racy of 98 %-99 % with n ≥ 7 with all 4 gestures combined. We also observed
two marked differences in the accuracy of the classifier between the smartphone
data and Glass data. First, the accuracy of the system on all the swipe ges-
tures on the smartphone is better than Glass. However, this might be due to
the fact that the total number of swipe gestures were smaller, i.e., 20, in the
smartphone data. Secondly, the accuracy of the system is less impacted with
increasing number of users on smartphone than Glass. A plausible reason for
these two differences might be due to the difference in touchpad size of the two
devices. Bigger touchpad size allows for more variation in the gesture patterns.
It is interesting to investigate whether other gesture-based authentication mech-
anisms proposed for smartphones exhibit a similar trend on smart glasses.

5.7 Effect of Behavioural Evolution on Classification Accuracy

As the gesture behaviour of users may change over time, we studied its evolution
through an extended study on three users asking them to use Glass for five days
over two weeks. The five days were spaced as: day 1, 2, 3, 7 and 14. We used
a fixed training size of 20. To test the permanence of a user’s gesture model,
We experimented with the following three scenarios related to how the training
model was generated. (a) Same Day : This scenario serves as the benchmark.
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The testing data is matched against training data collected from the same day.
(b) First Day : In this scenario, each user model is generated using data from
day one. The model is then tested against data collected on subsequent days.
For instance, day seven against day one. (c) Adaptive: In this scenario, the user
model is updated every day, by iteratively replacing a fixed number of samples
in the training data of previous days with random samples from the data of
the same day. For example, to create the training data for day 3, we randomly
replaced 8 samples from the training data of day one with 4 samples from day
two and 4 samples from day three.

For the Chebyshev classifier, for each simulation run we use one random user
as the target user and the remaining two as the attack users. In case of the
SVM classifier, each of the three user is taken as a target user. The training
data for the target user consists of a random sample of a fixed size from the
target user’s data. This constitutes positive samples for the target user required
for SVM training. The negative samples for the target user come from the data
of the remaining two target users. The attackers’ data come from a fixed set
of three users who did not participate in the evolution study and whose data
was collected for earlier experiments. The results are shown in Fig. 6 for both
the classifiers. As expected, the same day scenario achieves the highest accuracy
amongst all the scenarios for a given day. We can also observe that the accuracy
of the first day scenario is the worst, suggesting that the touch biometrics are
not quite stable over time and hence an adaptive approach should be considered
to maintain accuracy over time. Using adaptive approach in our experiments
clearly shows performance improvements over the first day scenario, especially
for the Chebyshev classifier. Note that replacing older samples with newer ones
means that the classifiers need to be re-trained. For the Chebyshev classifier, this
is not an issue since re-training takes around 1 s at worst (cf. Table 7). For SVM,
training takes longer, but this is not a substantial hurdle due to the reasons
discussed in Sect. 5.5.

6 Some Limitations and Discussion

We did not consider the effect of user posture, e.g., walking versus sitting, on
touch gestures. Although this difference may not be as profound as in the case
of smartphones, since the Glass is mounted on the user’s head and is relatively
stable, it needs to be experimentally determined. Since the focus of our research
has been touch gesture based continuous authentication, we have overlooked
voice characteristics (as mentioned before, the user can also perform certain
operations in Glass through voice commands) or readings from other sensors
such as accelerometer and gyroscope. Our continuous authentication system can
be augmented by including distinguishing features from voice or other sensors.
Also, as is the case for any behaviour biometric system, it is important to test
our system on the larger population to validate its accuracy, a feat we were
unable to perform due to limited resources.

Since the Chebyshev classifier is based on a concentration inequality, it will
be interesting to employ other concentration inequalities such as Hoeffding or
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(a) T (Chebyshev) (b) F (Chebyshev) (c) B (Chebyshev) (d) D (Chebyshev)

(e) T (SVM) (f) F (SVM) (g) B (SVM) (h) D (SVM)

Fig. 6. The evolution of EER - Chebyshev classifier and AER - SVM classifier. Legend:
same day training data; adaptive training data; first day training data.

Bernstein’s inequalities to compare the results. As a classifier’s performance is
also dependent on the features being used, it will be interesting to expand on
the feature model introduced in this paper. For instance, one may model the
swipe feature as an interaction between the two forces (downward and planar),
instead of taking the two forces separately. A resulting feature could be a three
dimensional magnitude of force over time.

7 Conclusion

Due to smaller touchpad size and relatively meagre resources of current smart
glasses hardware (CPU, battery) compared to modern smartphones, it is not
straightforward to assume that gesture based implicit authentication systems
proposed for smartphones would yield high classification accuracy and low com-
putational load on smart glasses, such as Google Glass. The results of our study
indicate that gesture based continuous authentication is indeed both compu-
tationally and accuracy-wise feasible on Glass. Among other contributions of
our work is the proposal of a new classifier based on Chebyshev’s concentration
inequality, which can be added to other classifiers used in the field of implicit
authentication. Our secondary contributions include modelling touch gestures in
a new way from which we extract new features such as downward (as measured
by pressure and area readings) and planar (as measured by velocity readings)
force as a function of time, and the finding that classification accuracy is depen-
dent on the size of the touchpad.
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