
Improving Gossip Dynamics Through
Overlapping Replicates

Danilo Pianini1(B), Jacob Beal2, and Mirko Viroli1

1 Alma Mater Studiorum–Università di Bologna, Cesena, Italy
{danilo.pianini,mirko.viroli}@unibo.it

2 Raytheon BBN Technologies, Cambridge, USA
jakebeal@bbn.com

Abstract. Gossip protocols are a fast and effective strategy for com-
puting a wide class of aggregate functions involving coordination of
large sets of nodes. The monotonic nature of gossip protocols, however,
mean that they can typically only adjust their estimate in one direction
unless restarted, which disrupts the values being returned. We propose
to improve the dynamical performance of gossip by running multiple
replicates of a gossip algorithm, overlapping in time. We find that this
approach can significantly reduce the error of aggregate function esti-
mates compared to both typical gossip implementations and tree-based
estimation functions.

1 Introduction

Gossip protocols are a coordination approach based on estimating a collective
state by repeated propagation and aggregation of state estimates between neigh-
boring devices [5,21]. They are widely used in the development of networked and
distributed systems, as they can often provide a fast and effective means of enact-
ing strategies for collective adaptation of large numbers of computing devices.
This can be particularly important for emerging scenarios and the “internet of
things,” with the continued rapid increase in both the number of deployed mobile
or embedded devices and the networking technologies for connecting them oppor-
tunistically. In theory, virtually any collective mechanism—sensing the environ-
ment, planning actions, information storage, physical actuation—can be realized
by the resilient coordination of large sets of devices deployed in a given region
of space [24], and gossip can play an important role as a composable “building
block” algorithm for effective programming of such environments [3,22].

Unlike many scenarios where gossip has been deployed and studied, how-
ever, in pervasive and embedded environments network connections are typically
strongly affected by physical proximity and the effective network diameter may
be quite large. Overlay networks, which are often used to ensure that gossip
estimates can be rapidly adapted to new circumstances (e.g., [11–13,23]), are
often no longer applicable in these circumstances, and we need to find alternate
strategies that can enable gossip estimates to adapt rapidly and smoothly to

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
A. Lluch Lafuente and J. Proença (Eds.): COORDINATION 2016, LNCS 9686, pp. 192–207, 2016.
DOI: 10.1007/978-3-319-39519-7 12



Improving Gossip Dynamics Through Overlapping Replicates 193

changes in the values being aggregated. We address this challenge by defining
a higher-order “time replication” coordination strategy that maintains a set of
isolated replicas of a distributed process with staggered start times: applying
this strategy to replicate gossip provides a significant improvement over prior
approaches as well as an adjustable tradeoff between speed of adaptation and
cost of replication.

Design, prototype implementation, and experiments, have been realized by
exploiting the toolchain of aggregate programming [3], an approach aimed at
simplifying the sound engineering of collective adaptive systems by shifting the
programming focus from single devices to whole aggregates. This allowed us to
smoothly express a formalized version of the proposed approach in terms of the
Protelis programing language [20].

Following a brief review of gossip protocols in Sect. 2, we specify the proposed
replication strategy in Sect. 3 and analyze the predicted performance of time-
replicated gossip in Sect. 4. We then validate these predictions and compare
performance against other methods for collective state estimation in Sect. 5,
before summarizing contributions and future work in Sect. 6

2 Gossip Protocols

The term gossip protocol is used to cover a range of related algorithms and
concepts [5,21]. For purposes of this paper, we will formalize gossip with the
following generic algorithm, executed periodically on every participating device
in unsynchronized rounds:

def gossip(f,x) {
// Declare state variable v, initialized to current value of x
rep(v <- x) {

// Every round, merge v with neighbors’ values of v and current value of x
f.apply(x,hood((a,b) -> {f.apply(a,b)},x,nbr(v)));

} }

This algorithm begins with an input xδ,τ (the input x, potentially varying with
device δ and time τ) and a fixed merging function f that takes two values of
the type of x and returns another of the same type. The function f must be
idempotent, meaning that f(a, f(a, b)) = f(a, b), and commutative, meaning
that f(a, b) = f(b, a). This means that any number of copies of various values of
xδ,τ can be combined in any order and yet always be guaranteed to eventually
produce the same output value vδ′,τ ′ .

In particular, this algorithm realizes computation of vδ,τ by declaring v as a
state variable (construct rep) initialized to xδ,τ . In every round τ , vδ,τ is then
updated by using f to combine it with the current value of xδ,τ (which may
have changed), and with the latest values of vδ′,τ ′ that have been shared by
the device’s current set of neighbors in the network (construct nbr, which also
implies reciprocally sharing this device’s value of vδ,τ ).



194 D. Pianini et al.

For all functions f that are both idempotent and commutative, repeated
execution of this gossip algorithm on any connected network with stable inputs
(xδ,τ = xδ,τ ′) leads to all devices converging to the same value within diameter
rounds. This algorithm can be optimized in various ways by optimizing the
implementation of rep, hood, and nbr (e.g., sharing and computing only on
differences), but the essence remains the same.

Gossip is thus a valuable tool for fast, distributed computation of aggregate
functions of a network, for any function that can be mapped onto an appropriate
f : examples include minimum value, union of sets, and mean value (the last being
somewhat more subtle: see [16,21]). By contrast, other approaches to computing
a consensus aggregate value are either slow (e.g., Laplacian averaging [9,17]),
fragile (e.g., various exact consensus algorithms [10,15], PLD-consensus [1]), or
both (e.g., Paxos [6,14]).

The idempotence property of gossip, however, also carries its own significant
cost: it is asymmetric and information-destroying. Because a value can be merged
in multiple times without affecting the value of the aggregate, it is not possible
to know how many times this has actually taken place, and as such there is no
inverse function that can be used to remove from the aggregate an input xδ,τ

that is no longer valid. For example, with f = min(a, b) values can go down, but
they cannot go up again. This means that removing obsolete values from the
aggregate function can be difficult and costly. The two main strategies are:

– Values of xδ,τ may be in some way time-stamped and/or identified with their
source, such that they can be superseded by new information from the same
source or discarded if they are not periodically refreshed. Some form of this
approach is often used for gossip algorithms that build indexing or routing
data structures, such as in peer-to-peer systems (e.g., [11,23]), but has the
drawback that either most devices know only a fragment of vδ,τ or else that the
size of vδ,τ and of the updates that need to be shared between neighbors may
become very large, since each value of xδ,τ needs to be tracked individually.

– The gossip algorithm can be periodically restarted, thus resetting v and effec-
tively discarding all old values of xδ,τ . This has the advantage of being very
lightweight but can have significant lags before changes in xδ,τ are acknowl-
edged and large transients in vδ,τ during the restart. Furthermore, care must
be taken to ensure that no values of vδ,τ from the old algorithm instance
can ever be shared with the new algorithm instance, or else the benefit of
restarting will be lost.

In this paper, we focus on the periodic restart strategy, improving its dynam-
ics through a refinement in which multiple overlapping replicates of gossip are
run in parallel.

3 Time-Replicated Gossip

The approach we are investigating for improving gossip performance is a simple
generalization of the periodic restart strategy for removing obsolete information



Improving Gossip Dynamics Through Overlapping Replicates 195

Fig. 1. Time-replicated gossip launches a new gossip process every p seconds, dropping
the oldest replicate whenever there are more than k replicates.

from gossip. Rather than maintaining only a single instance of a gossip algorithm,
each device will maintain up to k replicates with staggered launch times (Fig. 1).
At a period of once every p seconds, a new replicate is launched, and if the full
complement of replicates is already running then the oldest replicate will be
dropped. This approach provides a compromise solution, avoiding the severe
drawbacks of either of the prior methods: the amount of state communicated or
stored cannot grow large as there are only k replicates, and large transients in
v can be avoided by keeping the current replicate running while new replicates
are still stabilizing.

We have implemented this strategy by means of a general time-replication
algorithm, coded in Protelis [20] in order to take advantage of the mechanisms of
its underlying computational model (the field calculus [7,8]) for succinct encap-
sulation and manipulation of distributed higher-order functions [3,8]:

def timeReplicated(process, default, p, k) {
rep(state <- [[], 0]) { // [tuples of [replicate, value], oldest replicate ID]

// Check whether p has elapsed without a new replicate beginning elsewhere
let newRep = sharedTimer(p,state.get(0));

// If so, create a new replicate and add it to the collection
let newProc = if(newRep>0) { [[newRep, default]] } else { [] };
let procs = state.get(0).mergeAfter(newProc);

// Execute all processes from self and neighbors, aligning on ID using
// alignedMap(argument, filter, function to run, default value)
procs = alignedMap(nbr(processes),

(replicate, value) -> { replicate >= state.get(1) }, // Ignore old
(replicate, value) -> { process.apply() }, // Execute process
default);

// Prune to keep only the newest k and update the state
procs = procs.subTupleEnd(max(0, procs.size() - k));

[procs, procs.map((x) -> {x.get(0)}).fold(min)]
}.get(0); // Return tuple of [replicate numbers, state] tuples

}

In essence, this maintains two pieces of state: the first is a set of running process
replicates, each identified by its replicate number, i.e., the first is replicate 1,



196 D. Pianini et al.

Fig. 2. Example of process replicates created by timeReplicated: here four replicates
(purple boxes) are running on various subsets of a linear network of five devices (A-E)
with k = 3, with communication between instances aligned by replicate number via
alignedMap (purple arrows). Devices A and C have independently started replicate #6,
and its instances are spreading new instances to other devices (greyed boxes), merging
together as they go. Since k = 3, the arrival of replicate #6 also deletes replicate #3
and blocks its spread (red Xs). (Color figure online)

the second replicate 2, etc. The second piece of state is the oldest allowed repli-
cate number, which rises over time as new replicates are created and old ones
are discarded.

Every round, each device consults a “shared timer” function to determine
whether it should locally launch a new replicate, and if the answer is yes (which
happens somewhere in the network at least once every p seconds) then it appends
the new replicate with its new, higher identifier, to the end of the current set of
processes. This set of replicates are run across the network, using the alignedMap
primitive to safely encapsulate each replicate, as well as to spread replicates to
any other device where such replicates have not already been deemed too old
and to merge replicates with other independently launched instances with the
same replicate number (Fig. 2).

The sharedTimer function is implemented to coordinate with processes
spreading via alignedMap as follows:

def sharedTimer(p,procs) {
let newReplicate = 0;

rep(state <- [0,0]) { // [top rep #, time remaining], start rep 1 immediately
// Compare state replicate to maximum replicate number from elsewhere
let maxID = max(state.get(0), procs.map((x)->{x.get(0)}).fold(max));
// When advanced by extension of a process from elsewhere, reset timer.
if(maxID > state.get(0)) { [maxID, p]

// When timer expires, signal, advance replicate number, and reset timer.
} else { if(state.get(1) <= 0) { newReplicate = maxID+1; [maxID+1, p]

// Otherwise, count down toward timer expiring
} else { [state.get(0), state.get(1) - self.dt()] }}

};
newReplicate // Return zero if nothing changes, otherwise new replicate number

}



Improving Gossip Dynamics Through Overlapping Replicates 197

In essence, this tracks the highest replicate number currently known and the
time remaining until a new replicate should be launched. If a spreading process
introduces a new replicate, then the replicate number is updated1 and the timer
is reset since a local launch has been pre-empted by an external launch. If, on
the other hand, the timer runs out, then this device will launch a new replicate,
possibly in parallel with other devices elsewhere.

Thus, a set of distributed timed replicates can be executed without any
requirement for synchronization, effectively being launched in either one or many
places at the same time, with faster-running devices pulling slower-running
devices along after them, i.e., new replicates will tend to be initiated by the
device(s) with the fastest clocks. It does not matter where or how many devices
launch replicates, since all independent launches with the same number will end
up merging in the alignedMap.

Whenever the addition of new processes (either locally or by spreading from
neighbors) results in there being more than k processes, the oldest are discarded
to reduce the number back down to k, and the oldest allowed replicate number
updated accordingly. This prevents “old” processes from spreading back into
devices where they have already been discarded and ratches the overlapping set
of replicates forward incrementally over time.

Ultimately, the replication function returns a tuple of the replicate numbers
and values of all currently running replicates. The time-replication algorithm
may thus simply be applied to instantiate time-replicated gossip as follows:

timeReplicated(() -> gossip(f, x), x, p, k)

In other words, it replicates the distributed process gossip(f, x) with process
default values taken from x, launch period p and number of replicates k.

In order to apply this approach to improving the dynamics of gossip algo-
rithms, the following questions remain: what are the optimal values for p and k,
and how should the values of v returned by each of the different replicates be
combined in order to produce the best possible estimate of the true aggregate
value v? In the next section, we will address these questions through analysis of
the dynamics of gossip.

4 Analysis

The replication approach that we have proposed begins with the intuitive notion
that we can avoid large transients and also bound algorithm state by keeping
some replicates running while new replicates are started and come to stabilize.
Now, let us analyze the process by which replicates launch and stabilize to new
values in order to determine how many replicates to create, how frequently to
1 Note that the algorithm is defined in terms of an unbounded integer; in implementa-

tions where there is a desired to use integers with few enough bits to make overflow a
realistic possibility, strategies such as lollipop numbering [18] can be used to maintain
ordering.



198 D. Pianini et al.

launch new replicates, and how to best make use of the values across multiple
replicates.

For this analysis, let us consider an unchanging set of stationary devices,
which thus form a fixed network graph of diameter d. Devices execute at the
same rate but without any synchronization in phase, sending state updates of
all of the values in nbr statements to one another once every t seconds. Given
the simplicity of the algorithm, we will assume that there is no delay between
the time when a device begins to execute a round and the time when its updated
values arrive at its neighbors.2

Fig. 3. Illustration of a case in which a new gossip replicate takes the maximum of
4td seconds for error from the initial transient to resolve, on a linear network of four
devices. Here, gossip is computing the maximum value with f = max(a, b), input x
is shown as the left number in each device, and v the right number, which is only
instantiated where the replicate is running (blue devices), and not where it has not
yet launched (grey devices), and change in each round is indicated in red. The delay is
caused by the new replicate launching only at the opposite end of the network from the
highest value, and thus the value at this device cannot be correct until the replicate has
had time to propagate its launch all the way to the right and for the maximum value to
work its way back all the way to the left with, if devices are maximally desynchronized,
a delay of 2t per hop. (Color figure online)

If devices are perfectly out of synchrony with one another, then it may take
up to 2t seconds for a message from one device to affect the state of its neighbors.
With the right arrangement of states, it may thus take up to 2td seconds for
gossip replicates to be launched on all devices in the network, with the replicate
starting at a single device and spreading to each other device just as its own
launch timer expires.
2 Our analysis may be generalized to devices with drifting clocks and non-trivial exe-

cution and transmission time by taking t to be the round length plus execution and
transmission delay at the slowest device.



Improving Gossip Dynamics Through Overlapping Replicates 199

Likewise, the value of a gossip algorithm may have an unboundedly high error
at any given device until there has been time enough for information to arrive at
that device from every other device, another delay of 2td seconds. Consider, for
example, gossiping f = max(a, b) when one device has an input of x = 1000 and
all other devices have value x = 0: every device would stay at v = 0 until the
information from the one x = 1000 device reached it, at which point it would
instantly leap to v = 1000.

Thus, for the first 4td seconds after a new gossip replicate begins (i.e., the
maximum round-trip time for information to propagate across the network, as
Fig. 3 points out), the value of v at any given device may have an unboundedly
large “transient” error with respect to its converged value and should not be
used.

This gives us a lower bound on when the value computed by a gossip repli-
cate should be used; let us turn now to the opposite side, and consider when
the information of a gossip replicate becomes redundant and can be discarded.
Consider two sequential replicates of gossip, replicate i and replicate j, where
j = i + 1. If xτ ′,δ′ is the value of x at time τ ′ and device δ′, then for any given
device δ at time τ , we can partition the set of all values of xτ ′,δ′ into three
subsets:

– xIJ are those values used by both replicate i and replicate j.
– xI are those values used by replicate i but not by replicate j, i.e., those that

appeared before replicate j launched.3

– x0 are those values used by neither replicate.

Because the gossip function f is idempotent and commutative, we can thus
reorganize the computation of the output values of the two replicates as:

vτ,δ,i = f(f(xI), f(xIJ )) (1)
vτ,δ,j = f(xIJ ) (2)

abusing notation to consider f(X) as f applied in arbitrary order to combine all
members of set X. By the idempotence and property of f , it must be the case
that vτ,δ,i = vτ,δ,j unless there are values in xI that are not in xIJ .

Thus, we have that, once replicate j is past its initial transient (i.e., every
device has been affected by the value of every other device) the outputs of
replicate i and replicate j must be identical, except in the case where the value
of replicate i is being affected by input values of xτ ′,δ′ from before the launch
of replicate j at δ′. Since ignoring such “obsolete” values is the entire point of
replication, we thus see that as soon as a replicate has passed its initial transient,
there is no reason to consider the output of any older replicate: the older replicate
must be either identical or obsolete.

From these deductions, we now have answers to two of our questions about
replication. First, only the output value v of the oldest replicate should be used.

3 Note that no values can be used by replicate j but not replicate i, because replicate
j cannot be launched on any device before replicate i is also launched at that device.



200 D. Pianini et al.

Second, replicates should be retained only until the next replicate has stabilized,
at which point they are obsolete and may be discarded. More precisely, we may
state this relationship in the form of an equation:

p =
4dt

(k − 1)
(3)

In other words, with one replicate providing the current “safe” estimate for v
and k −1 later replicates maturing, with each replicate taking up to 4dt seconds
to mature, replicated gossip can sustain a steady state in which one replicate
matures every 4dt

(k−1) seconds.
What remains is the question of the size of k, or conversely of p. Unlike

the other relations that we have considered, however, there is no optimal choice
here, but rather a tradeoff between the speed with which obsolete information
can be removed from a gossip and the number of replicates being maintained
(with accompanying requirements for communication, computing, and memory
resources). Thus, once a choice has been made for either k or p, the optimal
value for the other parameter can be determined with the aid of any conservative
estimate of the diameter of the network. Prioritizing the number of replicates, as
diameter may often change dynamically over time, we can implement replicated
gossip in Protelis as follows:

def tr_gossip(f, x, k, d) {
// Compute p by Eq. 3
let p = 4 * d * self.dt() / (k - 1);

// Run replicated gossip and return the value from the oldest replicate (first tuple)
timeReplicated(() -> gossip(f, x), x, p, k).get(0).get(1).

}

In terms of managing the tradeoff between number of replicates and speed
of adaptation, from Eq. 3, we can see that the duration a replicate will persist
(and thus potentially obsolete gossip inputs as well) will be k+1

k · 4dt. Thus, if
the minimum of two replicates is used, then obsolete information can persist for
up to 8dt seconds, while if the number of replicates is allowed to grow without
bound, the minimum time for obsolete information to persist is 4dt. In between,
a small handful of replicates is likely all that is necessary to get to a point where
the diminishing returns on adaptation speed are not worth the additional cost
in communication.

In practice, the better the estimate of diameter, the closer to optimal the
tradeoff between adaptation speed and size can be made. Likewise, improvements
in synchronization guarantees between devices may reduce the conservative 4dt
closer toward the theoretical minimum of dt.

5 Experimental Validation of Performance

We now validate the performance of time-replicated gossip in simulation, com-
paring the performance for three representative gossip functions against several



Improving Gossip Dynamics Through Overlapping Replicates 201

(a) τ = 0 (b) τ = 20

Fig. 4. Simulations are run on a unit disc graph over devices moving via Lévy walks
from a random initial distribution: (a) shows a typical initial network and (b) the
modified network after 20 rounds of simulation.

prior methods. All experiments have been performed using the Alchemist simu-
lator [19] and Protelis algorithm implementations4.

5.1 Experimental Setup

For our experiments, we compare the computation of three gossip functions,
chosen as representative typical applications of gossip: The three gossip func-
tions are minimum (f = min(a, b)), logical AND (f = and(a, b)), and estimated
mean (using the method presented in [16]5). We compared the execution of
time-replicated gossip (defaulting to k = 5) on these gossip functions with four
representative prior methods for estimating aggregate functions, two gossip and
two non-gossip:

1. Gossip: the baseline algorithm, as defined in Sect. 2, and never restarted.
2. R-Gossip: gossip restarted periodically, as discussed in Sect. 2, implemented

by time-replicated gossip with k = 1.
3. C+G: estimate is computed over a spanning tree, then broadcast from the

root; the name is taken from the particular implementation we use, which
combines the C and G “aggregate building blocks” from [4].

4. Laplacian-based consensus (mean only): incrementally estimates mean
xδ,τ by in each round adding to the current estimate α times the difference
with the neighbor’s estimates and the current xδ,τ (using α = 0.04, which is
expected to be fast yet stable per [17]).

All algorithms are executed in parallel on a simulated network of n devices
distributed within a circular arena, each device uniquely identified by numbers
4 Full code at: https://bitbucket.org/danysk/experiment-2016-coordination.
5 Note that this method uses random numbers, so in order to ensure that replicates are

identical except when given different inputs, we seed the pseudorandom generators
identically for all replicates on a given device.

https://bitbucket.org/danysk/experiment-2016-coordination


202 D. Pianini et al.

0 to n− 1. Devices execute unsynchronized, with random phase but at the same
rate t = 1. Devices communicate with all other devices within 1 unit distance,
and the radius of the arena is chosen as

√
n
m , such that every device will have

an expected m neighbors. In particular, we use m = 15 neighbors, a value that
ensures the network is mostly well-connected and that d = 2

√
n
m is a reasonable

estimate of its diameter. Initial positions are selected uniformly randomly, and
thereafter devices move randomly within the circular arena following a speed s
reactive Lévy walk [2]. Figure 4 shows snapshots of an initial deployment and
its evolution. Except where otherwise noted, simulations use n = 100, giving an
estimated diameter of just over 5 hops and s = 0.05, meaning that a device is
expected to move a length equal to the diameter of the arena in a little over 100
rounds, and for each condition use 40 simulation runs of 300 rounds each.

Our experiments challenge adaptation dynamics by using a set of input values
xδ,τ that are spatially correlated and have two large discontinuous changes across
both space and time. For the mean and minimum functions xδ,τ is defined as:

– τ < 100: Devices on the left half of the arena at τ = 0 have xδ,τ = 2, while
those on the right have xδ,τ = 4, except device 1 has xδ,τ = 1

– 100 ≤ τ < 200: Devices on the left half of the arena at τ = 100 have xδ,τ = 6,
while those on the right have xδ,τ = 3, except device 1 has xδ,τ = 50

– 200 ≤ τ : Devices on the left half of the arena at τ = 200 have xδ,τ = 2, while
those on the right have xδ,τ = 4, except device 1 has xδ,τ = 1

For logical AND, all devices have xδ,τ = true except that device 0 is false for
the first 100 rounds and device 1 is false for the final 100 rounds.

5.2 Convergence Dynamics

First, we examine a single simulation run in order to compare in detail the
dynamics by which time-replicated gossip converges to a correct value against the
convergence dynamics of the alternative algorithms. Figure 5 shows the evolution
of mean value and mean root mean squared error (RMSE) across all devices for
each function. As predicted, time-replicated gossip is safe from any unexpected
transients, tracking to the correct value after a short delay. When the new value
follows the monotonic direction of the function this is very fast (as in the second
transition for minimum and logical AND); otherwise is must wait the full pk
delay for all affected replicates to be discarded.

Non-restarted gossip, by contrast, can never discard old information, and thus
cannot adapt during the 100–200 time interval, while non-replicated restarting
gossip adapts quickly but experiences periodic sharp error transients at every
restart. Laplacian consensus exhibits a smooth but very slow convergence, since
values are not homogeneously distributed [9], and error never reaches zero, indi-
cating that the apparently good mean value actually represents not correct val-
ues but balanced distribution of overestimates and underestimates. Finally, C+G
continuously tries to converge to the correct value, but its tree structure contin-
ually gets disrupted by changes in the network structure, and therefore it shows
a strong and variable error throughout the whole experiment.



Improving Gossip Dynamics Through Overlapping Replicates 203

(a) Value for estimated mean (b) RMSE for estimated mean

(c) Value for minimum (d) RMSE for minimum

(e) Value for logical AND (f) RMSE for logical AND

Fig. 5. Evolution of mean value across devices (a,c,e) and root mean squared error
(RMSE) (b,d,f) for the three functions under test: estimated mean (a,b), minimum
(c,d), and logical AND (e,f).

5.3 Effect of Varying of k and p

Our analysis in Sect. 4 identified an optimal conservative relationship between
number of replicates k and replicate period p given a particular network diameter
d. In practice, however, network diameter may frequently change and can be
costly or difficult to estimate precisely, so it is important that estimation not be
badly effected by the use of suboptimal parameters.

As the analysis was quite conservative, we should expect that as the duration
covered by replicates is reduced (e.g., by reducing either k or p while holding the
other fixed), error should gradually decrease as the delay to adapt is reduced. At
some point, however, the transients of new replicates will not have had time to
resolve and error will increase. Complementarily, increasing the duration covered



204 D. Pianini et al.

(a) Varying k for estimated mean (b) Varying p for estimated mean

(c) Varying k for minimum (d) Varying p for minimum

(e) Varying k for logical AND (f) Varying p for logical AND

Fig. 6. Effect of varying number of replicates k (a,c,e) and replication period p (b,d,f)
on mean RMSE. The red vertical line marks the value (for k and p respectively) that
is suggested by our analysis. Non-restarted gossip and single-replicate restarting gossip
(with restart time equal to p) are plotted for comparison. Error bars indicate the
standard deviation of the average RMSE across the 40 simulation runs. (Color figure
online)

by replicates will not expose transients but will increase error incrementally as
the delay to adapt increases.

Figure 6 shows the results of testing these hypotheses against k varying from
1 to 20 and p varying geometrically from 1 to 100. As predicted our analysis is
shown to be quite conservative: error in fact decreases with decreasing k and p
until the very smallest values. Likewise, it increases smoothly with increasing k
or p until it is so high that it saturates the experimental conditions and in some
cases actually begins to decrease due to aliasing. As such, it appears that in
practice the values for p can indeed be set significantly more aggressively than
the bound computed in Sect. 4.



Improving Gossip Dynamics Through Overlapping Replicates 205

(a) Varying n for estimated mean (b) Varying s for estimated mean

(c) Varying n for minimum (d) Varying s for minimum

(e) Varying n for logical AND (f) Varying s for logical AND

Fig. 7. Resilience of time-replicated gossip to changes in network size and volatility:
its mean RMSE over time is not significantly degraded by varying number of devices n
(a,c,e) or speed s (b,d,f), while other algorithms perform worse except under extreme
conditions. Error bars indicate the standard deviation of the average RMSE across the
40 simulation runs.

Paradoxically, restarting gossip actually improves its performance as p
increases, but due to the fact that less frequent restarts mean that its values
are less often disrupted by transients. Thus, when the values of k and p are far
from optimal, the mean error of replicated gossip is worse than restarting gossip
and occasional transients may actually be less disruptive than overly long delays
waiting for adaptation, depending on application.

5.4 Resilience to Network Size and Volatility

Finally, we tested how well time-replicated gossip scales to larger networks and
adapts to differences in network volatility by changing the number of devices n
and speed s. For each parameter, we evaluated a geometric distribution of nine



206 D. Pianini et al.

values across two orders of magnitude, ranging n from 10 to 1000 and s from
0.05 to 0.5, respectively. Results are shown in Fig. 7.

Since increasing the number of devices increases the diameter in our exper-
iments, the time-replicated gossip should degrade incrementally due to the
increased time before old replicates can be safely discarded, and indeed this
is what is observed. In larger networks, therefore, the mean advantage of time-
replicated gossip over other approaches decreases, and in fact in the conditions
we evaluate it is slightly outperformed by the faster but more volatile methods
for estimated mean. In some circumstances, however, delay may still be prefer-
able to unpredictable transients.

Higher speed of devices is expected to affect the network by decreasing its
effective diameter but increasing the frequency of topology changes. Neither of
these should affect time-replicated gossip, given its conservative diameter esti-
mate, and indeed speed appears to have no significant effect on its performance.
Single-replicate restarted gossip and Laplacian averaging, on the other hand,
benefit greatly from a reduced effective diameter that decreases the transients
they suffer, while C+G performs worse as the amount of topological disruption
increases.

6 Contributions and Future Work

In this paper, we have introduced a time-replication method that significantly
improves the dynamical performance of gossip-based distributed state estima-
tion. Analysis bounds the time to maintain replicates by the round-trip time
of information across the network and identifies an adjustable tradeoff between
improved performance and number of replicates, and these conclusions are vali-
dated by experiments in simulation.

Future work can further improve performance by enabling tighter self-
adjustment of parameters. In particular, a network diameter estimation algo-
rithm, improved synchronization, and monitoring of transient length can all be
employed to decrease the required replication interval, thereby allowing faster
adaptation. Second, time-replicated gossip can be applied to any number of
systems in which gossip is being used, in order to improve their performance.
Finally, the generic nature of the time-replication algorithm we have introduced
makes it a candidate for future studies to evaluate if and how time-replication
can be used to improve other classes of distributed algorithms.

References

1. Beal, J.: Accelerating approximate consensus with self-organizing overlays. In: Spa-
tial Computing Workshop, May 2013

2. Beal, J.: Superdiffusive dispersion and mixing of swarms. ACM Trans. Auton.
Adapt. Syst. 10(2), 1–24 (2015)

3. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
IEEE Comput. 48(9), 22–30 (2015)



Improving Gossip Dynamics Through Overlapping Replicates 207

4. Beal, J., Viroli, M.: Building blocks for aggregate programming of self-organising
applications. In: IEEE SASO Workshops, pp. 8–13 (2014)

5. Birman, K.: The promise, and limitations, of gossip protocols. ACM SIGOPS Oper.
Syst. Rev. 41(5), 8–13 (2007)

6. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an engineering per-
spective. In: Principles of Distributed Computing, pp. 398–407 (2007)

7. Damiani, F., Viroli, M., Beal, J.: A type-sound calculus of computational fields.
Sci. Comput. Program. 117, 17–44 (2016)

8. Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-organisation:
a higher-order calculus of computational fields. In: Graf, S., Viswanathan, M. (eds.)
Formal Techniques for Distributed Objects, Components, and Systems. LNCS, vol.
9039, pp. 113–128. Springer, Heidelberg (2015)

9. Elhage, N., Beal, J.: Laplacian-based consensus on spatial computers. In: Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pp. 907–914
(2010)

10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

11. Gupta, I., Birman, K., Linga, P., Demers, A., van Renesse, R.: Kelips: building an
efficient and stable P2P DHT through increased memory and background overhead.
In: Kaashoek, M.F., Stoica, I. (eds.) Peer-to-Peer Systems II. LNCS, vol. 2735, pp.
160–169. Springer, Heidelberg (2003)

12. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large
dynamic networks. ACM Trans. Comput. Syst. (TOCS) 23(3), 219–252 (2005)

13. Jelasity, M., Montresor, A., Babaoglu, O.: T-man: gossip-based fast overlay topol-
ogy construction. Comput. Netw. 53(13), 2321–2339 (2009)

14. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

15. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
16. Mosk-Aoyama, D., Shah, D.: Fast distributed algorithms for computing separable

functions. IEEE Trans. Inf. Theor. 54(7), 2997–3007 (2008)
17. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked

multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)
18. Perlman, R.J.: Fault-tolerant broadcast of routing information. Comput. Netw. 7,

395–405 (1983). http://dx.org/10.1016/0376-5075(83)90034-X
19. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-

tional systems with ALCHEMIST. J. Simul. 7(3), 202–215 (2013)
20. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:

ACM Symposium on Applied Computing, pp. 1846–1853 (2015)
21. Shah, D.: Gossip Algorithms. Now Publishers Inc, Norwell (2009)
22. Viroli, M., Beal, J., Damiani, F., Pianini, D.: Efficient engineering of complex self-

organising systems by self-stabilising fields. In: IEEE SASO, pp. 81–90 (2015)
23. Voulgaris, S., van Steen, M.: An epidemic protocol for managing routing tables in

very large peer-to-peer networks. In: Brunner, M., Keller, A. (eds.) DSOM 2003.
LNCS, vol. 2867, pp. 41–54. Springer, Heidelberg (2003)

24. Zambonelli, F.: Toward sociotechnical urban superorganisms. IEEE Comput.
45(8), 76–78 (2012)

http://dx.org/10.1016/0376-5075(83)90034-X

	Improving Gossip Dynamics Through Overlapping Replicates
	1 Introduction
	2 Gossip Protocols
	3 Time-Replicated Gossip
	4 Analysis
	5 Experimental Validation of Performance
	5.1 Experimental Setup
	5.2 Convergence Dynamics
	5.3 Effect of Varying of k and p
	5.4 Resilience to Network Size and Volatility

	6 Contributions and Future Work
	References


