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Abstract. The Algebraic Eraser has been gaining prominence as Secur-
eRF, the company commercializing the algorithm, increases its marketing
reach. The scheme is claimed to be well-suited to IoT applications but
a lack of detail in available documentation has hampered peer-review.
Recently more details of the system have emerged after a tag authenti-
cation protocol built using the Algebraic Eraser was proposed for stan-
dardization in ISO/IEC SC31 and SecureRF provided an open public
description of the protocol. In this paper we describe a range of attacks
on this protocol that include very efficient and practical tag imperson-
ation as well as partial, and total, tag secret key recovery. Most of these
results have been practically verified, they contrast with the 80-bit secu-
rity that is claimed for the protocol, and they emphasize the importance
of independent public review for any cryptographic proposal.
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1 Introduction

Extending security features to RAIN RFID tags1 and other severely constrained
devices in the Internet of Things is not easy. However the different pieces of the
deployment puzzle are falling into place. Over-the-air (OTA) commands support-
ing security features have now been standardized [11] and both tag and reader
manufacturers can build to these specifications knowing that interoperability
will follow. The OTA commands themselves are crypto-agnostic so parallel work
on a range of cryptographic interfaces, so-called cryptographic suites, is ongoing
within ISO/IEC SC31. These cryptographic suites provide the detailed specifi-
cations that allow algorithms such as the AES [14,23], PRESENT-80 [8,15], and
Grain-128a [1,16] to be used on even the most basic of RFID devices.

1 Following the creation of the RAIN Industry Alliance, UHF RFID tags are increas-
ingly branded as RAIN RFID tags. These RFID tags operate at 860–960 MHz and
are far more constrained than the HF RFID tags that are familiar from public trans-
port and NFC applications.
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For symmetric cryptography a range of lighter alternatives to the Advanced
Encryption Standard (AES) [23] have received a high level of cryptanalytic atten-
tion over several years. While the AES will always be an important implementa-
tion option, some of these alternative algorithms may be appropriate for certain
use-cases. To those not in the field the cost and performance advantages pro-
vided by these new algorithms might appear slight. But the requirements of the
RAIN RFID market are such that even a minor degradation in the read range
or a small percentage increase in silicon price can eliminate the business case for
adding security to many use-cases.

Turning to asymmetric cryptography there are several work items in ISO/IEC
29167 that describe public-key solutions. Parts 29167-12 [17] and 29167-16 [18]
describe tag authentication based on elliptic curve cryptography, though they
carry significant implementation challenges for RAIN RFID. 29167-17 [19] pro-
vides another elliptic-curve tag authentication solution with the additional prop-
erty that compact pre-computed coupons can be used to provide implementation
advantages. In 29167-20 [20], however, we encounter an alternative to elliptic
curves: 29167-20 proposes a method for asymmetric tag authentication that is
based on braid groups. This proposal is based on the Algebraic Eraser (AE) key
agreement protocol [3,25]. SecureRF, the company commercializing (and own-
ing the trademark to) the Algebraic Eraser, claims significant implementation
advantages for the Algebraic Eraser over solutions that use elliptic curves. In
particular the Algebraic Eraser is claimed to be well-suited to deployments as
part of the Internet of Things.

Note. The Algebraic Eraser has been proposed for use in many environments.
However the commentary and descriptions in this paper will use the typical RFID
setting of an Interrogator (or reader) interacting with a Tag. This provides the
closest match with the terms used in the protocol [25].

Related Work

Until recently, crucial details about the Algebraic Eraser and any associated
cryptographic protocol were not available. This made independent security
analysis and performance evaluation difficult. (See [12,13,21,22,24] for what
little exists in the published literature.) However, in October 2015 SecureRF
provided a detailed public description of the Algebraic Eraser tag authentica-
tion protocol [9,25]. This means that the protocol can now be publicly reviewed
and discussed. The published description includes a specific set of system para-
meters, a set of test vectors, and a description of the tag authentication protocol.
However SecureRF do not disclose how the system parameters were generated,
an aspect of the technology that is known to be of crucial importance. Indeed,
some of the attacks in this paper are able to exploit structure in the system
parameters that have been proposed for standardization.

While general documentation [3] describes the Algebraic Eraser in terms of
braid groups, company presentations [4,6] distance the technology from previous
cryptographic proposals that use braid groups. Instead the security of the Alge-
braic Eraser is said to depend on a problem called the simultaneous conjugacy
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separation search problem [4] and sample parameter sizes have been published
for different security levels. In [25] the parameters are claimed to correspond to
an 80-bit security level, though a precise security model is not provided. Most
likely the intention is that the work effort to recover a private key from the
corresponding public key should be roughly equivalent to 280 operations.

The tag authentication protocol in [25] is based upon a Diffie–Hellman-like
key agreement scheme. Very recently Ben-Zvi, Blackburn, and Tsaban [7] pre-
sented an innovative cryptanalysis of the underlying key agreement protocol.2

Using only information that is exchanged over the air, and avoiding the hard
problem upon which the security of the Algebraic Eraser key agreement protocol
is claimed to be based, Ben-Zvi et al. provide a method for deriving the shared
secret key. Using non-optimized implementations they successfully recovered—in
under eight hours—the shared secrets generated using the Algebraic Eraser key
agreement protocol with parameters provided by SecureRF that were intended
to provide 128-bit security [6].

Since then Anshel, Atkins, Goldfeld and Gunnells (researchers associated
with SecureRF) have posted a technical response [2] to the Ben-Zvi–Blackburn–
Tsaban (BBT) attack. This is not the place to comment on that document,
except to highlight one feature that is relevant for our work here.

In [2] Anshel et al. consider the implications of the BBT attack and state
that the attack would not apply to one of two profiles proposed for standard-
ization [20]. Section 4.2 of Anshel et al. [2] reveals that the profile claimed to be
secure is one where “... an attacker never has access to one of the public keys
...” [2]. However the idea that it is reasonable for the security of a public key
scheme to depend on the public key being hidden is very strange. While it is
true Tag public keys could be delivered to interrogators out-of-band, the security
of the scheme should not depend on the Interrogator keeping those keys secret.
Indeed, if we trust an Interrogator not to reveal the Tag public key then we can
trust the Interrogator with a symmetric key and there would be no need to use
the Algebraic Eraser at all! So while two of the five attacks described in this
paper use the Tag public key for the required calculations, we see no limitation
in assuming that the tag public key is, as the name implies, public.

Finally, we should point out a recent posting of Atkins and Goldfeld [5] that
suggests modifications to the tag authentication protocol in the light of the
results of this paper.

Our Contribution

In this work we derive a range of new and very efficient attacks on the tag
authentication protocol [25]. We side-step the bulk of the mathematical machin-
ery behind the Algebraic Eraser, but observe some curious features of the Alge-
braic Eraser that cause significant failures in this protocol. In particular we
provide the following attacks against the variant that is currently proposed for
standardization:

2 The results in this paper are entirely independent of the work in Ben-Zvi et al [7].
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1. Tag impersonation of a target tag with success probability ≈ 2−7 after 273
queries against the target tag and storage ≈ 216 bits.

2. Tag impersonation of a target tag with 100 % success rate after ≈ 215 queries
against the target tag and using ≈ 223 bits of storage.

3. Full recovery of a tag private key matrix (see Sect. 3.3) with negligible work
after running the tag authentication protocol 33 times against the target tag.

4. Tag impersonation of a target tag with 100 % success rate, using Attack 3
and a small pre-computed look-up table of around 128 64-bit words. The
on-line work in the attack is negligible while the off-line pre-computation for
current parameter sizes is also negligible. This attack uses (a non-heuristic
part of) an attack due to Kalka, Teicher and Tsaban [21] together with a
novel application of a certain permutation group algorithm.

5. Complete tag private key (or equivalent key) recovery—recovering both the
tag private matrix and the secret tag conjugate set (see Sect. 3.3)—building
on Attack 3 and requiring a work effort of 249 operations and storage ≈ 248

64-bit words for one of the parameter choices proposed for standardization
that is claimed to provide 80-bit security.

Our attacks avoid using any heuristic methods, and apply for all parameter sets
of the size proposed in the standard (not just the specific given parameters).
These failures in the tag authentication protocol severely undermine claims for
an 80-bit security level. We conclude that the protocol is unsuitable for both
deployment and standardization in its current form.

Our paper is structured as follows. In Sect. 2 we provide an overview of the
Algebraic Eraser tag authentication protocol with the mathematical formalities
following in Sect. 3. The attacks are described in Sects. 4, 5, 6, and 7 respectively
and we close the paper with our conclusions.

2 Algebraic Eraser and Tag Authentication

The Algebraic Eraser does not use familiar mathematics and a description can
be, at first sight, somewhat complicated. However, for our attacks we will only
need the basic tools that we provide in Sect. 3. For a more complete view the
reader is referred to both the general description of the Algebraic Eraser [3] and
the specific protocol details in [25].

As mentioned in the Introduction, at the core of the Algebraic Eraser is a key
agreement protocol. Using the familiar protocol flow that dates back to Diffie–
Hellman [10], an Interrogator and Tag exchange public keys. Then, by each
applying their own secret component to the other public key, both Interrogator
and Tag can arrive at a shared common secret key value. To turn this key
agreement protocol into a tag authentication protocol, the Interrogator specifies
a portion of the shared secret that should be returned by the Tag. The correctness
of this response can be verified by the Interrogator. This is illustrated in Table 1
and described more technically in Sect. 3.4.
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Table 1. An outline of the Algebraic Eraser tag authentication scheme [25]. The
underlying key agreement protocol is used to derive a shared secret. The Interroga-
tor instructs the Tag, using byte index s and bit-length l, to extract an authentication
token t of length l from this shared secret.

gaTrotagorretnI
secret key Intpriv secret key Tagpriv
public key Intpub public key Tagpub

Request Tag public key/
start−−−−−−−→

certificate
Tagpub←−−−−−−−−− Send Tag public key

Send Interrogator public key,
Intpub, s, l−−−−−−−−−−−−→

index, and token bit length

Compute secret using Intpriv Compute secret using Tagpriv

Check correctness of t
t←−−−− Using index s and length l

extract and return token t

We will refer to the portion of the secret key returned by the Tag as an
authentication token t. In [25] the Interrogator indicates to the Tag how to con-
struct t by sending a starting index s and length l during the message exchange
between Interrogator and Tag. The protocol description neither specifies nor
gives guidelines on s and l. Clearly a fake tag will always be able to fool an
Interrogator with probability 2−l but the field specifying the length l in [25] is
eight bits long so we have 0 ≤ l ≤ 255. This certainly covers all the natural
choices. Note that generating an authentication token t by revealing parts of a
shared secret means that the Interrogator will need to generate and use different
public keys at each tag authentication. While this is alluded to in Section B.1.2
of [25] it is unclear whether the ensuing performance penalty in storage and
transaction time is always reflected in published performance figures.

3 Some Technical Details

This section reviews some of the technical details of the protocol. We describe
only as much of the detail as we need to describe our attacks.

3.1 System Parameters

The protocol specifies some system parameters, the key space, as follows.
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Let N be a small positive integer; [25] mandates that N = 10. Let B =
{b1, b2, . . . , bN−1} be an alphabet of size N − 1 (the bi are known as Artin gen-
erators). Let F be the set of all formal strings in the disjoint union B ∪ B−1.
So, for example, b2b

−1
1 b1b4b

−1
2 is a length 5 element of F .

The set of Tag conjugates is a set C = {c1, c2, . . . , c32} of size 32, where each
ci ∈ F . The set of Interrogator conjugates is a set D = {d1, d2, . . . , d32} of size
32, where each di ∈ F . While C and D are specified in [25] SecureRF does not
describe how they have been generated. In fact, in Sect. 4 we will exploit an
important structural property of the sets C and D that have been proposed for
standardization. Here, however, we restrict ourselves to noting that each of C
and D require around 90 Kbits to store and that while a tag might not need to
store C the Interrogator needs D to generate ephemeral keys.

We write Sym(N) for the set of all permutations of N objects {1, 2, . . . , N}.
Let si = (i, i + 1) ∈ Sym(N) be the permutation that swaps i and i + 1 and
leaves the remaining elements fixed. Let

w = bε1
i1

bε2
i2

· · · bεr
ir

be an element in F of length r, where ij ∈ {1, 2, . . . , N − 1} and εj ∈ {−1, 1}.
The permutation π(w) ∈ Sym(N) corresponding to w ∈ F is the permutation

π(w) = sε1
i1

sε2
i2

· · · sεr
ir

= si1si2 · · · sir

where product means composition of permutations.
Finally, the protocol [25] specifies using arithmetic in the finite field F256 and

defines a specific sequence of N = 10 non-zero elements in F256, called T-values,
and a specific N × N matrix M∗ with entries in F256 called a seed matrix. This
choice of parameter sizes is denoted B10F256 and, according to Section B.3, is
intended to provide 80-bit security.

Another set of parameters, denoted B16F256, has been independently pro-
vided by SecureRF to the first author. The same underlying field is used for both
parameter sets but the matrices, the set of T-values, and the permutations are
defined for N = 16 rather than N = 10. The parameters B16F256 are intended
to provide 128-bit security.

3.2 E-Multiplication

E-multiplication is the public key operation, analogous to finite field exponenti-
ation in Diffie–Hellmann, that lies at the heart of the Algebraic Eraser. It takes
two parameters as input. The first parameter is a pair (M,σ) where M is an
N × N matrix over F256 and σ ∈ Sym(N) is a permutation. The second para-
meter is a string w ∈ F . The output is a pair (M ′, σ′) where M ′ is an N × N
matrix over F256 and σ′ ∈ Sym(N). We write

(M,σ) ∗ w = (M ′, σ′).

The permutation σ′ is easy to define: σ′ = σ π(w). The matrix M ′ is computed
by first finding a certain N × N matrix φ(σ,w) with entries in F256, and then
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setting M ′ = Mφ(σ,w). We do not specify the details of how φ(σ,w) is defined,
but just give the following details. To compute φ(σ,w), we replace the symbols
bi and b−1

i in w by certain fixed matrices and their inverses. These matrices have
entries in a polynomial ring in N variables, and the last row of all these matrices
is all zero apart from the final entry which is 1. We multiply our matrices together
(obtaining a matrix whose last row is all zero apart from the final entry which
is 1). We evaluate each entry of this product (which is a ratio of two polynomials
in N variables) by replacing each variable by one of the T -values to form the
matrix φ(σ,w) with entries in F256. We use σ to decide which T -value replaces
each variable in this process.

We note four properties that follow from the way E-multiplication is defined:

1. If w is the concatenation of strings w′ and w′′ then

(M,σ) ∗ w = ((M,σ) ∗ w′) ∗ w′′. (1)

In fact E-multiplication has other nice properties related to the fact that
E-multiplication is derived from the action of a braid group. However we do
not need these properties here.

2. The matrix φ(σ,w) only depends on σ and w (and on the T-values, which are
fixed).

3. The entries of the last row of φ(σ,w) are all zero, except the final entry which
is 1.

4. The following linearity property follows from our partial description of
E-multiplication:

If (M1, σ) ∗ w = (M ′
1, σ

′) and (M2, σ) ∗ w = (M ′
2, σ

′)
then (a1M1 ⊕ a2M2, σ) ∗ w = (a1M

′
1 ⊕ a2M

′
2, σ

′)
(2)

for any a1, a2 ∈ F256.

3.3 Private and Public Keys

The Tag private key has two components.

1. The first component is an N ×N matrix KT over F256 that is generated from
the seed matrix M∗. During the key generation process a random degree 9
polynomial p(x) over F256 is selected and we set KT = p(M∗). See Section
B.1.2 of [25]. The parameters are chosen so that the probability of recovering
KT by guessing the polynomial p(x) is (2−8)10 = 2−80.

2. The second component of the private key is a string c ∈ F that is obtained
by concatenating at least 16 of the Tag conjugates and their inverses. (The
inverse of a word bε1

i1
bε2
i2

· · · bεr
ir

is the word b−εr
ir

b
−εr−1
ir−1

· · · b−ε1
i1

.)

The matrix KT and the string c form the private key of the Tag. The Tag’s
public key is defined to be

(MT , σT ) = (KT , 1) ∗ c

where 1 is the identity permutation.
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When interacting with the Tag, the Interrogator generates an ephemeral
private and public key, using the set of Interrogator conjugates rather than Tag
conjugates. This means that the Interrogator’s private key is an N × N matrix
KI over F256 and a concatenation d of at least 16 of the Interrogator conjugates
and their inverses. The Interrogator’s public key is

(MI , σI) = (KI , 1) ∗ d.

3.4 Authenticating a Tag

The Tag authentication protocol runs as follows. The Interrogator requests the
Tag’s public key (MT , σT ). The Interrogator also generates an ephemeral pri-
vate key and sends the corresponding public key (MI , σI) to the Tag. The Tag
computes the shared key

(KT MI , σI) ∗ c

and the Interrogator computes the shared key

(KIMT , σT ) ∗ d.

The function φ and the parameters of the scheme are designed so that these val-
ues are equal. The Interrogator requests that part of the shared key be returned
to the Interrogator and authenticates the Tag if the Tag replies correctly. Though
the shared key is a matrix-permutation pair, the permutation is easy to com-
pute from public material (it is just a product of two public permutations:
σIσT = σT σI). So the matrix is the only non-public part of the shared key.

We note that all the attacks in this paper use knowledge of the shared secret
key generated during the tag authentication protocol. It is a minor detail, but
since [25] restricts the length of the authentication token (l ≤ 255) an attacker
might need to repeat tag authentication using three different choices for s and l =
255 before recovering the entire shared secret (as the shared matrix is represented
by a sequence of 8 × N(N − 1) = 720 bits). This three-fold increase in the work
effort is included in our estimates.

4 Basic Tag Impersonation

In a tag authentication protocol, an attacker can always run the tag authenti-
cation protocol against a target tag at will. The goal would be to derive enough
information so that the attacker can impersonate the target tag to a genuine
Interrogator in a future run of the tag authentication protocol. We now describe
a simple impersonation attack of this type.

Suppose an attacker chooses a permutation σ and a set of matrices Mi, for
0 ≤ i ≤ N(N − 1) = 90. The matrices are chosen so that they form a basis for
the space of all N × N F256 matrices for which the last row begins with N − 1
zero values. Taken together, the matrices and the single permutation σ provide
N(N − 1) + 1 = 91 spoof Interrogator public keys that are used in 91 runs of
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the tag authentication protocol against the target Tag. This yields 91 shared
secrets Si, for 0 ≤ i ≤ N(N − 1), remembering from Sect. 3.4 that we will need
to include a further factor of three in any work effort computation.

Now suppose the attacker attempts to impersonate the target Tag to a genuine
Interrogator and receives a random public key (MI , σI), where σI = σ. Emulating
the target Tag, the attacker computes ai for 0 ≤ i ≤ N(N − 1), so that

MI =
N(N−1)⊕

i=0

aiMi.

The linearity observed in Eq. 2 of Sect. 3.2 guarantees that the secret S that
would be computed by a genuine tag can also be computed as

S =
N(N−1)⊕

i=0

aiSi.

The attacker will be able to extract the correct authentication token from S and
fool the Interrogator with 100 % certainty.

As described, the attack requires that the Interrogator choose a public key
with σI = σ. At first sight, for the parameters in [25], it appears that since N ! ≈
221.8 the probability a genuine Interrogator chooses the hoped-for σI is around
2−21.8. However closer analysis reveals additional structure in the conjugate sets
C and D. In particular, all the permutations generated by C have five fixed
points, as do all the permutations generated by D. This means that the space of
possible permutations that might be encountered from a genuine Interrogator is
reduced from N ! to (N/2)! ≈ 27. The probability a genuine Interrogator chooses
the hoped-for σI is therefore greater than 2−7.

For those that prefer certainty, it is obvious an attacker can increase his
success probability by performing more off-line interrogation of the target Tag
using different σ. This gives a variety of trade-offs, with the extreme being an
attacker who will be able to emulate the target tag with 100 % certainty after
interrogating that tag around 91 × 3 × 5! < 215 times.

5 Tag Private Matrix Recovery

The security of the Algebraic Eraser tag authentication protocol depends on
the secrecy of two components: the N × N private F256-matrix KT and the tag
string c ∈ F . In fact, both of these need to be kept secret: in the section below
we provide details of a very efficient tag impersonation attack if KT is known;
moreover, KT can be recovered from the public key if c is known. In Section B.3
of [25] parameters are chosen so that the work effort to recover KT by guessing
the polynomial p(x) used to construct it is equal to the claimed security level of
280 operations.

Exploiting the linearity observed in Eq. 2 of Sect. 3.2 we show how a differen-
tial cryptanalytic attack can recover the entirety of the secret matrix KT after
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11 tag authentications. Taking into account protocol constraints and parame-
ters specified in [25] we will need 33 tag authentications in practice, but in the
following description we will set aside the factor of three for clarity.

To begin, the attacker authenticates a target Tag using any Interrogator
public key (A, σ) and stores the shared secret S that results. The attacker then
authenticates the same tag with N related public keys that use the same permu-
tation σ and matrices P1, . . . , PN constructed as follows.

Let Ei,j be the N ×N matrix that is all zero, except its (i, j) entry which is 1.
Set Pt = A ⊕ Et,N for 1 ≤ t ≤ N . The attacker challenges the target tag with
the ten public keys (Pt, σ), for 1 ≤ t ≤ N , and stores the secret matrices St that
result.

One can observe that S = KT AV and St = KT PtV , for 1 ≤ t ≤ N , where
the matrix V = φ(σ, c) will depend on σ and the Tag’s secret product c in a
complicated way; the last row of V is all zero, except its last entry which is 1, by
a property of E-multiplication stated above. However neither Pt nor V depend
on KT and we observe that

S ⊕ St = (KT AV ) ⊕ (KT PtV ) = KT (A ⊕ Pt)V = KT Et,NV.

Since the last row of V has a special form, S ⊕St will be zero everywhere except
in the last column, for 1 ≤ t ≤ N . Further, the values in this last column will
correspond to the tth column of the tag secret matrix KT . Taken together, the
entirety of the tag secret matrix KT can be recovered column-by-column and
something that is intended to require 280 operations can be accomplished with
negligible work after N + 1 = 11 interactions with the target Tag, or 33 tag
authentications if we take into account the protocol constraints in [25].

This attack has been confirmed using the parameters and examples given
in [25]. It has also been confirmed on parameter sets of the form B16F256 that
have been supplied by SecureRF. In this latter case, with N=16, we are required
to perform 17 interactions with the target Tag, or 136 tag authentications if
we respect protocol considerations and only recover at most 255 bits in each
interaction. Recall that parameter sets of the form B16F256 are intended to
provide 128-bit security.

The linearity property that facilitates this attack appears intrinsic to the
definition of the Algebraic Eraser and thus hard to avoid; increasing the size of
parameters will not provide any significant additional security.

6 Efficient Tag Impersonation

Even though the tag impersonation attack of Sect. 4 is already very effective, a
more efficient attack can be designed using the result of Sect. 5. This new attack
is more efficient in terms of all three measures of tag queries, computation, and
storage.

Recall that d1, d2, . . . , d32 ∈ F are the interrogator conjugates. Define their
corresponding permutations gi ∈ Sym(N) by gi = π(di). We already observed in
Sect. 4 that these permutations are highly structured and have five fixed points.
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Algorithm 1. Constructing a lookup table
1: Construct a table indexed by the N ! permutations in Sym(N), with all entries

empty.
2: Add ‘terminate’ to the entry corresponding to the identity permutation.
3: Let L be a list that contains just the identity permutation.
4: while L non-empty do
5: Let g be the first element in L.
6: for i ∈ {1, 2, . . . , 32} and e ∈ {−1, 1} do
7: Compute ggei .
8: if the table entry indexed by ggei is still empty then
9: Change this entry to (i, e).

10: Add ggei to L.

11: Remove g from L.

Stage 0: A pre-computation stage. Build an oracle which, when given a per-
mutation σ ∈ Sym(N) that lies in the subgroup of Sym(N) generated by the gi,
returns r (a small integer), i1, i2, . . . , ir ∈ {1, 2, . . . , 32} and ε1, . . . , εr ∈ {−1, 1}
such that

σ = gε1
i1

gε2
i2

· · · gεr
ir

.

Since N ! = 10! ≤ 222, we can build a very efficient oracle by constructing a
lookup table of size N ! which contains the pair ir and εr for each permutation σ
that can be written as a product of the gi (and a termination string for the
identity permutation). The table may be constructed by using Algorithm1.

Since each permutation g is added to the list L at most once, constructing
the table takes at most about N ! × 32 × 2 ≈ 228 operations. Once the table
is constructed, the oracle works on input σ by using the table to find the last
element in a product of the permutations gi and their inverses that is equal
to σ. It then multiplies σ by the inverse of this last element, and iterates until
it reaches the identity permutation. The oracle returns the shortest expression
of the form we want (though we do not need this). The oracle is very efficient:
just a few table lookups and permutation compositions are needed.

The subgroup generated by the permutations gi in [25] is extremely small
(as these permutations all fix the same five points). So building the table for
the oracle above is extremely fast. We have implemented Algorithm 1 in C. It
takes just 0.014 s to generate the table, and resulting oracle takes an average of
under 0.00005 seconds to answer typical query, running on a 2.7 GHz i7 MacBook
Pro. So the pre-computation stage takes a negligible time to complete, and the
resulting oracle is extremely fast in practice.

Note that Algorithm 1 and the resulting oracle are very efficient even if the
permutations di generate the whole of the symmetric group (the worst case
for the pre-computation). Experiments with our implementation show that the
table is constructed in 66 s, and the resulting oracle answers a typical query in
an average of under 0.0015 s. So the pre-computation is always efficient.

For situations where it becomes impossible to store (in RAM) a table of
length equal to the order of the subgroup generated by the permutations gi, for
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example if N is much larger, we would suggest first using standard Schreier–Sims
techniques (see Seress [26, Chap. 4], for example) and then the powerful heuristic
approach of Kalka, Teicher and Tsaban [21], to construct the oracle. Note that
the pre-computed oracle can be used whenever the same set of reader conjugates
are used. Since the reader conjugate set D is a public system parameter [25] an
oracle can be collaboratively computed and shared over the Internet.

Stage 1: Interact with the Tag as in Sect. 5 to obtain the Tag’s public key
(MT , σT ) and then its secret key KT .

Stage 2: Impersonate the Tag using the techniques of Phase 2 of the attack
of Kalka, Teicher and Tsaban [21, Section 3.2.2]. The details are as follows.

When a legitimate interrogator queries (MI , σI), query the oracle to obtain
i1, i2, . . . , ir ∈ {1, 2, . . . , 32} and ε1, . . . , εr ∈ {−1, 1} such that

σI = gε1
i1

gε2
i2

· · · gεr
ir

.

Define
w = dε1

i1
dε2

i2
· · · dεr

ir
.

Compute the matrix L1 that is the result of the following E-multiplication:

(KT MI , σI) ∗ w−1.

Compute the matrix L2 that is the result of the following E-multiplication:

(K−1
T MT , σT ) ∗ w.

The shared key is (L1L2, σT σI). This derivation has been implemented and
confirmed.

7 Full Private Key Recovery

Given the extreme effectiveness of the tag impersonation attack of Sect. 6 the
need for a full key recovery attack on the Algebraic Eraser tag authentication
protocol is questionable. Under normal circumstances one might prefer a key-
recovery attack so that recovered keys could be inserted into a cloned device,
thereby exploiting the storage and performance advantages of the original algo-
rithm. However, in our attacks, the pre-computed look-up table is small and
impersonation is exceptionally fast; in fact it would be interesting to compare
the performance of the impersonation attack to the computation required by the
legitimate tag.

Nevertheless, to illustrate that a complete key recovery attack does exist we
outline a basic attack using a meet-in-the-middle technique. While the attack
in this section is already very effective (248 storage and 249 time for one of the
parameter choices proposed for standardization) we believe that more analysis
could reveal more practical variants.

To start, we will say that Tag conjugate products c, c′ ∈ F are equivalent,
which we write as c ≡ c′, if

(I, 1) ∗ c = (I, 1) ∗ c′
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where I is the N × N identity matrix and where 1 is the identity permutation.
The definition of E-multiplication shows that when V is any fixed invertible
matrix c ≡ c′ if and only if

(V, 1) ∗ c = (V, 1) ∗ c′.

In particular, when V = KT and c are the two components of the Tag private
key, a private key consisting of KT and c′ will produce the same Tag public key
if, and only if, c ≡ c′ (because KT is invertible). Since all shared keys can be
derived from the public key and the interrogator’s secret information, replacing
c by c′ in the Tag makes no difference to any of the shared keys computed by
the Tag in the protocol. So to recover the full secret key of the Tag we need only
find c′ ∈ F that is equivalent to c.

Assume that the Tag’s secret product c of conjugates has length 16, as allowed
by [25]. There are 2 × 32 = 26 possibilities for each term in the product, and
so there are 26×16 = 296 possibilities for c. We now describe a simple meet-in-
the-middle technique that will recover an equivalent product c′ using a look-up
table with

√
296 = 248 entries. The attack extends in a natural way to longer

products of conjugates.
Suppose now that an attacker has recovered the Tag private matrix KT by

the attack of Sect. 5. Clearly the attacker has the Tag’s public key (MT , σT ). The
attacker then searches for products c′ ∈ F of Tag conjugates that are equivalent
to c by finding c′ such that (KT , 1) ∗ c′ = (MT , σT ). We write c′ = w′

1(w
′
2)

−1

where the wi are length eight products of Tag conjugates and their inverses.
Note that

(KT , 1) ∗ w′
1 = (MT , σT ) ∗ w′

2.

For each of the 248 possibilities for w′
1, we compute (KT , 1) ∗ w′

1. We store the
results in such a way that it is easy to find w′

1 if we are given (KT , 1) ∗ w′
1. For

example, we could use an array of pairs ((KT , 1) ∗ w′
1, w

′
1), sorted by its first

component.
For each of the 248 possibilities for w′

2, we compute (MT , σT ) ∗ w2 and check
whether this value occurs as the first of a pair in our array. Once we find such
a value w2, we set c′ = w′

1(w
′
2)

−1 where w′
1 is the second element of the pair we

have found in the array. Note that

(KT , 1) ∗ c′ = ((KT , 1) ∗ w′
1) ∗ (w′

2)
−1 = ((MT , σT ) ∗ w′

2) ∗ (w′
2)

−1 = (MT , σT ),

and so c′ and KT form a private key that produces the Tag’s public key. Hence
c ≡ c′, and we have found an equivalent private key for the Tag.

Small-scale variants of this attack—using a reduced Tag conjugate set C and
shorter products—have been successfully implemented for the parameter sets
B10F256 given in [25].

8 Conclusion

The Algebraic Eraser has been on the periphery of the cryptographic literature
for nearly ten years. However the designers have not made it easy for independent
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researchers to analyze the scheme. The reason for this approach is unclear, but
the consequence has been a lack of independent peer-review.

It is too soon to determine whether or not secure schemes can be built around
the mechanisms seen in the Algebraic Eraser. Certainly it is always interesting
to see new techniques based on different hard problems. But any performance
claims for the Algebraic Eraser are premature without a more complete under-
standing of the security that is delivered. The work of Ben-Zvi et al. [7] and that
presented in this paper suggest that a lack of independent analysis has hindered
the algorithm proponents from seeking out alternative viewpoints and, critically,
from recognizing some very effective attacks. These have only become apparent
as the profile of the algorithm has been raised and details about the algorithm
have been made public.

It is hard to avoid the conclusion that the Algebraic Eraser should not be
used or standardized in its current form. If future versions are proposed, and [5]
provides hints that this may be the case, then it is important that a full and
detailed specification be made publicly available. Just as for the parent algo-
rithm, we believe any variants should not be used until there has been sufficient
independent public cryptanalysis.
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