
Accelerating Homomorphic Computations
on Rational Numbers

Angela Jäschke(B) and Frederik Armknecht

University of Mannheim, Mannheim, Germany
{jaeschke,armknecht}@uni-mannheim.de

Abstract. Fully Homomorphic Encryption (FHE) schemes are concep-
tually very powerful tools for outsourcing computations on confidential
data. However, experience shows that FHE-based solutions are not suf-
ficiently efficient for practical applications yet. Hence, there is a huge
interest in improving the performance of applying FHE to concrete use
cases. What has been mainly overlooked so far is that not only the FHE
schemes themselves contribute to the slowdown, but also the choice of
data encoding. While FHE schemes usually allow for homomorphic exe-
cutions of algebraic operations over finite fields (often Z2), many applica-
tions call for different algebraic structures like signed rational numbers.
Thus, before an FHE scheme can be used at all, the data needs to be
mapped into the structure supported by the FHE scheme.

We show that the choice of the encoding can already incur a signif-
icant slowdown of the overall process, which is independent of the effi-
ciency of the employed FHE scheme. We compare different methods for
representing signed rational numbers and investigate their impact on the
effort needed for processing encrypted values. In addition to forming a
new encoding technique which is superior under some circumstances, we
also present further techniques to speed up computations on encrypted
data under certain conditions, each of independent interest. We confirm
our results by experiments.

Keywords: Confidential machine learning · Fully homomorphic
encryption · Encoding · Implementation

1 Introduction

Fully Homomorphic Encryption (FHE) is a very promising field of research
because it allows arbitrary computations on encrypted data. This means that
data can be outsourced securely without sacrificing functionality, as any oper-
ation one would like to perform on the data can also be performed on the
encrypted data by a third party without divulging information. With a powerful
enough encryption scheme, this third party may even apply its own proprietary
algorithm, like a machine learning algorithm, to the encrypted data such that
the result divulges nothing about the algorithm that was applied - this is the
setting we will assume. While multiparty computation also offers this kind of
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 405–423, 2016.
DOI: 10.1007/978-3-319-39555-5 22

406 A. Jäschke and F. Armknecht

confidential computation, it requires frequent interaction between the involved
parties, which seems unfortunate for the goal of outsourcing computation. For
this reason, we instead focus on FHE, which allows a non-interactive solution.
Unfortunately, FHE-based solutions today are still very slow and thus not very
practical. Since a ciphertext can become undecryptable if too many consecutive
multiplications are computed, multiplicative depth is often key in FHE computa-
tions. In so-called leveled FHE schemes, one can adjust the encryption scheme to
support a predetermined multiplicative depth, where the scheme becomes slower
the larger the depth is. Thus, minimizing depth is one of our goals in this paper.
Another approach for handling the problems that come with consecutive multi-
plications, which we opted for because of very large depths in our use cases, is
called bootstrapping. Here, the ciphertext is “cleaned up” after multiplication,
but this operation takes very long and constitutes the bottleneck when used.
Hence, minimizing the total number of multiplications is another of our goals.

Because of these efficiency problems, there is currently much research on
improving the efficiency of the schemes themselves on the one hand, and on design-
ing algorithms that are particularly suited to FHE, i.e., through minimal multi-
plicative depth, on the other hand. While this is certainly a valuable contribution
for some use cases, we feel that in general the algorithms one wants to perform on
the data are predetermined and not up for discussion. At first glance, this might
seem to imply that there is little potential for improvement apart from improving
the schemes themselves, but we show that this is indeed not the case.

Generally, suppose one has an FHE scheme E = (Gen,Enc,Dec) with plain-
text space M and ciphertext space C, and there is a function g : Mz → M for
some z ∈ N. Then a Fully Homomorphic Encryption scheme promises that there
exists a corresponding function g∗ : Cz → C with

Dec(sk, g∗(Enc(pk,m1), . . . ,Enc(pk,mz))) = g(m1, . . . , mz).

However, plaintext spaces for encryption schemes are usually some finite field
GF (pd) for some prime p and power d, so if we want to work with elements from
a different structure S (like the rational numbers), we must first map them1

to the plaintext space using an encoding π : S → Mk and then perform a
function on the plaintext values that emulates the function on S. For a better
understanding, suppose we have an encryption scheme like above. Then, if we
want to evaluate a function f : Sn → S on encrypted data, we must first turn f
into a function g : (Mk)n → Mk on the plaintext space (where Mk emulates S)
and then execute the function g∗ : (Ck)n → Ck that corresponds to g. This is
illustrated in Fig. 1.

As it turns out, there is often no unique function g for a given function f , but
instead several different ones which depend on the chosen encoding function π.
This also means that the most we can aim for in terms of efficiency in evaluating
a function f on encrypted data is not f itself, but rather its emulation g on
1 For example, if S = {x ∈ Z|0 ≤ x ≤ 7} (i.e., numbers representable by 3 bits) but

the plaintext space of the encryption scheme is only M = {0, 1}, we could map
π : S → M3.

Accelerating Homomorphic Computations on Rational Numbers 407

Sn S

(Mk)n Mk

(Ck)n Ck

f

g

g∗

π π−1

Enc Dec

Function Space:

Plaintext Space:

Ciphertext Space:

Fig. 1. Steps in homomorphic evaluation

the plaintext space. As it turns out, the increase here is not negligible: While
the Perceptron, which we evaluate in Sect. 6.3 on encrypted data, runs almost
instantaneously (roughly 0.004 s) for ten rounds when computing on unencrypted
rational numbers, the evaluation of the same algorithm emulated on the plaintext
space (i.e., still unencrypted) takes over 120 s for the same parameters even with
our most efficient encoding in the plaintext space. This shows that though largely
ignored until now, the overhead that comes from switching from the function f
to g can be substantial and must equally be addressed to make FHE applications
as efficient as possible. Thus, while previous work on making computations with
FHE more efficient has focused primarily on the area inside the dashed red rec-
tangle in Fig. 1, we investigate how to improve efficiency through the right choice
of π and subsequently g, represented by the solid green rectangle. Motivated by
the idea of outsourcing actual data and running existing algorithms on it, we
face the challenges of encoding rational numbers (as opposed to elements of finite
fields or unsigned integers) and of incorporating basic operations like addition,
multiplication and comparison, which are needed for many popular algorithms.

1.1 Our Contribution

We address the above challenges and try to minimize total number of multipli-
cations (and the multiplicative depth) of g through appropriate choices in π. We
also examine some further optimizations which increase efficiency under certain
assumptions and are of independent interest. As a concrete application, we apply
our results to two use cases from machine learning, the Perceptron and the Lin-
ear Means Classifier, and see that the right choice of π can make a significant
difference in terms of multiplicative depth, total number of multiplications, and
in terms of runtime, for which we encrypted the data with the HElib library. To
this end:

– We present a new method for working with encrypted rational numbers by
solving the problem that the number of digits of precision doubles with each
multiplication. We show how to remove the extra digits and bring the number

408 A. Jäschke and F. Armknecht

back down to a predefined precision level, greatly improving performance with-
out leaking information about the function that was applied.

– We investigate two different popular encodings with regard to efficiency in
emulating basic operations on rational numbers like comparison, addition and
multiplication, and present a hybrid encoding that surpasses the two tradi-
tional ones both in theory (as measured by total bit additions, multiplications
and required multiplicative depth) and in terms of actual runtime for large
sizes.

– We the comparison of two encrypted numbers and present an easier way for
comparing numbers to 0 which takes almost no time.

– We show how to increase efficiency in the case that the numbers are bounded,
like in real-world applications where values lie in some known range.

– We confirm our results by implementing the Perceptron, a fundamental algo-
rithm in machine learning, and running it using the different encodings, as
well as a polynomial like that used for Linear Means Classification.

As a quick preview, consider Fig. 2, which shows theoretical bounds on the
number of bitwise additions and multiplications as well as extrapolated runtime
needed to apply a Linear Means Classifier with each of the three encodings
for different numbers of features. We can see that our new hybrid encoding
mechanism is superior in all three aspects, making it an attractive choice.

5

1
0

2
0

5
0

2
5
0

0.5

1

1.5

2

·106

l

B
in

a
ry

A
d
d
it

io
n
s

(a) Bit Additions.

5

1
0

2
0

5
0

2
5
0

2

4

6

8

·105

(R|t)

B
in

a
ry

M
u
lt

ip
li
ca

ti
o
n
s

(b) Bit Multiplications.

5

1
0

2
0

5
0

2
5
0

0.5

1

1.5

·107

(R|t)

R
u
n
ti

m
e

(s
)

(c) Runtime (s)

Fig. 2. Bounds for the number of bitwise additions and multiplications as well as
runtime for evaluating Linear Means Classifier with l features of length 30 for different
l using Two’s Complement • (lines), Sign-Magnitude • (solid) and Hybrid Encoding •
(dotted) (Color figure online)

1.2 Outline

We start by giving an overview of related work in Sect. 2. In Sect. 3, we give
some background on Fully Homomorphic Encryption and the challenges faced
when working with rational numbers, as well as on the two encodings we use.
In Sect. 4, we show how to emulate the addition, multiplication and comparison
of encoded numbers using just binary additions and multiplications and analyze

Accelerating Homomorphic Computations on Rational Numbers 409

complexity. Section 5 presents different ways of accelerating computations on
encrypted data, and Sect. 6 gives some motivation and necessary background on
machine learning before using two algorithms from this field to demonstrate the
effects of our improvements. Lastly, Sect. 7 gives our conclusion and an insight
into future work.

2 Related Work

While encryption schemes that allow one type of operation on ciphertexts are
well understood and have a comprehensive security characterization [4], Fully
Homomorphic Encryption, which allows both unlimited additions and multipli-
cations, was only first solved in [19]. Since then, numerous other schemes have
been developed, for example [9,10,13,14,16,21,26]. An overview can be found
in [3]. There have been several works concerning actual implementation of FHE,
like [20] (homomorphically evaluating the AES circuit), [7] (predictive analysis
on encrypted medical data), or [22] (machine learning on encrypted data), and
there are two publicly available libraries [1,18]. [24] discusses whether FHE will
ever be practical and gives a number of possible applications, including encrypted
machine learning. Most recently, two publications regarding encoding rational
numbers for FHE have appeared, illustrating what an important topic this is:
[12] examines encoding rational numbers through continued fractions (restricted
to positive rationals and evaluating linear multivariate polynomials), whereas
[15] focuses on most efficiently embedding the computation into a single large
plaintext space. Another work that explores similar ideas as [15] and also offers
an implementation is [17].

While the idea of being able to privately evaluate machine learning algorithms
is certainly intriguing, the overwhelming majority of work in this area consid-
ers multiparty computation, which requires interaction between the client and
the server during computation and is thus a different model. Examples include
[8,25,28], and works like [23,27] concern themselves with efficiency measures
and circuit optimizations specific to multiparty computation. Another line of
research regarding confidential machine learning, e.g. [7] and again [8], focuses
on a scenario where the model being computed and/or evaluated is publicly
known - a scenario we explicitly exclude. Other work like [11] restricts itself to
unsigned integers, making all involved circuits much less complex. Work like [5]
considers recommender systems, but in a scenario which becomes insecure if too
many fresh encryptions are available. Closest to our work is [22], which restricts
itself to machine learning algorithms like the Linear Means Classifier and Fish-
ers Linear Discriminant Classifier, which can be expressed as polynomials of low
degree, and focuses on the classification, not the derivation of the model. Their
encoding of input data is also restricted to functions with few multiplications.

We stress that until now, all approaches dealing with rational numbers either
restrict computations to positive integers, or the multiplicative depth of the com-
putation must be know beforehand. Our approach is the first to actually tackle
the problem of computing on rational numbers with no further assumptions, and
offers other improvements if some assumptions can be made.

410 A. Jäschke and F. Armknecht

3 Background

3.1 FHE and Efficiency Metrics

Fully Homomorphic Encryption (FHE) describes a class of encryption schemes
that allow arbitrary operations on encrypted data. This would, in theory, enable
outsourcing of encrypted data to an untrusted cloud service provider, who could
still perform any operations the user wishes. This means that we can protect
privacy (as opposed to uploading the data in unencrypted form) while main-
taining functionality (as opposed to uploading data encrypted under conven-
tional schemes). Unfortunately, FHE today it is still rather slow, although huge
advancements have been made in the last six years.

Because of this, one of our measures for efficiency is the number of bit addi-
tions and multiplications performed, as this would translate directly into the
number of homomorphic additions and multiplications performed if the data
were encrypted. Note that in schemes today, homomorphic multiplication tends
to be computationally more expensive than addition.
In our analysis of computational effort, we also include the multiplicative depth:
Many publications today use Leveled Fully Homomorphic Encryption, which is
related to Fully Homomorphic Encryption in that arbitrary functions f can be
performed on the encrypted data, but the multiplicative depth of f must be
known beforehand, and efficiency of the encryption scheme decreases as this
number increases. Multiplicative depth measures how many consecutive multi-
plications are performed. For example, the polynomial x1 · x2 + x1 · x3 + x2 · x3

has 3 multiplications in total, but a multiplicative depth of only 1. These lev-
eled schemes can be more efficient than pure FHE schemes for small depths, but
if more than the allowed number of consecutive multiplications are performed,
decryption may return the wrong result. To this end, we include multiplicative
depth in our analysis and aim to minimize it as one of our goals. We would, how-
ever, like to point out that if one uses bootstrapping, as we did in our implemen-
tations, depth becomes less of an issue and the total number of multiplications
is the main factor determining runtime.

3.2 From Unsigned Integers to Rationals of Arbitrary Precision

In previous work (e.g. [6], see also Sect. 2), rational numbers have often been
approximated by multiplying with a power of 10 and rounding, but note that
when multiplying two rational numbers with k bits of precision, we obtain a
number with 2k bits of precision (whereas addition does not change the preci-
sion). If we are working on unencrypted numbers, we might just round to obtain
k bits of precision again, or we could truncate (truncation after k bits yields the
same accuracy as rounding to k − 1 bits). However, things become more difficult
if we will be operating on encrypted data, as rounding is generally not possible
here and thus these extra bits of precision accumulate. To see this, suppose a
precision of k digits is required. One would usually multiply the rational number
with 10k and round (or truncate) to the nearest integer, which is then encoded

Accelerating Homomorphic Computations on Rational Numbers 411

and encrypted. Dividing the decrypted decoded number by 10k again yields the
rounded rational. However, the problem of doubling precision with multiplica-
tion is prevalent here. Consider what would happen if we were to multiply two
such numbers: Suppose we have two rational numbers a and b that we would like
to encode as integers a′ and b′ with k digits of precision, so we get a′ = a · 10k

and b′ = b · 10k (rounded to the nearest integer). Multiplying a′ and b′, we get
c′′ = a′ · b′ = a · 10k · b · 10k = (a · b) · 102k. Thus, having reversed the encoding,
the obtained value c′′ must be divided by 102k. This is a problem because we
cannot remove the extra bits by dividing by 10k, so the party performing the
algorithm must now divulge what power of 10 to divide the obtained result by.
This leaks information about the multiplicative depth of the function used and
thus constitues a privacy breach for the computing party. Additionally, there is
also the problem during computation that the sizes of the encoded numbers will
increase substantially.

To solve this problem, we propose the following approach: Instead of scaling
by a power of 10, we multiply by a power of 2 and truncate to obtain an integer
that we will encode in binary fashion, so that we can later encrypt each bit
separately. This eliminates the above problem: Multiplying two numbers a′ and
b′ with k bits of precision still yields c′′ = (a · b) · 22k, but since we are encoding
bit by bit, dividing by 2k and truncating corresponds to merely deleting the last
k (encrypted) bits of the product. Thus, the party performing the computations
can bring the product c′′ back down to the required precision after every step
by discarding the last k bits and thus obtaining c′ = a · b · 2k, meaning that
the party which holds the data must always divide the decoded result by 2k no
matter what operations were applied. This has the benefit of not only hiding
the data from the computing party, but also hiding the function from the party
with the data.

3.3 Two’s Complement

Having determined that we will be encoding bit for bit to support arbitrary
precision without information leakage, we must now decide on how exactly we
want to represent a rational number (which has been scaled to be a signed
integer). For unsigned integers, binary representation is well known: Given an

integer a ≥ 0, we write it as a =
n∑

i=0

ai · 2i where n = �log2(|a|)� and ai ∈ {0, 1}
to obtain a n + 1-bit string anan−1 . . . a1a0.

To incorporate negative numbers, the most popular encoding is called Two’s

Complement : Here, we write an integer a as a = an+1 · (−2n+1) +
n∑

i=0

ai · 2i

where n = �log2(a)� and ai ∈ {0, 1}. This means that the most significant bit
(MSB) encodes the negative value −2n+1 and is thus 1 exactly when a < 0. As an
example, consider the bitstring 1011, which encodes 1 ·(−23)+0 ·22+1 ·2+1 ·1 =
−8 + 2 + 1 = −5.

The most notable aspect for Two’s Complement is that for multiplication to
work, the inputs must first be encoded as numbers of the length that the output

412 A. Jäschke and F. Armknecht

will have, i.e., when multiplying numbers of lengths n and m, both inputs lengths
need to be increased to n + m before multiplication. This procedure, called sign
extension, is done by replacing the first bit with the appropriate number of copies
if itself. In the above example, if we needed to extend the 4-bit string 1011 to
length 8, it would result in 11111011, which still encodes −5.

3.4 Sign-Magnitude

While Two’s Complement may be the most popular encoding of signed integers,
it is not the only one: Sign-Magnitude encoding formalizes the most intuitive
idea of having an extra bit that determines the sign. Conventionally, this is the
most significant bit, which is 1 when a number is negative and 0 when a number
is positive. Thus, for example, the number 5 = 0101 and −5 = 1101. This
notation suffers from the fact that there are two encodings of 0 (0 = 00 . . . 00
and −0 = 10 . . . 00) and is seldom used, but we will later see how this slightly
unconventional encoding can help us.

We would like to point out that addition in this encoding is much more
involved than in Two’s Complement: Here, we need to add the absolute values
and keep the sign bit if both inputs have equal signs, and otherwise compare
the two inputs, subtract the smaller from the larger absolute value, and keep
the sign of the input with the larger absolute value. Obviously, expressing this
operation as a polynomial is considerably more involved than the straightforward
addition used in Two’s Complement. However, in multiplication, Sign-Magnitude
encoding does not need sign extension, and addition of the rows in multiplication
can use the straightforward addition instead of the above one, so this problem
does not carry over to multiplication.

4 Basic Operations and Their Performance

Having introduced two different ways of encoding, this section will now examine
both the theoretical complexity and actual performance of elementary opera-
tions. All computations were done on a virtual machine with 5 GB of RAM
running Ubuntu 14.04 LTS (running on a Lenovo Yoga 2 Pro with a Intel i7-
4500U processor with 1.8 GHz and 8 GB of RAM with Windows 8.1). We give
the number of binary additions and multiplications as well as multiplicative
depth required for these elementary operations. Due to space limitations, we
omit how these values were determined, but we used straightforward methods
to turn the functions into polynomials over {0, 1} and derived the number of bit
additions and multiplications as well as the multiplicative depth. We note that
we also implemented all our functions with a subroutine that counts these val-
ues to ensure that the formulas are correct. Runtimes were obtained for values
encrypted with the HElib library [1].

Accelerating Homomorphic Computations on Rational Numbers 413

4.1 Note on Comparisons

As already mentioned, Sign-Magnitude uses a comparison in its addition func-
tion, making the comparison function an important building block. We note,
however, that when comparing a number with 0, there is an easier way (see
Sect. 5.2). For the general case (and used in Sign-Magnitude’s addition proce-
dure), the effort of comparing two arbitrary numbers is:

Two’s Complement: Sign-Magnitude:
• 3n binary additions • 10n − 3 binary additions
• n + 1 binary multiplications • 6n − 2 binary multiplications
• a multiplicative depth of n • a multiplicative depth of 2n − 1

We can see that Two’s Complement is more efficient for comparing encrypted
numbers.

4.2 Addition

We will now compare addition of two n-bit numbers for Two’s Complement and
Sign-Magnitude encoding. The computational effort is:

Two’s Complement: Sign-Magnitude:
• 5n − 2 binary additions • 73n − 17 binary additions
• n binary multiplications • 28n + 4 binary multiplications
• a multiplicative depth of n • a multiplicative depth of 2n + 2

As we can see, Two’s Complement again does better in theory. In practice (i.e.,
counted by our program), we get as values the number of operations and run-
time as shown in Fig. 3. These diagrams show that Two’s Complement is indeed
superior to Sign-Magnitude where addition is concerned.

4.3 Multiplication

In this section, we will examine the multiplication of an n-bit number with
an m-bit number. Heuristically, we expect Sign-Magnitude to do better here:
Instead of the costly “normal” Sign-Magnitude addition operation which uses
a comparison circuit, we can use regular textbook binary addition to add up
the rows encountered in multiplication, so the fact that addition of two n-bit
Sign-Magnitude numbers is much more expensive than that of two n-bit Two’s
Complement numbers does not weigh in here. On the other hand, because of the
sign extension necessary in Two’s Complement multiplication, not only are the
rows longer (n+m as compared to n), but there are also more of them (n+m as
opposed to m), so we must do more additions of longer bitstrings. We examine
the effort required:

414 A. Jäschke and F. Armknecht

Two’s Complement:

• 5(m2+n2)−19(m+n)
2 + 5mn + 10 binary additions

• (m+n−3)(m+n)
2 + mn + 1 binary multiplications

• a multiplicative depth of �log2(m + n)� · (m + n − 1) − 2�log2(m+n)� + 2

Sign-Magnitude: Due to changing intermediate lengths during row additions
(which depend on both n and m instead of just n + m as in Two’s Comple-
ment), an exact formula would be very involved and hardly informative. Thus, we
present a formula for an upper bound which already shows that SM is superior to
TC for multiplication. To this end, we now have two data sets for Sign-Magnitude
in the diagrams 3b, d and f in Fig. 3 regarding the number of operations: One
shows the exact numbers as counted by an instruction in our program (and ver-
ified manually), and one shows the bounds as given by the following formulas:

• (2�log2(m−1)� − 1) · (5n − 7) + (2�log2(m−1)�−1 − 1) · 5 · �log2(m − 1)�
binary additions at most

• (n−1) ·(m−1)+(2�log2(m−1)� −1) ·(n−1)+(2�log2(m−1)�−1−1) ·�log2(m−1)�
binary multiplications at most

• A multiplicative depth of at most
1
2�log2(m − 1)� · (�log2(m − 1)� + 2n − 5) + 2�log2(m−1)�

Concrete values and runtimes can be seen in Fig. 3 and as we can see,
Two’s Complement performs much worse, as expected. Thus, Two’s Complement
encoding is superior for addition and comparison, but inferior for multiplication.

5 Accelerating Computations

In this section, we will discuss several optimizations to make computations on
encrypted data more efficient.

5.1 Hybrid Encoding

Since we have seen in the previous sections that Two’s Complement encoding
always performs better than Sign-Magnitude except for multiplication (where
it is much worse), we propose the following approach, called Hybrid Encoding:
We work with Two’s Complement encoding, but when we want to multiply, we
convert the numbers to their representations in Sign-Magnitude, perform the
multiplication there, and convert the result back. As we will see, this is indeed
more efficient than regular Two’s Complement multiplication. To do this, we
must first determine how to convert numbers from their representation in Two’s
Complement to their Sign-Magnitude form and vice versa, so suppose we have a
number a under one encoding α (either Two’s Complement or Sign-Magnitude),
denoted aα, and wish to transform it into its representation under the other
encoding β, denoted aβ . For numbers with MSB 0, both encodings are actually
the same (aα = aβ), so in this case we do nothing. If the number has a MSB of

Accelerating Homomorphic Computations on Rational Numbers 415

3 5 10 20 25 30

500

1,000

1,500

2,000

Bitlength n

N
u
m

b
er

o
f
A

d
d
it

io
n
s

(a) Bit Additions (+).

(3|5) (5|5) (5|5) (5|7) (5|7) (10|20) (10|20) (30|30) (30|30)

2,000

4,000

6,000

8,000

(n|m)

N
u
m

b
er

o
f
A

d
d
it

io
n
s

(b) Bit Additions (*).

3 5 10 20 25 30

200

400

600

800

Bitlength n

N
u
m

b
er

o
f
M

u
lt

ip
li
ca

ti
o
n
s

(c) Bit Multiplications (+).

(3|5) (5|7) (10|20) (30|30)

500

1,000

1,500

2,000

2,500

(n|m)

N
u
m

b
er

o
f
M

u
lt

ip
li
ca

ti
o
n
s

(d) Bit Multiplications (*).

3 5 10 20 25 30

10

20

30

40

50

60

Bitlength n

M
u
lt

ip
li
ca

ti
o
n

D
ep

th

(e) Multiplicative Depth (+).

(3|5) (5|7) (10|20) (30|30)

50

100

150

200

250

(n|m)

M
u
lt

ip
li
ca

ti
o
n

D
ep

th

(f) Multiplicative Depth (*).

3 5 5 20 20 25 25 30 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Bitlength n

R
u
n
ti

m
es

fo
r

1
A

d
d
it

io
n
s

(s
)

(g) Runtime (+).

(3|5) (5|7) (10|20) (30|30)

1

2

3

4

5

6

·104

(n|m)

R
u
n
ti

m
e

fo
r

1
M

u
lt

ip
li
ca

ti
o
n

(s
)

(h) Runtime (*).

Fig. 3. Comparison of addition (+) and multiplication (*) for Two’s Complement •
(lines), exact values for Sign-Magnitude (counted by program) • (solid), upper bound
for Sign-Magnitude for multiplication• (dotted) and our new Hybrid Encoding (• (dot-
ted). Runtimes for data encrypted with HElib (Color figure online).

416 A. Jäschke and F. Armknecht

1, we compute its negation (aα 	→ −aα), which is the same for both encodings
as it has MSB 0 (−aα = −aβ). We then negate the negation under the new
encoding (−aβ 	→ aβ), obtaining the original value in the new encoding.

As can easily be seen, the overhead we incur in addition to the cost of a
Sign-Magnitude multiplication for multiplying two numbers of lengths n and m
is basically that of 3 Two’s Complement inversions, 3 Sign-Magnitude inversions
(both of lengths n,m and n+m), and the cost of multiplying the boolean values
representing whether the different cases are true or false. In total, the overhead
costs (i.e., those incurred in addition to the costs for the Sign-Magnitude multi-
plication) are:

• 14(n + m) − 7 binary additions
• 6(n + m) − 3 binary multiplications
• a multiplicative depth of max{n,m} + 1 + n + m

We present some concrete values for this overhead and runtimes in Fig. 3
along with the same values for Two’s Complement multiplication and Sign-
Magnitude multiplication. As can easily be seen, HE performs better than Two’s
Complement in all aspects for multiplying large numbers, but is (naturally) not
quite as good as Sign-Magnitude. The runtimes are roughly as we would expect
from these numbers, i.e., the new multiplication is faster than Two’s Complement
for large numbers, but naturally slower than Sign-Magnitude.

Thus, we have found a new way to improve efficiency for large bitlengths:
do all operations in Two’s Complement notation, but switch to Sign-Magnitude
for multiplication. We shall see the benefits of this in our real-world application
in Sect. 6.3, though we would like to note that there may be applications where
Sign-Magnitude is favorable (when there are very few additions). However, since
in Fully Homomorphic Encryption, multiplicative depth is often key (as men-
tioned in Sect. 3.1) and bootstrapping is the bottleneck, our new approach seems
favorable for large parameters under this aspect as well.

5.2 Easy Comparison

Apart from numerical computations, many algorithms require a comparison of
two numbers, which would usually require a rather expensive computation. How-
ever, we argue that in some use cases where one only has to compare a number
to 0, like in the Perceptron, there is a much easier way. Instead of computing
a costly circuit for comparison, it suffices to take the most significant bit of
the number, which will be 0 if the number is greater than zero and 1 if it is
less. For Two’s Complement, it will be 0 also when the number equals 0, but
in Sign-Magnitude it can be either 0 or 1 when using this method, as there
are two encodings of 0 here. Thus, if the sum is exactly 0, the resulting bit is
wrong for Two’s Complement and can be either case for Sign-Magnitude. We
observe, however, that when initializing the weights w1, . . . , wl with random
rational numbers, a weighted sum w1x1 + · · · + wlxl is highly unlikely to be 0.
Thus, in this case there should be no change whether the condition for an oper-
ation is w1x1 + · · · + wlxl > 0 or w1x1 + · · · + wlxl ≥ 0 and the easy comparison

Accelerating Homomorphic Computations on Rational Numbers 417

should return the correct result with overwhelming probability. If the weights
are initialized with 0 (as could be chosen in the Perceptron) or integers in the
more general case, a more involved formula should be used.

5.3 Improved Multiplication

As the reader may have noticed, the sign extension in Two’s Complement intro-
duces costly redundancy, which can be avoided by carefully copying values to
appropriate locations instead of computing them from scratch every time. Of
course, as Sign-Magnitude multiplication works without sign extension, this
improvement only applies to Two’s Complement. However, the following fur-
ther improvements hold for both encodings:
Having computed the matrix whose rows we want to sum up, we can apply a
log(n+m)-depth circuit for adding the n+m rows. It is noteworthy that we can
save computation power by modifying the addition operation: As can easily be
seen, we are always adding rows of different lengths. While the naive approach of
padding the right-hand side of the shorter number with 0’s and applying normal
addition would also work, we can save some effort by copying the excess bits of
the longer number and then performing addition on the remaining shorter equal-
length parts. Generally, when using this second approach, we only perform an
addition of the length of the shorter input, which is an important factor in depth
optimization.

In the simpler case where one value is known, i.e., multiplication by a con-
stant, we do not need to do as much work: For simplicity, assume that the input
b is known. We again first need to do sign extension for Two’s Complement,
but in the next step instead of having to compute n · m terms ai · bj as before,
we can just copy the string a for every bit that is 1 in b, shifting to the left
with each bit. This way, we save n ·m multiplications from the generation of the
matrix and reduce the depth by one. Also, note that we now don’t need to add
as many rows, as we only write down those that correspond to the non-zero bits
in b. Thus, we only need to do hm(b) row additions, where hm(b) is the hamming
weight of b. Of course, the complexity and multiplicative depth now depend on
the value of b and are the same as for regular multiplication in the worst case.
However, on average we will only have to do half as many row additions.

5.4 Managing Length

By default, each addition and each multiplication increase the bitlength: Addi-
tion increases it by 1, whereas multiplication results in a bitlength that is the
sum of the two input lengths. When performing several multiplications consecu-
tively, this can easily lead to enormous bitlengths. However, in a scenario where
the size of the values can be estimated, there is a way around this. One such
scenario is machine learning, where the person working on the data is the person
who has the algorithm for building the model and it is a reasonable assumption
that some factors of the model are known, e.g. from experience. For example,
in the data set we worked with [2], the value w0 always took some value near

418 A. Jäschke and F. Armknecht

10000 no matter what subset of test subjects we chose. In such cases, the service
provider who is doing the computations can put a bound on the lengths (i.e.,
he is certain that the weights will not be larger in absolute value than 2q for
some q). When this is the case, we can reduce the bitlength of the encrypted
values to this size q + 1 by discarding the excess bits: In Two’s Complement, we
can delete the most significant bits (which will all be 0 for a positive and 1 for a
negative number) until we reach the desired length, whereas for Sign-Magnitude
we discard the bits following the MSB (which will all be 0). More specifically, we
actually integrated this into our multiplication routine, such that we not only
save space, but also effort, as we only compute until we reach the bound in each
step. This can be viewed as the inversion of the sign extension operation intro-
duced in Sect. 3.3 and makes the entire algorithm significantly faster, as we have
elimninated linear growth in the bitlength.

6 Applications

In this section, we demonstrate the performance increase on two concrete use
cases.

6.1 Background and Motivation

Fully Homomorphic Encryption allows the computation of arbitrary functions on
encrypted data while keeping the data hidden from the computing party. While
FHE does not in principle offer to keep the function private (e.g., if the data
and the function belong to the same party, who wishes to have the computation
done by a different party with more computing power), it can hide the function
that was applied in the following case: If the data belongs to one party and the
function belongs to the computing party, then FHE schemes that are “circuit
private” guarantee that a ciphertext divulges nothing about the function that
was applied to it. Since circuit privacy is often a goal for FHE schemes, it makes
sense to extend this requirement to the encoding choices to achieve privacy for
the end result. This then means that the data owner learns nothing about the
applied function except for what he can derive from the result, and the function
owner learns nothing about the data. In this spirit, machine learning has often
been cited as an application of Fully Homomorphic Encryption (see Sect. 2).
Machine learning describes a field of research focused on extracting information
from data, e.g. in the form of models. In this paper we consider the following
scenario: Suppose Alice has a machine learning algorithm which takes data as
input and returns a predictive model, and Bob has some data and would like
either to obtain a model based on his data, or apply said model to further data
(though he does not obtain the model in that case, e.g. allowing the service
provider to bill him for each classification of his data). However, Alice does not
want to reveal her algorithm for building the model to Bob, and Bob wishes to
keep his data secret. With Fully Homomorphic Encryption, Bob could encrypt
his (training) data and send it to Alice, who then performs her algorithm on

Accelerating Homomorphic Computations on Rational Numbers 419

the encrypted data. The output is an encryption of the model, which Alice can
apply to new encrypted data instances from Bob and Bob only receives the
result of applying the model to his data (first case), or the whole model is sent
to Bob (second case), in which case only Bob can decrypt the model. Thus, with
an adequately secure Fully Homomorphic Encryption scheme, Alice has learned
nothing about Bob’s data and Bob has learned nothing about Alice’s algorithm
except what he can deduce from the result of the evaluation.

In the following, we consider two use cases, one for each of the above scenarios.
For the first case, we take up a use case already presented in [22]: the Linear
Means Classifier, where we assume that the model has already been built. Alice
receives Bob’s encrypted data, which she classifies by evaluating a polynomial
of degree 2. This use case showcases our new Hybrid Encoding, which performs
significantly better in this general case where the results are not bounded.

For the second case, we examine the Perceptron and show how to improve
efficiency in evaluating it (i.e., obtaining the model), showcasing our results
regarding choice of encoding and tweaks in multiplication. The Perceptron is an
important fundamental algorithm in machine learning upon which many others
are built, so being able to efficiently homomorphically evaluate it is mandatory
before we can move on to more advanced machine learning algorithms.

The given runtimes are estimates for data encrypted with HElib [1], as
runtimes are still very large: We measured the time for operations like addi-
tion and multiplication for different parameters and extrapolated the time it
would take to compute the entire function. For example, given the function
f(x1, x2, x3, x4) = x1 · x2 + x3 · x4 on inputs of length n, we would calculate
the runtime as that of 2 multiplications of n-bit numbers plus one addition of
numbers of lengths 2n (in the unbounded case). We confirmed our computations
by actually running the Perceptron for lengths n = 3 and n = 5 for all three
encodings to make sure that our computations reflect reality. However, we point
out that these runtimes depend greatly on the characteristics of HElib: If one
used a different encryption scheme that takes longer or shorter to perform boot-
strapping, the results would vary greatly. However, our theoretical results are
independent of the scheme that was used.

6.2 Linear Means Classifier

In this section, we examine the Linear Means Classifier to showcase the first use
case, where the Service Provider retains the encrypted model and the user may
send further encrypted data which is then classified by the encrypted model and
only the encrypted result is returned to the user.

The Linear Means Classifier: Like [22], we consider the case where there
are two classes, which are determined by the sign of the score function, which
is a polynomial of degree 2. More concretely, the model consists of a vector
w = (w1, . . . , wl) and a constant c, and the data to be classified is a l-dimensional
real-valued vector x = (x1, . . . , xl). The score function is then computed as
〈w, x〉 + c = w1x1 + w2x2 + · · · + wlxl + c, and the sign of the result determines

420 A. Jäschke and F. Armknecht

which class the data instance belongs to. As can easily be seen, this is closely
related to the classification function of the Perceptron from the next section,
where the focus is on determining w and c instead of computing the score function
for given (encrypted and thus unknown) values for w and c as we do here.

Performance: Using the Linear Means Classifier, we examine the effects of
using different encodings in the unbounded case (i.e., when the product of two
n-bit numbers has length 2n). To this end, we compute both the effort required in
terms of bit operations and depth and the runtime of evaluating the score func-
tion for inputs of bitlength 30 for different numbers l of features. As explained
above, we computed these runtimes from their components (i.e., the runtime for
multiplying two 30-bit numbers without bounds, and the runtime for adding two
60-bit numbers) as the numbers are quite large. The results can be found in Fig. 2
in Sect. 1.1. As we can see, Two’s Complement is better than Sign-Magnitude,
and using our new Hybrid Encoding significantly improves all aspects except
depth, which is about halfway between the other two encodings. This did not
matter in our case as we bootstrapped after every multiplication.

6.3 Homomorphically Evaluating the Perceptron

In this section, we examine the first use case where the Perceptron is evaluated
to return an encrypted model.

The Perceptron: The Perceptron is an algorithm based on neural networks
and basically works by computing a weighted sum of the input traits (usually
rational numbers) for each subject and then classifying into one of two classes
depending on whether this weighted sum is above a certain threshold or not. In
the training phase, the weights are adjusted if the computed classification does
not match the known classification of the training instance. After training, the
model can be used to classify future inputs with no known classification. The
model consists of the weights, and the threshold can either be predetermined or
flexible (and thus part of the model being computed). We will work with the
latter approach, which enables us to compare the inner product to 0.

Performance: We will now examine how the optimizations from Sect. 5 affect
the Perceptron, as shown in Fig. 4. We can see that bounding the values makes
a huge difference, especially since these values are only for the first round and
would grow exponentially in further rounds. Sign-Magnitude is consistently the
worst choice, and in the unbounded case, Hybrid Encoding is fastest (as already
evident from Sect. 6.2). In the bounded case, however, Two’s Complement is
fastest, and this makes sense: The fact that we have integrated the bounding
into our multiplication procedure and stop computing in each line as soon as the
bound is reached negates the sign extension that incurs the slowdown for multi-
plication in Two’s Complement encoding. This means that we expect bounded
Two’s Complement multiplication to be almost as fast as Sign-Magnitude mul-
tiplication, which was confirmed by our experiments. Due to this, there is no
efficiency gain through our new encoding in the bounded case, but the graph still

Accelerating Homomorphic Computations on Rational Numbers 421

20 25 30

0.2

0.4

0.6

0.8

1
·106

(Bitlength)

R
u
n
ti

m
e

in
se

co
n
d
s

Fig. 4. Extrapolated runtimes for one subject for one round of the encrypted Percep-
tron for Two’s Complement (• (lines) for bounded, • (lines) for unbounded values),
Sign-Magnitude (• (solid) for bounded, • (solid) for unbounded values) and using our
new Hybrid Encoding (• (dotted) for bounded, • (dotted) for unbounded values) (Color
figure online).

illustrates the importance of choosing the right encoding, as Sign-Magnitude is
significantly slower here due to its costly addition.

7 Conclusion and Future Work

In conclusion, we have presented a way of working with encrypted rational num-
bers, to our knowledge being the first to not restrict ourselves to unsigned inte-
gers. We have presented a new hybrid encoding technique that vastly improves
efficiency for FHE on rational numbers both in theory and for real-world appli-
cations like the Linear Means Classifier, and other optimizations that improve
efficiency for more complicated functions like the Perceptron. Since our results
are independent of the scheme used, they hold with maximum generality and can
thus be beneficial for anyone looking to evaluate a function homomorphically.
For future research, we believe that this hybrid approach may be transferable to
plaintext spaces other than {0, 1}, although the elementary operations will be
considerably more involved. Further, we imagine that it could be beneficial to
take a step back from established encodings and come up with a new one from
scratch, which could be specially tailored to FHE computations.

References

1. HeLib Library: https://github.com/shaih/HElib
2. Pima Dataset: https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
3. Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C.A., Strand,

M.: A guide to fully homomorphic encryption. IACR Cryptology ePrint Archive
(2015/1192)

4. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: char-
acterizations, impossibility results, and applications. DCC 67(2), 209–232 (2013)

https://github.com/shaih/HElib
https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

422 A. Jäschke and F. Armknecht

5. Armknecht, F., Strufe, T.: An efficient distributed privacy-preserving recommen-
dation system. In: Med-Hoc-Net (2011)

6. Aslett, L.J.M., Esperança, P.M., Holmes, C.C.: Encrypted statistical machine
learning: new privacy preserving methods. CoRR abs/1508.06845 (2015)

7. Bos, J.W., Lauter, K.E., Naehrig, M.: Private predictive analysis on encrypted
medical data. J. Biomed. Inform. 50, 234–243 (2014)

8. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. ECCC 18, 111 (2011)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS (2011)

11. Cheon, J.H., Kim, M., Lauter, K.: Homomorphic computation of edit distance. In:
Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015 Workshops.
LNCS, vol. 8976, pp. 194–212. Springer, Heidelberg (2015)

12. Chung, H., Kim, M.: Encoding rational numbers for fhe-based applications. IACR
Cryptology ePrint Archive (2016/344)

13. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (2014)

14. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012)

15. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE
scheme. IACR Cryptology ePrint Archive (2016/250)

16. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

17. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing,
J.: Manual for using homomorphic encryption for bioinformatics. Technical report
MSR-TR-2015-87, Microsoft Research (2015)

18. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015)

19. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

20. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Canetti, R., Safavi-Naini, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

22. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013)

23. Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: CCS (2010)

24. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: CCSW (2011)

Accelerating Homomorphic Computations on Rational Numbers 423

25. Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 336–353. Springer, Heidelberg (2009)

26. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

27. Songhori, E.M., Hussain, S.U., Sadeghi, A., Schneider, T., Koushanfar, F.: Tiny-
garble: highly compressed and scalable sequential garbled circuits. In: SP (2015)

28. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees
and random forests. IACR Cryptology ePrint Archive (2015/386)

	Accelerating Homomorphic Computations on Rational Numbers
	1 Introduction
	1.1 Our Contribution
	1.2 Outline

	2 Related Work
	3 Background
	3.1 FHE and Efficiency Metrics
	3.2 From Unsigned Integers to Rationals of Arbitrary Precision
	3.3 Two's Complement
	3.4 Sign-Magnitude

	4 Basic Operations and Their Performance
	4.1 Note on Comparisons
	4.2 Addition
	4.3 Multiplication

	5 Accelerating Computations
	5.1 Hybrid Encoding
	5.2 Easy Comparison
	5.3 Improved Multiplication
	5.4 Managing Length

	6 Applications
	6.1 Background and Motivation
	6.2 Linear Means Classifier
	6.3 Homomorphically Evaluating the Perceptron

	7 Conclusion and Future Work
	References

