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Abstract. Side-Channel Analysis (SCA) represents a serious threat to
the security of millions of smart devices that form part of the so-called
Internet of Things (IoT). Choosing the “right” cryptographic primitive
for the IoT is a highly challenging task due to the resource constraints
of IoT devices and the variety of primitives. An important criterion to
assess the suitability of a lightweight cipher with respect to SCA is the
amount of leakage available to an adversary. In this paper, we analyze
the efficiency of different selection functions that are commonly used in
Correlation Power Analysis (CPA) attacks on symmetric primitives. To
this end, we attacked implementations of the lightweight block ciphers
AES, Fantomas, LBlock, Piccolo, PRINCE, RC5, Simon, and Speck on
an 8-bit AVR processor. By exploring the relation between the nonlin-
earity of the studied selection functions and the measured leakages, we
discovered some imperfections when using nonlinearity to quantify the
resilience against CPA. Then, we applied these findings in an evaluation
of the “intrinsic” CPA-resistance of unprotected implementations of the
eight mentioned ciphers. We show that certain implementation aspects
can influence the leakage level and try to explain why. Our results shed
new light on the resilience of basic operations executed by these ciphers
against CPA and help to bridge the gap between theory and practice.
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1 Introduction

Side-Channel Analysis (SCA) [21] belongs to the genre of physical attacks and
exploits some auxiliary information (e.g. the power consumption leaking from a
device that executes a cryptographic algorithm) to recover the secret key. The
history of SCA stretches back 20 years when Kocher described the first timing
attacks [24] and thereafter introduced the basics of Differential Power Analysis
(DPA) [23]. Since then, non-invasive attacks exploiting the power consumption
or electromagnetic emanations of a target device have been steadily improved
by using better leakage models and advanced analysis techniques to recover the
secret key. Notable milestones in the evolution of power analysis attacks in the
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past 15 years include Correlation Power Analysis (CPA) [7], Template Attacks
(TA) [10], and Mutual Information Analysis (MIA) [16].

The study of “lightweight” symmetric primitives has been a hot topic in the
cryptographic community in the past few years, driven primarily by the rapid
growth of the Internet of Things (IoT) [14] and the demand for security at low
cost in terms of execution time, power consumption, RAM requirements, and
code size. A significant portion of the smart devices that will soon populate the
IoT in large quantities are equipped with an 8-bit microcontroller and feature
only a few kB of RAM (e.g. wireless sensor nodes). Such resource constraints
pose a massive challenge for the implementation of measures to minimize side-
channel leakage, which makes IoT devices an easy target for attacks [22]. It is
widely believed in the cryptographic community that side-channel attacks are
primarily an implementation problem rather than a design problem, i.e. there is
little that can be done from a designer’s perspective to eliminate or reduce the
leakage of sensitive information. However, some recent research results start to
challenge this view, and so does the present work.

Previous research at the intersection between lightweight cryptography and
SCA focussed (almost) exclusively on the AES, i.e. there exist only few papers
that deal with attacks or countermeasures for other ciphers. In particular, the
study of the SCA-resistance of software implementations of lightweight ciphers
did not keep pace with the high number of new proposals. In [1], the resilience
of the AES and three lightweight block ciphers that share some characteristics
(namely KLEIN, LED, and PRESENT) is investigated against profiled single-
trace attacks. Unprotected hardware implementations of Simon and LED were
analyzed with respect to DPA in [34]. An evaluation of both an unmasked and
a masked implementation of Simon for FPGAs was reported in [5]. In [33], the
vulnerability of PRINCE and RECTANGLE against DPA is studied. A second
line of research focussed on the design of new ligthweight primitives that can be
efficiently protected against DPA via masking; representative examples include
PICARO [30], Zorro [15], and the LS-designs Robin and Fantomas [17].

The above-mentioned studies on DPA attacks against (lightweight) ciphers
other than the AES were mainly “isolated” efforts in the sense that they were
carried out on different execution platforms with different measurement setups
and different analysis frameworks. A comparative (and consistent) study of the
DPA-vulnerability of lightweight block ciphers based on power traces acquired
with the same target device is, to our knowledge, still missing. However, such a
study would allow one to answer the question of whether different ciphers are
equally difficult to attack or not (and if not, why not). Furthermore, we could
not find a detailed analysis of the power leakage of basic operations (e.g. arith-
metic and logical computations, table look-ups) executed in the round function
of common lightweight ciphers. Thus, in this paper, we first try to answer the
following questions: (1) How do the theoretical metrics used to assess leakage
relate to real-world attack results? (2) Which operation leaks more? Then, we
apply the answers of these questions to illustrate how eight lightweight ciphers
(namely AES, Fantomas, LBlock [37], Piccolo [35], PRINCE [6], RC5 [32], as
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well as Simon and Speck [2]) behave with respect to CPA. These eight ciphers
were selected from the portfolio of lightweight symmetric algorithms evaluated
in [13] using the FELICS framework [11]. The two main selection criteria were
high performance and to have a variety of different design strategies.

All results and findings we describe in this paper are based on CPA attacks
performed with power consumption traces that were captured on an evaluation
board equipped with an 8-bit AVR microcontroller. Our choice for this specific
platform is motivated by the widespread use of the 8-bit AVR architecture in
resource-limited environments and its particular relevance in the context of the
IoT (e.g. wireless sensor nodes). A better understanding of the actual leakage
of different operations on 8-bit AVR microcontrollers could influence the design
of new lightweight ciphers for the IoT and the implementation of more effective
and less costly SCA countermeasures. For example, it is a known fact that the
AES leaks significantly due to its highly nonlinear S-box [8], but modern light-
weight ciphers generally use smaller S-boxes with lower nonlinearity compared
to the AES, and thus one might expect that they leak less. However, an actual
confirmation of this assumption with measured traces is still lacking.

We remark that the evaluation of candidates for the NIST SHA-3 standard
considered besides security and performance on various hardware and software
platforms also SCA resistance as a selection criterion (see e.g. [4,39] for some
concrete results). Currently, a number of standardization bodies, including the
NIST, are either considering or have already started the process to standardize
lightweight symmetric primitives for the IoT. In this context, it makes sense to
compare different aspects of potential candidates, including the SCA resistance
of (unprotected) software implementations, before deploying them on millions
or even billions of devices. Furthermore, we hope that our work will contribute
to a better understanding of how to design lightweight block ciphers that have
a better intrinsic resistance against side-channel attacks.

Research Contributions. Firstly, we quantify the leakage generated by the
execution of different instructions on an AVR processor, aiming to identify the
instructions that leak most. Then, we compare the power consumption leakage
of basic operations widely used by lightweight ciphers. For each operation, we
analyze the relation between our experimental results, the nonlinearity of the
operation, and the size (in bits) of the attacked intermediate value.

Secondly, we provide a fair comparison of the resilience of eight lightweight
block ciphers against CPA attacks. Knowing which instructions and operations
leak more, and knowing all implementation details of the eight ciphers helps to
identify the weakest point of each cipher, which can be attacked with maximal
efficiency. Our experimental results show that, in some cases, the actual leakage
is lower than expected due to certain implementation-related aspects.

The practical approach we follow has the benefit that it gives more realistic
results compared with simulated power traces, where the noise is modeled in a
deterministic way, which favors the attacker. Thus, our work sheds new light on
the resilience of different operations against CPA attacks, and we illustrate this
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for a set of eight lightweight block ciphers. To the best of our knowledge, there
has been no similar effort published in the literature.

2 Preliminaries

Unless specified otherwise, we will use the notation defined in this section. We
use the following operators for the corresponding (bitwise) logical operations:
“·” for AND, “+” for OR, “⊕” for XOR. The operators “�” and “�” denote
a modular addition and a modular subtraction, respectively. The two functions
MSB(x) and LSB(x) are used to extract the most and the least significant byte
from a stream of bits x, respectively. We represent the S-box layer of a block
cipher α by Sα, which may involve the application of one or more S-boxes in
parallel, depending on the input size and the specifications of the cipher. The
symbol L−1

i,Fantomas stands for the result of the inverse linear layer of Fantomas
computed with L-box i, where i ∈ {0, 1}. Finally, HW(x) denotes the Hamming
weight of x, whereas HD(x, y) = HW(x ⊕ y) is the Hamming distance between
x and y.

Definition 1 (Iterated Block Cipher). An iterated block cipher, sometimes
called a product cipher, is a block cipher obtained by iterating r times a round
function R : {0, 1}n → {0, 1}n, each time with its own key Ki ∈ K, where K is
called round key space. The cipher block size is n bits, the number of rounds is
equal to r, X(0) is the plaintext, and X(r) is the ciphertext. It works as follows:

X(i) = RKi
(X(i−1)) for 1 ≤ i ≤ r

Definition 2 (Selection Function). In the context of side-channel attacks, a
selection function gives the intermediate result, also referred to as sensitive value
φk = ϕ(x, k), which is used by the attacker to recover the secret key. It depends
on a known part x of the input X(i−1) of the round function RKi

and on an
unknown part k of the round key Ki.

The attacker computes the intermediate values φk for a fixed (either known
or chosen) input x and for all possible subkeys k. The bit-size |k| of the subkey
k determines the memory complexity m of the side-channel attack. Then, she
uses the sensitive values φ1, φ2, . . . , φ2|k| and the side-channel leakage to guess
the subkey k∗ used during the actual computations on the target device. The
higher the number of inputs x for which the attacker manages to measure the
leakage, the higher the chances to recover the subkey k∗. Usually, the selection
functions are chosen to be easy to compute, typically at the first round of the
encryption or decryption operation.

Definition 3 (Correlation Power Analysis (CPA)). Given a set of power
traces and the corresponding sets of intermediate values φ1, φ2, ...φ2|k| , Correla-
tion Power Analysis (CPA) aims at recovering the secret subkey k∗ using a cor-
relation factor between the measured power samples and the power model of the
computed sensitive values.
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The concept of CPA was studied as an improvement of DPA and formalized
in [7]. A power model is used to describe the hypothetical power consumption
of the target device as a function of the intermediate value φk considering the
device’s power consumption characteristics. The Hamming weight (HW) model
is more common for software implementations, whereas the Hamming distance
(HD) model is generally used for hardware devices.

2.1 Theoretical Metrics for the SCA Resistance of S-Boxes

In the definitions introduced in this subsection, we denote by “+” the addition
of integers in Z and by “⊕” the addition mod 2. We will also use “+” for the
addition of two vectors in F

n
2 since there is no ambiguity. For a pair of vectors

a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm) from F
m
2 , the scalar product a · b is

defined as a · b = ⊕m
i=1ai · bi.

One way to achieve nonlinearity in symmetric cryptographic primitives is to
use S-boxes. Formally, an S-box is an (n,m) function F : F

n
2 �→ F

m
2 that maps

n input bits to m output bits. If m = 1, then F is nothing else than a Boolean
function. For any given (n,m) function F , we denote by (F1, F2, . . . , Fm) the
coordinate functions of F , such that F (x) = (F1(x), F2(x), . . . , Fm(x)), where
Fi : F

n
2 �→ F2 for 1 ≤ i ≤ m. The derivative of F with respect to a vector a in

F
n
2 is the function DaF : F

n
2 �→ F

m
2 such that DaF (x) = F (x) + F (x + a). The

Walsh transform of F is the function WF (u, v) =
∑

x∈F
n
2
(−1)v·F (x)+u·x, while

the cross-correlation transform of Boolean functions Fi and Fj with respect to
a vector a ∈ F

n
2 is defined as CFi,Fj

(a) =
∑

x∈F
n
2

(−1)Fi(x)+Fj(x+a).

Definition 4 (Nonlinearity). The nonlinearity of an (n,m) function F is
defined as:

NL(F ) = 2n−1 − 1
2

max
u∈F

n
2

v∈F m∗
2

|WF (u, v)| (1)

Nonlinearity characterizes the resistance of F against linear cryptanalysis [27].
The higher the nonlinearity of a function, the more resistant the function is to
linear cryptanalysis. It is widely accepted that the higher the nonlinearity of a
function F , the more information it leaks through side channels.

Definition 5 (Transparency Order). The Transparency Order of an (n,m)
function F , where n and m are two positive integers, is:

TO(F ) = max
β∈F

m
2

(∣
∣
∣m − 2HW(β)

∣
∣
∣ − 1

22n − 2n

∑

a∈F
n∗
2

∣
∣
∣

∑

v∈F
m
2

H(v)=1

(−1)v·βWDaF (0, v)
∣
∣
∣

)

The Transparency Order was introduced in [31] to “quantify” the resistance
of an S-box against DPA attacks using the Hamming weight power model. In
general, the smaller the transparency order of F , the higher is its resistance to
DPA attacks. TO(F ) satisfies the following relation: 0 ≤ TO(F ) ≤ m.
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Definition 6 (Improved Transparency Order). The Improved Trans-
parency Order of a balanced (n,m) function F is defined as:

ITO(F ) = max
β∈F

m
2

(

m − 1
22n − 2n

∑

a∈F
n∗
2

m∑

j=1

∣
∣
∣

m∑

i=1

(−1)βi+βj CFi,Fj
(a)

∣
∣
∣

)

The Improved Transparency Order addresses the limitations identified in the
initial definition of TO [9].

Definition 7 (DPA Signal-to-Noise Ratio). The DPA Signal-to-Noise
Ratio of function F is defined as:

SNR(F ) = m22n

(
∑

a∈F
n
2

( m−1∑

i=0

( ∑

x∈F
n
2

(−1)Fi(x)+x·a
))4

)− 1
2

The DPA Signal-to-Noise Ratio was proposed in [18] as a way to model the
information leakage of CMOS circuits using the tools of traditional cryptanaly-
sis. The SNR increases when the resistance of an S-box to linear and differential
cryptanalysis increases. A novel definition of the SNR based on the maximum
likelihood estimator was introduced in [19].

3 Evaluation Framework

Measurement Setup. All experiments reported in this paper were performed
on an evaluation board equipped with an 8-bit ATmega2561 processor clocked
at 16 MHz. A regulated power supply provides the 5 V supply voltage required
for the operation of the board. The evaluation board and the computer used to
control the measurements are connected through optical fiber. We placed the
board in a Faraday cage to reduce the environmental noise. The measurements
of the power traces were performed with a LeCroy waveRunner 104MXi digital
sampling oscilloscope using a differential probe.

We mounted the CPA attacks against the ANSI C implementations of the
selected ciphers available in the FELICS framework [11]. The only modification
of the original C source codes we made was the insertion of a trigger signal to
indicate the beginning and the end of the side-channel relevant portion of the
power traces. To have a common ground for comparison, we assumed that the
attacker needs to recover the 32 bits of the round key K1 = 0x01234567 for all
eight block ciphers. Note that, in all of our experiments, we acquired the same
number of traces, namely q for the encryption of q known plaintexts.

Metrics. To ensure a fair and uniform side-channel evaluation of the selected
ciphers, we used the evaluation methodology for key-recovery attacks proposed
in [36]. In that paper, two different types of evaluation metrics are defined: an
information-theoretic metric quantifying the amount of information that leaks
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from a given implementation, and an actual security metric, which quantifies
how well the leaked information can be used by the attacker.

Since we conducted a practical evaluation based on leakages acquired from
a target board using the described setup instead of attacks based on simulated
power traces, the actual security metrics (i.e. success rate and guessing entropy)
are sound for our study. We do not use the information-theoretic metric from
[36] (i.e. conditional entropy) because it involves profiling the target device in
order to approximate the probability distribution of the leakage, which reduces
the applicability of the attack to a certain class of devices. Moreover, both the
template creation and the approximation of the probability distribution for all
leakage samples are computationally intensive.

We recall that side-channel attacks are generally performed using a divide-
and-conquer approach. The adversary attacks a subkey class κ with |κ| � |K|
using the selection function ϕ(x, k) and q measurements. As result she gets a
guess vector g = [g1, g2, . . . , g2|k| ] for the subkey k with the possible candidates
sorted in descending order, the most-likely subkey candidate being g1, and the
least-likely subkey candidate being g2|k| . The following two metrics quantify
the amount of effort required to recover the correct subkey k∗ from the guess
vector. Consequently, they serve as an indicator of how efficient an attack is in
the case of q measurement queries.

Definition 8 (Success Rate). The success rate of order o, o ≤ 2|k|, of a side-
channel key recovery attack is defined as:

SRo(k∗, g) =

{
1, if k∗ ∈ [g1, g2, . . . , go]
0, otherwise

Definition 9 (Guessing Entropy). The guessing entropy of a side-channel
key recovery attack is:

GE(k∗, g) = log2i, such that k∗ = gi for gi ∈ [g1, g2, . . . , g2|k| ]

Given an implementation C to be evaluated using N experiments with the
maximum number of measurement queries q, the memory complexity m, and
the time complexity t, Algorithm 1 shows in detail how the mean success rate
of order o, i.e. SRi

o, and the mean guessing entropy, i.e. GEi, can be computed
for i power consumption traces. The results are accompanied by the respective
standard errors SE

SRi
o

and SE
GEi . Unless otherwise specified, the results in this

paper are based on N = 100 experiments, each with q = 2000 queries. Both the
time complexity t and memory complexity m were determined by guesses of at
most 8-bit subkeys of the round key K1, where k∗ is the actual key used by the
implementation C.

4 Quantifying the Leakage

Using the measurement environment described before, we quantify the leakage
of different instructions to find out which instruction gives the “best” target in
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Algorithm 1. CPA Evaluation Algorithm
Data: C, k∗, q, m, t, N

Result: SRi
o, GE

i, SE
SRi

o
, SE

GEi

for j in [1, N ] do
AcquirePowerTraces(C, k∗, q);
for i in q do

g = CPA(C, i, m, t);

compute and store SRj,i
o (k∗, g),GEj,i(k∗, g);

end

end
for i in [5, q] do

compute SRi
o = 1

N

∑N
j=1 SR

j,i
o (k∗, g),GEi = 1

N

∑N
j=1 GE

j,i(k∗, g);

compute SE
SRi

o
, SE

GEi ;

end

the power traces when performing a CPA attack. For this purpose, we define
the correlation coefficient difference δ = ck∗ − ck� as the difference between
the correlation coefficient of the correct key k∗, i.e. ck∗ , and the correlation
coefficient of the most likely key guess k�, i.e. ck� , with k� �= k∗.

For the measurements we used a simple Assembly code fragment that contains
the targeted Assembly instruction guarded by several nop instructions to reduce
the noise from other operations such as the communication between the board
and the computer or the peaks of the trigger signal. The measurements were done
with values of the correct key k∗ such that HW(k∗) runs through all possible val-
ues once. For a fixed value of the input plaintext x and key k∗, we averaged eight
power measurements of the analyzed instruction to get a single power trace. The
plaintext took all possible values from 0x00 up to 0xFF; thus the number of traces
q is 256. We performed N = 10 experiments for each value of k∗.

4.1 Understanding the Device’s Leakage

Understanding the device’s leakage requires to understand how different Assem-
bly instructions executed by the processor can impact the power consumption
of the device. For this purpose, we evaluated two instructions that operate on
registers (namely and and add) as well as three instructions that require access
to memory (namely lpm, ld, and st). The and instruction performs a bitwise
AND of two 8-bit words, while the add instruction executes a modular addition
of two 8-bit words. Loading an 8-bit word from the Flash memory of the device
into a register can be achieved through the lpm instruction, whereas loading an
8-bit quantity from RAM into a register requires a ld instruction. Finally, the
st instruction writes the content of an 8-bit register to memory. We used the
AES S-box with the index value given by the plaintext XORed with the key to
perform the memory accesses.
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Table 1. Correlation coefficient difference δ = ck∗ − ck� between the correlation of the
correct key (i.e. ck∗) and the correlation of the most likely key (i.e. ck�) where k� �= k∗

for different Hamming weights of the correct key k∗ (δ̄ and SEδ̄ are the mean and the
standard error for a 95 % confidence interval, respectively).

Instr. Correct key δ̄ SEδ̄

0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF

and −0.798 −0.643 −0.577 −0.518 −0.465 −0.392 −0.329 −0.178 −0.016 −0.435 0.183

add 0.190 −0.218 −0.160 −0.079 −0.053 0.001 0.049 0.041 0.001 −0.025 0.093

lpm 0.376 0.312 0.271 0.219 0.174 0.169 0.164 0.156 0.143 0.220 0.062

ld 0.244 0.200 0.178 0.225 0.215 0.226 0.215 0.195 0.222 0.213 0.015

st 0.596 0.581 0.578 0.577 0.566 0.594 0.603 0.585 0.592 0.586 0.008

Our results given in Table 1 show that the memory-access instructions leak
a lot more information about the secret key than the register instructions. The
writing of a register to memory leaks most, followed by the loading of a word
from memory. At the other end of the spectrum is the and instruction, which
is leaking approximately 20 times less than the add instruction (see Table 1 and
Fig. 1). We also observed that increasing the number of power traces does not
significantly change the values of δ.

Although these experiments may remind the reader about template attacks
(where the attacker creates in the profiling phase leakage templates for various
instructions), we stress that we did not perform actual template attacks, but we
used a technique inspired by classical template attacks to quantify the leakage
of different Assembly instructions. Our results indicate that an attacker should
target the store of a sensitive value to increase the success rate of the attack.

Leaks 
less

Leaks 
more

0.5860.220-0.435 -0.0250

several 
guesses 1 guess

and add lpm st

Fig. 1. Correlation coefficient difference spectrum

4.2 Comparison of Different Selection Functions

We now extend the previous experiments to different selection functions,
whereby we target the writing of the selection function’s result to memory using
the st instruction, which, as we saw, has the highest leakage. Table 2 summarizes
the nonlinearity NL and the mean correlation coefficient difference δ̄ for a total
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of 16 different selection functions, which are divided into four groups. Detailed
values for different correct keys can be found in Table 5.

The first group of selection functions comprises the three logical operations
AND, OR, and XOR, which all have a negative value for the mean correlation
coefficient difference δ̄. This means that using one of these logical operations as
a selection function for a CPA attack is not a very good option. As our results
show, only the AND and OR, but not XOR, are sometimes able to recover the
correct key k∗, whereby AND is slightly more efficient than OR.

One can notice the contrast between the huge nonlinearity of the AND and
OR selection functions on the one side, and all other selection functions listed
in Table 2 on the other side. It is also interesting to note that these high values
of nonlinearity are accompanied by (relatively) poor values for the correlation
coefficient difference. In the case of the bitwise logical operations, it seems the
high nonlinearity values do not provide the useful leakage one normally would
expect. This contrasts with the conventional wisdom saying that the higher the
nonlinearity of a selection function, the more information it leaks in SCA.

Table 2. Leakages of different selection functions (n and m are the input and output
size of the selection function in bits, NL is the nonlinearity of the selection function, δ̄
is the mean correlation coefficient difference, and SEδ̄ is the standard error for a 95 %
confidence interval).

Selection function n m NL δ̄ SEδ̄

ϕ1(x, k) = x · k 16 8 16384 −0.005 0.074

ϕ2(x, k) = x + k 16 8 16384 −0.018 0.060

ϕ3(x, k) = x ⊕ k 16 8 0 −0.153 0.168

ϕ4(x, k) = x � k 16 8 0 0.127 0.011

ϕ5(x, k, c) = x � k � c 17 8 0 0.121 0.010

ϕ6(x ⊕ k) = SAES(x ⊕ k) 8 8 112 0.586 0.008

ϕ7(x ⊕ k) = SLBlock(x ⊕ k) 4 4 4 0.342 0.008

ϕ8(x ⊕ k) = SLBlock(x ⊕ k) 8 8 64 0.235 0.006

ϕ9(x ⊕ k) = SPiccolo(x ⊕ k) 4 4 4 0.339 0.019

ϕ10(x ⊕ k) = SPiccolo(x ⊕ k) 8 8 64 0.259 0.006

ϕ11(x ⊕ k) = SPRINCE(x ⊕ k) 4 4 4 0.269 0.010

ϕ12(x ⊕ k) = SPRINCE(x ⊕ k) 8 8 64 0.138 0.004

ϕ13(x ⊕ k) = LSB(L−1
1,Fantomas(x ⊕ k)) 8 8 0 0.087 0.015

ϕ14(x ⊕ k) = MSB(L−1
1,Fantomas(x ⊕ k)) 8 8 0 0.041 0.014

ϕ15(x ⊕ k) = LSB(L−1
2,Fantomas(x ⊕ k)) 8 8 0 0.136 0.007

ϕ16(x ⊕ k) = MSB(L−1
2,Fantomas(x ⊕ k)) 8 8 0 0.083 0.018

The modular addition is similar to the XOR operation; the main difference is
the carry propagation in the case of modular addition. Although the nonlinearity
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of the two modular addition selection functions in Table 2 is zero, there are com-
ponents of these functions that reach high nonlinearity because of the carry
propagation. For clarity, it should be mentioned that all the components of the
XOR selection function have a nonlinearity equal to zero, and that the nonlin-
earity of an (n,m) function is determined by the component having the lowest
nonlinearity. By nonlinearity of a component of an (n,m) function F , we mean
the nonlinearity of F computed for a fixed vector v ∈ F

m∗
2 as shown in Eq. (1);

see Table 6 for details. This exhibits another imperfection of the nonlinearity
metric when used to compare various selection functions regarding side-channel
leakage. We note that considering the carry bit c from a previous operation when
using selection function ϕ5 (adc instruction) does not improve the correlation
coefficient difference compared with ϕ4 (add instruction). The modular addition
selection function successfully recovered the secret key in all our test cases and
should thus be preferred over logical operations.

A further group of selection functions is composed of the substitution layers
of different lightweight block ciphers. These selection functions clearly leak the
most with respect to CPA. In fact, the selection function using the S-box of the
AES has the highest leakage among all studied selection functions. For ciphers
using 4-bit S-boxes, we considered two different selection functions: one with an
8-bit input and one with a 4-bit input. The 8-bit selection functions based on
the substitution layer of LBlock, Piccolo and PRINCE leak two times less than
the selection function using the AES S-box. Surprisingly, although our target
device has an 8-bit architecture, the 4-bit selection functions ϕ7, ϕ9, ϕ11 leak
more than the 8-bit selection functions of the same substitution layers.

The selection functions based on the L-boxes of Fantomas are analyzed in a
fourth group since they are linear operations, which are generally expected to
leak less than nonlinear operations. To our surprise, this group (which consists
of the last four selection functions listed in Table 2) leaks more than the logical
operations and is on a similar level with the modular addition. Thus, they can
be considered as selection functions when performing CPA attacks.

We remark that in [25], the basic algebraic group operations XOR, addition
modulo 2n, and modular multiplication are studied in the context of multi-bit
CPA attacks using simulated power traces. Then, selection functions based on
the addition modulo 216 and multiplication modulo 216 + 1 are applied to an
implementation of IDEA running on an 8-bit AVR processor. In the case of the
modular addition, the characteristics of the correlation coefficients for practical
attacks do not correspond to the simulated ones due to signal superposing.

Through these experiments, we revealed some interesting aspects about the
leakage of the studied selection functions with respect to CPA. In contradiction
to intuitions based on nonlinearity, we made the following observations: (1) the
bitwise logical AND and OR operations leak much less than expected and do
not always reveal the secret key; (2) for block ciphers that use 4-bit S-boxes, a
4-bit selection function is more efficient than an 8-bit selection function; (3) the
linear lookup tables (i.e. L-boxes) used by Fantomas leak more than expected
and can be considered as selection functions for CPA attacks.
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The lessons we learned from these experiments helped us a lot to select the
appropriate leakage functions to attack the eight lightweight block ciphers we
briefly describe in the following section.

5 Analyzed Ciphers

We chose the eight lightweight ciphers included in our evaluation according to
the following criteria. Firstly, we selected the ciphers from those that achieved
good software performance in the Triathlon competition [13]. Besides selecting
the ciphers for our CPA study from the ones evaluated in [13], we also used the
provided C source codes. This approach has the advantage that all ciphers are
implemented according to a common set of guidelines and by the same team
of developers, and therefore all implementations had undergone a similar level
of optimization. Secondly, we chose our ciphers from the two major structural
classes, namely Feistel Networks (FN) and Substitution-Permutation Networks
(SPN) with the goal of having many different design approaches with unique
features or properties. For example, PRINCE introduced the α-reflection prop-
erty, which means that a message encrypted under a certain key can only be
decrypted with a related key. RC5 introduced data-dependent rotations, while
Fantomas is the first instance of the so-called LS-designs.

The main characteristics of the studied ciphers are given in Table 3. In the
following, we provide a brief description of each cipher (we refer the reader to
the original papers for more details). Half of the eight ciphers use substitution
boxes; Table 4 summarizes the most important properties of each S-box.

Table 3. Main characteristics of the analyzed lightweight ciphers.

Cipher Block size Key size Rounds Structure Target platform Attacked operation

(bits) (bits)

AES 128 128 10 SPN SW, HW S-box lookup

Fantomas 128 128 12 SPN SW L-box lookup

LBlock 64 80 32 Feistel HW, SW S-box lookup

Piccolo 64 80 25 Feistel HW S-box lookup

PRINCE 64 128 12 SPN HW S-box lookup

RC5 64 128 20 Feistel SW modular addition

Simon 64 96 42 Feistel HW, SW bitwise AND

Speck 64 96 26 Feistel SW, HW modular subtraction

AES: Based on the Rijndael block cipher [12], the AES [29] is to date the most
important symmetric algorithm. It uses a block size of 128 bits and three different
key sizes: 128, 192, and 256 bits. In each round (except for the final round)
the SubBytes, ShiftRows, MixColumns, and AddRoundKey transformations are
applied to a 4 × 4 byte state matrix. The final round does not include the
MixColumns transformation. The key schedule expands the master key into the
round keys using the SubWord and RotWord transformations.
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Table 4. Properties of the S-boxes of four analyzed ciphers. The values of TO, ITO,
and SNR have a similar behavior as the value of NL for different S-boxes, but they have
a different granularity. Thus, the study of NL with respect to CPA holds also for TO,
ITO, and SNR, which are variations of NL.

Cipher S-box NL TO ITO SNR

AES S 112 7.860 6.916 9.600

LBlock s0 4 3.667 2.567 2.946

s1 4 3.667 2.567 2.807

s2 4 3.667 2.567 2.807

s3 4 3.667 2.567 2.946

s4 4 3.667 2.567 2.946

s5 4 3.667 2.567 2.807

s6 4 3.667 2.567 2.946

s7 4 3.667 2.567 2.946

Piccolo S 4 3.667 2.567 3.108

PRINCE S 4 3.400 2.333 2.129

Selection function: The 8-bit selection function we used in our experiments tar-
gets the result of the S-box lookup in the first round of encryption.

Fantomas: Fantomas [17] is the non-involutive instance of a newly-crafted class
of lightweight block ciphers, called LS-designs, that is specialized towards effi-
cient Boolean masking. LS-designs facilitate the masking countermeasure to pro-
tect against DPA attacks by combining a linear diffusion layer in the form of a
lookup table (L-box) with a bitsliced confusion layer. The 8-bit bitsliced S-box
is an unbalanced Feistel network built from a 3-bit and a 5-bit S-box as in
MISTY [28]. On the other hand, the 16-bit L-box has a branch number of 8
as explained in [17, Sect. 2.2] and was built from a systematic generator of the
Reed-Muller code RM(2, 5). Fantomas does not have a key schedule. The fam-
ily of LS-designs was very recently extended to XLS-designs [20], which aim to
improve the security margins while retaining the implementation efficiency.

Selection function: Because there are four possible 8-bit inputs for the same
MSB or LSB of the output of the mentioned 16-bit L-boxes, we had to attack
both the MSB and LSB to recover the key. The selection function targets the
inverse linear layer at the first round of decryption.

LBlock: LBlock [37] is based on a Feistel structure with a 64-bit block and
an 80-bit key. At each round, the left branch goes through the round function
F , while the right branch is rotated by 8 to the left. The two Feistel branches
are swapped after each round, except for the last one. F consists of a sub-
stitution layer applied to the permutation of the left branch XORed with the
round key. The confusion function includes eight 4-bit S-boxes used in parallel,
while the diffusion function is defined as a permutation of eight 4-bit words.
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This 4-bit permutation can be implemented efficiently in both hardware and
software environments. The key schedule of LBlock is designed in the form
of a stream cipher and uses a left-rotation by 29 bits, two 4-bit S-boxes, and
an XOR.

Selection function: The 4-bit selection function is given by the result of the
substitution layer at the first round of encryption.

Piccolo: Piccolo [35] is a 64-bit block cipher supporting 80-bit and 128-bit
keys and is suitable for restricted environments thanks to its high efficiency in
hardware. It has a generalized Feistel structure with four 16-bit branches and
a permutation-based key schedule. Due to its involution property, Piccolo can
support decryption with little extra cost. The round function is very light and
consists of two S-box layers, separated by a diffusion matrix. Piccolo also uses
an 8-bit word-based permutation between rounds to improve diffusion.

Selection function: The 4-bit selection function targets the result of the first
substitution layer of the first round function of encryption.

PRINCE: PRINCE [6] is a 64-bit block cipher with 128-bit keys based on
the so-called FX construction. It is optimized for latency when implemented in
hardware and allows the encryption of data within one clock cycle. PRINCE is
suitable for pervasive applications with real-time security needs. The overhead
for decryption on top of encryption is negligible due to the α-reflection prop-
erty: decryption for one key corresponds to encryption with a related key. The
key schedule expands the 128-bit key k to 192 bits, out of which the first two
64-bit subkeys k0, k

′
0 are used as whitening keys, while the third subkey k1 is

used as a round key for the 12-round cipher called PRINCE core. Each round
of PRINCE core comprises an S-box layer, a linear layer, an addition of a round
constant, and a key addition.

Selection function: The 4-bit selection function we used targets the substitution
layer applied to the initial state XORed with the whitening key k0 and round
key k1 at the first round of PRINCEcore. Thus, the attacker recovers the key
k∗ = k0 ⊕ k1.

RC5: The RC5 [32] encryption algorithm is a Feistel-based cipher suitable for
hardware and software implementation. A distinguishing feature of RC5 is the
use of data-dependent rotations as a source of cryptographic strength. The rota-
tion distance depends on the input data and is not predetermined. RC5 is para-
meterized and supports many implementation options; RC5-w/r/b denotes a
variant that operates on 2w-bit blocks, has a key size of b bits, and performs
r rounds. The encryption operation uses only three simple operations: addition
modulo 2w, bitwise XOR, and rotation to the left. However, the key expansion
is quite complex and has a certain amount of “one-wayness.” In our evaluation
we used the same instance of RC5 as in [13], namely RC5-32/20/16, which is
RC5 with 32-bit words, 20 rounds, and a 16-byte key.

Selection function: The selection function for RC5 targets the modular addition
of the round key before the first encryption round. To avoid correlations with the
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reading the round key from memory instead of modular additions, we wrote the
selection function in Assembly language to measure just the leakage generated
by the targeted operation.

Simon: Simon [2,3] is a family of lightweight block ciphers tuned for good
performance in hardware, without sacrificing the performance in software too
much. Simon 2n/mn denotes a Simon instance with a 2n-bit block size and an
mn-bit key, where n can be 16, 24, 32, 48, or 64. Designed to be very small in
hardware and easy to serialize at many levels, it uses an extremely simple and
low-complexity round function, which employs bitwise AND, bitwise XOR, and
circular shifts applied to n-bit data words. The nonlinearity is provided by the
bitwise AND. Simon’s key schedule uses a sequence of 1-bit round constants to
eliminate slide properties and circular shift symmetries.

Selection function: To increase leakage, we attacked the composition of the XOR
and AND operations at the end of the first round of decryption because at that
time the intermediate value is written to memory.

Speck: Speck [2,3] is a family of software-optimized block ciphers that is also
efficient in hardware. An instance with a 2n-bit block and a mn-bit key is referred
to as Speck 2n/mn, where n can be 16, 24, 32, 48, or 64. The round function
comprises bitwise XOR, addition modulo 2n, and rotations applied to n-bit data.
Speck gets its nonlinearity solely from the modular additions. The key schedule
uses the encryption round function to generate the round keys.

Selection function: The used selection function gives the result of the modu-
lar subtraction of the two Feistel branches in the first decryption round. The
attacker can take advantage of the memory-write operation of the result of the
selection function rotated by 8 bits to the left.

6 Experimental Results

We distinguish between two main classes of lightweight ciphers with respect to
their implementations’ resistance against CPA. The first class contains ciphers
that are implemented using lookup tables, while the second class comprises the
ARX-based designs, whose operations generally leak less than table lookups.

First class: The first class can be further divided into three different categories
of ciphers. The first category contains the AES, whose 8-bit S-box leaks much
more than any other considered selection function. Our attacks required only 59
power traces to recover the four key-bytes with 100 % success rate. The second
category consists of the three lightweight ciphers LBlock, Piccolo, and PRINCE,
each using one or more 4-bit S-boxes for the substitution layer. All members of
this category leak enough information to make the recovery of the key with a
small number of traces possible. On average, a little bit more than 100 traces were
enough to get the subkeys of these ciphers with 100 % success rate. However, two
subkeys of LBlock and two subkeys of Piccolo required a lot more traces since
the sensitive results of the selection functions are not written to memory after
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the targeted operation and hence the attacker correlates the reading of the S-box
content (i.e. ld instruction) instead of the writing of the S-box output (i.e. st
instruction). The third category is represented by ciphers that use linear lookup
tables, e.g. Fantomas. Our attack against the implementation of Fantomas is a
multi-target attack [26] because a normal attack failed to recover two bits of each
attacked subkey. The multi-target attack enabled us to reveal the four key-bytes
using 165 traces with 100 % success rate.

Second class: The second class covers the ARX designs RC5, Simon, and Speck,
for which we were not able to recover the full secret key due to reduced leakage.
If we consider, for example, the attacks to obtain the fourth key byte k∗ = 0x67
using q = 2000 traces, our experiments for RC5 and Simon gave a mean guessing
entropy GE of 1.58 and 3.05, respectively. However, in the case of Speck, we
managed to reveal k∗ using 1345 traces with 100 % success rate.

The Assembly code generated from the C implementations of these ciphers
executes four consecutive st instructions, which entails signal superposing. We
tried to “cancel” this effect by reducing the frequency of the processor, but we
had no success. Although the insertion of nop instructions between the stores
improved the results, we decided to not use these modified implementations in
our experiments because they give the attacker an unreasonable advantage and
affect therefore the fair comparison with the ciphers from the first class.

Given the small size of the state of the ARX designs and the rather simple
operations they carry out, we investigated the possibility of keeping the whole
state in registers during the entire encryption process. The 64-bit block version
of both Simon and Speck can be implemented in Assembly without having to
execute a single st instruction between the start and the end of the encryption
operation. This approach significantly reduces the amount of leakage available
to the attacker. But this leakage reduction optimization can not be applied to
128-bit block implementations of RC5, Simon, and Speck due to the restricted
register space available on an 8-bit microcontroller. For RC5, we also tried the
butterfly attack proposed in [38] on the modular addition, but the results were
worse than when using the classical CPA attack.

We performed the described attacks also with a “low-cost” setup consisting
of an Arduino Uno board and an Analog Discovery oscilloscope with a built-in
differential probe. The Arduino board gets its supply voltage through an USB
connection, which is also used for the communication with the computer that
controls the trace acquisition process. We did not employ any noise reduction
techniques. The experiments with the low-cost setup produced similar results
for the ciphers in the first class, except for Fantomas, but required more traces
due to the increased noise levels. For example, the AES key could be recovered
with 80 % success rate using 36 power traces with the first setup, but 58 traces
were necessary with the second (i.e. low-cost) setup. Similarly, to retrieve the
PRINCE key with the same success rate, the first setup needed 65 traces, while
the second setup required 85 traces. For the ciphers from the second class, the
low-cost setup yielded much worse results. When using 5000 traces, the mean
guessing entropy for the attack against RC5 increased from 3.68 (low noise) to
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22.29 (high noise). Similarly, for Simon we got GE = 9.97 in the noise-reduced
setting and GE = 16.44 with the cheap equipment.

All our experiments were conducted on unprotected implementations of the
ciphers. However, many security-critical applications require countermeasures
against SCA attacks, e.g. masking. In this context, it is known that linear and
Boolean operations, such as those performed by Fantomas, RC5, Simon, and
Speck, can be masked with relatively low overheads in terms of execution time
and code size. On the other hand, masking a nonlinear S-box like that of AES
generally entails a significant performance and code-size penalty. Somewhere in
the middle between these two extremes are LBlock, Piccolo, and PRINCE.

7 Conclusions

Following a practical approach, we investigated the leakage of various selection
functions widely used in existing lightweight ciphers for an 8-bit processor. We
analyzed how these results relate to the intuition about side-channel leakages
based on the nonlinearity of the selection function. Thereby, we identified three
imperfections of leakage evaluation based on nonlinearity, namely for AND and
OR bitwise operations, for 4-bit S-boxes, and for linear lookup tables.

Using the knowledge gained from the evaluation of selection functions, we
attacked unprotected software implementations of eight well-known lightweight
ciphers, namely AES, Fantomas, LBlock, Piccolo, PRINCE, RC5, Simon, and
Speck. We grouped the results of our experiments into two classes according to
the observed resistance against CPA attacks. The unprotected implementation
of AES was broken with the smallest number of power traces, followed by the
implementations of lightweight ciphers using 4-bit S-boxes, and thereafter the
implementation of Fantomas, whose L-boxes required slightly more traces than
the 4-bit S-boxes. On the other hand, the ARX-based designs RC5, Simon, and
Speck leaked less as we could not recover the full key for any of them. We also
demonstrated that different implementation options can increase the resilience
of lightweight block ciphers against power analysis attacks.

The software implementations of the three ARX designs we considered are
characterized by a certain level of “intrinsic” resilience against CPA. They can
also be efficiently masked with relatively small impact on execution time and
code size. These features make ARX constructions excellent candidates for the
implementation of lightweight block ciphers for the IoT.

Acknowledgements. We thank Yann Le Corre and André Stemper for their help
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A Additional Tables

Table 5. Detailed leakages for different selection functions ϕi as defined in Table 2.

Selection function Correct key

0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF

ϕ1 −0.225 0.098 0.086 0.057 −0.031 −0.052 −0.001 0.011 0.007

ϕ2 0.006 −0.005 −0.002 −0.073 −0.002 0.026 0.015 0.072 −0.202

ϕ3 −0.145 −0.160 −0.173 −0.190 −0.167 −0.152 −0.142 −0.125 −0.124

ϕ4 0.129 0.134 0.134 0.127 0.150 0.125 0.117 0.096 0.131

ϕ5 0.121 0.120 0.147 0.125 0.113 0.109 0.111 0.141 0.110

ϕ6 0.597 0.582 0.578 0.577 0.566 0.595 0.603 0.586 0.593

ϕ7 0.341 0.343 0.338 0.354 0.337 – – – –

ϕ8 0.234 0.223 0.228 0.249 0.230 0.245 0.244 0.233 0.234

ϕ9 0.319 0.331 0.361 0.350 0.338 – – – –

ϕ10 0.252 0.245 0.264 0.256 0.263 0.268 0.264 0.255 0.268

ϕ11 0.265 0.257 0.273 0.273 0.278 – – – –

ϕ12 0.139 0.135 0.146 0.143 0.136 0.142 0.129 0.145 0.131

ϕ13 0.094 0.089 0.079 0.061 0.061 0.080 0.105 0.099 0.120

ϕ14 0.036 0.027 0.026 0.028 0.018 0.047 0.060 0.062 0.069

ϕ15 0.144 0.121 0.137 0.127 0.129 0.145 0.134 0.151 0.143

ϕ16 0.078 0.073 0.072 0.037 0.074 0.093 0.120 0.100 0.100

Table 6. Nonlinearity (NL) of the components of the modular addition (selection
functions ϕ4 and ϕ5 from Table 2). By nonlinearity of a component of an (n, m) function
F , we mean the nonlinearity of F computed for a fixed vector v ∈ F

m∗
2 as in Eq. (1).

“Number” denotes how many components have the given nonlinearity NL, “Proportion
(%)” is the proportion of the given nonlinearity NL with respect to the nonlinearity of
all components of F .
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