
Agile Usability Patterns
for User-Centered Design Final Stages

Ana Paula O. Bertholdo(B), Fabio Kon, and Marco Aurélio Gerosa

Department of Computer Science, University of São Paulo, São Paulo, Brazil
{ana,fabio.kon,gerosa}@ime.usp.br

Abstract. The integration between Agile Methods and User-Centered
Design (UCD) has been addressed by several authors in recent years.
Nevertheless, a gap remains regarding a systematically consolidated
description of agile usability practices for the final stages of UCD. Our
aim is to describe agile usability practices based on the literature in
the form of patterns, focusing on the UCD final stages, namely “Cre-
ate Design Solutions” and “Evaluate Designs”. A literature review was
conducted to identify patterns of use of agile usability practices. The
major results of the study presented here are the selection and classi-
fication of the usability practices for the UCD final stages within the
agile community and their structured presentation in the form of pat-
terns (Name, Context, Problem, Solution, and Examples). Presenting
agile usability practices as patterns can increase their applicability; it
facilitates the visualization of the similarities between the communities
of UCD and Agile Methods and also presents the ideas more clearly to
other communities that can benefit from using these patterns in their
specific development contexts.

Keywords: Agile usability · Agile UCD · Agile UX · Best practices ·
Patterns

1 Introduction

The integration between agile methods and UCD has been addressed by several
authors in recent years [1–6]. The challenge in combining these two method-
ologies focuses on finding the best way to carry out all the activities related
to usability improvement, meeting users’ real needs, designing and evaluating
interfaces within agile environments, and having typical users involved in the
activities.

There are several agile usability practices defined in the literature with differ-
ent names, representing small variations of the same practice. The description of
agile usability practices, in a common form, help to organize similar practices in
a standardized way. It can also facilitate the visualization of similarities between
the communities of UCD and Agile Methods.

In this context, we carried out earlier research leading to a description of
usage patterns of agile usability practices in the early stages of UCD, namely
c© Springer International Publishing Switzerland 2016
M. Kurosu (Ed.): HCI 2016, Part I, LNCS 9731, pp. 433–444, 2016.
DOI: 10.1007/978-3-319-39510-4 40



434 A.P.O. Bertholdo et al.

Identify Needs for Human-Centered Design, Specify Context of Use, and Spec-
ify Requirements [7]. However, a gap remains regarding a description of usage
patterns of agile usability practices in the final stages of UCD.

This study aims to describe usability practices based on the literature using
the patterns format, focusing on the UCD final stages, namely Create Design
Solutions and Evaluate Designs, within agile environments. This paper comple-
ments our previous work [7] by answering the research question: What are the
agile usability practices related to the final stages of UCD used?

2 Background

Sy [6] suggests that the aim of integrating UCD and agile methods [8,9] is
breaking UCD stages down into the agile cycles size. To do so, UCD should be
performed aiming at applying all the activities of the UCD cycle for each fea-
ture subset in agile iterations. The basis for many UCD methods is described in
an international standard (ISO 13407: Human-Centered Design Process), which
defines a general process for including human-centered activities in a develop-
ment life-cycle, but does not specify specific methods. In this standard, when
necessary to use a human-centered design process, four activities form the main
cycle of work: (i) Specifying Context of Use; (ii) Specifying Requirements; (iii)
Producing Design Solutions; (iv) Evaluating Designs.

In 2011, the systematic literature review on UCD and agile methods con-
ducted by Silva et al. [4] presented 58 studies addressing this topic. Some of them
depict an overall picture for integrating UCD and agile methods, such as Fox et
al. [5] and Sy [6]. In 2014, the systematic literature review for agile processes and
UCD integration conducted by Salah et al. [2] identified challenging factors that
restrict Agile and UCD integration, exploring the proposed practices to solve
them. This study included a total of 71 papers. In 2015, Brhel et al. [1] analyzed
83 relevant publications. The analysis resulted in five principles for user-centered
agile software development.

With a more specific focus on practices related to the final stages of UCD,
Silva et al. [10] noticed that it is difficult to perform traditional user testing
sessions due to the tight schedules inherent to Agile. They described a set of
practices used to evaluate software product usability. This paper aims at orga-
nizing the similar practices described in the literature in a pattern format and
at providing a categorization for the patterns according to the UCD final stages.

3 Method

A literature review was conducted to find the usability practices used by the
agile community. The search criterion was defined as follows:

– ((“usability” OR “usability methods” OR “User Centered Design” OR “User
eXperience” OR “Human-Computer Interaction” OR “Computer-Human
Interaction”) AND (“agile methods” OR “agile development” OR “eXtreme
Programming” OR “Scrum” OR “agile”)).



Agile Usability Patterns for User-Centered Design Final Stages 435

The filtering process consisted of: (i) Reading the title, (ii) Reading the sum-
mary, and (iii) Reading the complete study. Studies were included if they met the
following criteria: (1) The study reported how usability practices were applied
to agile communities in order to raise at least one of the following pieces of infor-
mation for each practice: context, problem, or solution; (2) For separate studies
using the same data, for example, dissertation and a paper, only the study with
the most comprehensive report was included to avoid overloading a particular
data set; (3) Studies written in English. For each phase, the studies that were
not in accordance to the inclusion criteria were excluded.

4 Agile Usability Patterns for UCD Final Stages

The agile usability practices identified in our literature review were described in
the following format: (i) Name; (ii) Context; (iii) Problem; (iv) Solution; and
(v) Example, according to the definition of a pattern [11]. Following Alexander’s
definition [11], a pattern is a structured method of describing good design prac-
tices within a field of expertise. The selection of practices to become patterns
considered only the practices used by at least three different cases.

The patterns were divided into categories according to the UCD stage [12] in
which they are present, which facilitates understanding the goal of each pattern
described. The selection and classification of the usability practices for UCD
final stages within the agile community and presentation in the aforementioned
format represent the major results of this research. This paper focuses only on
the usability practices comprising the following steps of the UCD: (1) Create
Design Solutions; and (2) Evaluate Designs.

4.1 Create Design Solutions

Pattern: Low Fidelity Prototyping

Context: Need to communicate and to validate an idea, with customers and
team members, which is developed and refined quickly in agile environments.
This communication is performed during the initial stage of an agile iteration and
in meetings with team members and/or customers while the project development
evolves.

Problem: Low fidelity prototyping for the key features of the entire system
prior to development is common in traditional usability practices. This practice is
incompatible with agile environments, in which the development cycle comprises
a series of small incremental releases. Therefore, the problem is to get feedback
from customers and typical users on the interface of a subset of features within
an iteration and not for the entire system prior to the development. The main
forces involved are:

– Force 1: Getting feedback from customers and users on the interface and
the interaction flow in the early stages of the development cycle, when the
features are not implemented.



436 A.P.O. Bertholdo et al.

– Force 2: Creating the interface design according to the features within an
iteration and not for the key features of the entire system prior to the devel-
opment, taking the “big picture” into account.

Solution: Low fidelity prototyping during the initial stage of an iteration and
in meetings with team members and/or customers. The main difference between
traditional low fidelity prototyping techniques and the ones used within agile
environments is that prototypes are built for a subset of features of an iteration
and not for the entire system prior to the development. The subset of features
contains the key features of an iteration, for which improving understanding is
necessary. Team members having boards with screen prototypes at the work-
place. To specify the visual layout, teams that have interface design specialists
create low fidelity prototypes as the basis for implementation.

Examples: For several authors, prototyping happens during the initial stages
of the development and is used to evaluate usability both for inquiries and user
testing [13,14]. Patton [15] defines the practice Prototype in low fidelity, inform-
ing that the prototypes only need to be good enough to understand, to learn,
and to communicate quickly. After that, he says, they can be thrown away, since
they are consumable and not deliverable for agile development.

Pattern: High Fidelity Prototyping

Context: Need to evaluate the interface and the interaction flow of a system
during the development cycle, when the features have been implemented.

Problem: High fidelity prototyping for the key features of the entire system
prior to development is common in traditional usability practices. This practice
is incompatible to agile environments, in which the development cycle comprises
a series of small incremental releases. Therefore, the problem is to get feedback
from customers and users on the interfaces of features that have been imple-
mented in each agile iteration and not for the key features of the entire system
prior to the development. The main forces involved are:

– Force 1: Getting feedback from customers and users on the interface and
on the interaction flow during the development cycle, when the features have
been implemented.

– Force 2: Creating the interface design according to the features of an iteration
and not for the key features of the entire system prior to the development,
taking the “big picture” into account.

Solution: High fidelity prototypes are part of the system under development,
which is evolving at each iteration, already with the working code. When the
features have been implemented, they are evaluated as high fidelity prototypes
which evolve depending on the development of iteration requirements. Online
techniques such as sharing access to prototype versions on the Web are used. In
an iteration, teams create the interface design and, at the subsequent iteration,



Agile Usability Patterns for User-Centered Design Final Stages 437

the team of developers writes the code implementing the design proposed in the
previous iteration.

Examples: For Williams and Ferguson [16], prototypes evolve for high fidelity
prototypes. Hussain [17] cites the use of high fidelity prototypes to conduct
inquiries and usability tests with the customer. Six [18] states that: “... a user
experience team that includes front-end Web developers can prototype or even
build an application‘s actual user interface rather than writing detailed user
experience design specifications”.

Pattern: Design Studio

Context: After some UCD tasks for gathering requirements are performed,
usually in the format of user interviews or observations, there is the need to
create and to explore design versions that meet the users goals.

Problem: Creating alternative design versions for the key features of the entire
system prior to development is a way to allow the innovation to be part of the
development of traditional usability practices. However, in agile environments,
the short time of each iteration prevents exploiting several design options. The
main forces involved are:

– Force 1: Proposing innovative solutions within agile iterations, with less time
to build different interface design ideas and interaction flows.

– Force 2: Proposing innovative solutions for features of the next iteration and
not for the key features of the entire system prior to the development, taking
the “big picture” into account.

Solution: Participants come up with several alternative design solutions for
an interface during a pre-established time. When time is over, a discussion is
performed to select a design for the system interface. In the Design Studio,
each design sketch is presented to the team, which can involve developers and
UCD specialists. Then, the team has some time for reflection and criticism. At
the end of the studio, a design concept is defined and developed. The chosen
design reflects the good parts of the ideas presented during the studio. After the
studio, the user experience team creates usage scenarios from the results. Since
the design studio makes it easier to understand what the system needs are, the
development work may proceed immediately [19]. Members of the development
team might be allocated for user interface design activities. Usually, design studio
tasks are performed face-to-face with members gathered in a room to create
design versions.

Examples: Dubakov [20] describes the Design Studio methodology as a simple
and efficient way of having agile meetings. The author reports that there are
several variations for the Design Studio, but he used a simple group containing
the following 5 steps: (1) defining a problem; (2) individually brainstorming
5 ideas without exceeding 5 min per idea; (3) presenting and divide the ideas
into categories for the team; (4) discussing positive and negative characteristics



438 A.P.O. Bertholdo et al.

of the ideas; and (5) selecting the interesting ideas and creating two versions
for each final solution. According to Ungar et al. [19], design studio has four
main points: (1) Research: Design Studio is guided by user research; (2) Design:
also known as pre-work, where many projects and ideas are quickly created;
(3) Studio: a one-day workshop to evaluate alternatives, make decisions and
consolidate design and (4) Participants: a team composed of designers or user
experience professionals who are willing to learn and to grow within the design
process. Evans and Gothelf [21] describe that a design studio might generate
several iterations about the design and that there are several variations of the
studio which might be employed with good effects within agile processes.

Pattern: Collaborative and Participative Design

Context: After some UCD tasks for gathering requirements are performed,
usually in the format of user interviews or observations, it is necessary to put the
perspective of each participant involved with the development cycle, to include
typical users in the interface design process, for improvement and refinement of
systems requirements.

Problem: In traditional usability practices, the UCD team creates alternative
design versions for the key features of the entire system prior to development such
that the perspective of users and customers can be incorporated. However, when
just the UCD team is involved with creating design solutions, the understanding
is not complete for the entire team to build only what has the higher value for
the business and for the end user. The main forces involved are:

– Force 1: Gathering the perspective of each participant for a design problem
into agile iterations, with less time for each session.

– Force 2: Proposing design solutions for features of the next iteration and not
for the key features of the entire system prior to the development, taking the
“big picture” into account.

Solution: Sessions for creating design versions in a collaborative way, i.e., dif-
ferent stakeholders create designs together, showing their views in relation to
the needs that have to be met by the user interface, and in a participative way,
by involving system real users. The objective is to put the point of view of each
participant to solve a design problem based on their needs in relation to the
system and their own understanding of it. As in the Design Studio, this activ-
ity stimulates innovation. Also, it allows new requirements to be suggested and
gathered during the sessions. The involvement of developers is very beneficial to
the quality of the system, both internal and external. Additionally, it allows all
team members to become involved with the stage of defining requirements. Col-
laborative design also contributes to creating a shared view among participants.

Examples: Govella [22] includes collaborative design in his list of strategies for
the user experience, in which members of the design team may sketch, talk,
and iterate to achieve a consensual idea of the design. Details only need to be
recorded if they might be forgotten. The same happens if there is an error, but



Agile Usability Patterns for User-Centered Design Final Stages 439

all members understand the general view since they have worked together. For
Beltrame [23], collaborative design is all about leaving developers do part of the
ideation process and designers do part of the development process. Developers
might help proposing good solutions, which are technically suitable, and avoiding
conceptual failures due to technical limitations. Tyne [24] describes participative
design in three main tasks: (1) sketching ideas, (2) presenting ideas to the team,
and (3) criticizing presentation based on solutions. The process is repeated three
times and the fidelity of scopes increases at each cycle.

4.2 Evaluate Designs

Pattern: Tests with Users

Context: Need to obtain a spontaneous impression from the user about a version
of the system.

Problem: Evaluating the system with real users is an essential practice in tra-
ditional usability practices. However, is not a trivial task to perform tests with
users for each agile iteration with less time to run evaluations. The main forces
involved are:

– Force 1: Evaluating the system with its real users from the early stages of
the development process.

– Force 2: Conducting usability tests according to the functionalities developed
in an iteration or agile sprint, taking the “big picture” into account.

Solution: Conducting usability tests with users employing the Think aloud pro-
tocol. The central idea is to provide tasks for the users to perform while using
the system, aiming at evaluating if the tasks are easily performed or if they
encounter difficulties discovering the right path, or even if they are unable to do
the required task. The Think Aloud protocol aims at requesting users to say what
they intend to do to complete the task, what they think about the interface, and
what they thought about the steps they had to follow to accomplish the task
successfully. While users are using the system, their impressions are gathered
so as to analyze the results in relation to the accomplishment of the task. Usu-
ally, in agile teams, tests with users are conducted with the presence of project
customers and involve usability specialists. When real users are involved, usabil-
ity specialists also participate as test mediators. However, there are reports of
projects that involved several members of the team as observers and they noticed
that the developers’ view benefited from watching how real users understand the
system. Tests with users in agile teams are mostly laboratory-based, although
there are reports of successful remote tests. Normally, developers incorporate
results from tests with users into the system during the following iteration.

Examples: Expero [25] reports that when tests with users are conducted as part
of the agile process, the tests should occur before or during the development and
should have user tasks that take the “big picture” into account more than the



440 A.P.O. Bertholdo et al.

limited scope of the next release. Another unique aspect of tests with users
within agile environments is to make sure that the changes recommended from
user studies find a solution in an appropriate release. It might be the case of
planning a release for the following months. Frequently, the development team
changes characteristics and functionalities. There are several reports on tests
with users functioning as the main tool for refining user interface prototype for
the next iteration [4,5,16].

Pattern: Evaluation by Inspection

Context: Need to evaluate the interface even at the initial stages of the system
without exposing serious issues to the real users.

Problem: In traditional usability practices, inspecting interface is an important
task to refine the system before introducing the features for customers or real
users. However, in agile environments, the interface refinement should be per-
formed for each agile iteration, in which time is shorter to execute inspection
and to correct problems. The main forces involved are:

– Force 1: Evaluating system usage scenarios from the very beginning and
frequently during development.

– Force 2: Not showing serious problems to real users.
– Force 3: Evaluating the usability of features of the current agile iteration.

Solution: Inspecting user interfaces, of low- or high-fidelity prototypes, through
usability scenarios, rules, or heuristics. Usability specialists perform evaluation
by inspection to verify whether the user interface under test meets the rules or
follows expected paths for the given scenarios. Normally, two or three specialists
execute it. First, each specialist individually analyzes and then what was found
to consolidate results is discussed by all. This way, tests with users are conducted
in interfaces that were already evaluated internally, without exposing (ideally)
serious issues to the real users of the product. Specialists share results with the
development team so that problems found may be corrected. Some teams report
the involvement of developers and, in this case, they describe such participation
as positive, since it facilitates the process of sharing usability knowledge with the
team. Also, meetings for consolidating results found in each individual analysis
are mostly laboratory-based. Usually, developers solve problems found during
the evaluation by inspection in the same iteration or sprint.

Examples: Similar to what occurs during tests with users, the systematic review
by Silva et al. [4] also raised user interface refinement as the main goal of evalu-
ation by inspection, according to [13,16,19]. Obendorf and Finck [26] state it is
possible to use scenarios to guide evaluation by inspection of paper prototypes.



Agile Usability Patterns for User-Centered Design Final Stages 441

Pattern: RITE Method

Context: Need to identify and to solve as many problems as possible and to
check the efficacy of solutions as soon as possible.

Problem: In agile environments, there is not enough time for usability tests and
correction of problems, for each iteration, using traditional usability methods,
which leads to rare usability tests and the correction of few bugs. The main
forces involved are:

– Force 1: Receiving feedback from corrections as close as possible to tests
conduction.

– Force 2: Shortening the distance between finding usability problems and
correcting them in the system.

– Force 3: Evaluating features within agile iterations, with less time to run
tests and to correct bugs.

Solution: Identifying and solving problems found, by using tests with typical
users of the system and checking how efficient the solutions are as soon as possi-
ble. Rapid Interactive Testing and Evaluation (RITE) emphasizes changes and
quick verifications of their efficacy. Usability testing and the quickest correction
of errors. Usually, usability specialists perform RITE and its results are shared
with other team members to be evaluated.

Examples: This practice is present in the list of best practices published by
the User eXperience Magazine, focusing on changes and verifications of their
efficiency quickly [27]. For Patton [15], RITE is used to iterate the user interface
before the development. In [28], RITE is defined as a variation of traditional
usability tests, documented by Microsoft researchers in 2002, being credited to
Medlock. In sum, by testing a design with five users on the first day, on the
second day, the design is improved based on the feedback; it is tested again on
the third day; on the fourth day, another iteration is conducted, and then the
final design is tested on the fifth day with eight users. The authors also state
that RITE is not always appropriate (if there are too many tasks, for example).
However, whenever possible, it is highly recommended by them since it saves
time, promotes collaboration within the team besides customer satisfaction.

Pattern: Acceptance Tests

Context: Need to check if the goals of real users and customers were met in a
version of the system already with the working code.

Problem: Validating whether the needs of customers and typical users are being
met by the features prior to development is common in traditional usability prac-
tices, which is incompatible with agile environments, which entail adaptive plan-
ning and iterative processes. In agile environments, this task should be performed
keeping the documentation updated in relation to features that successfully or
unsuccessfully meet the needs of users. The main forces involved are:



442 A.P.O. Bertholdo et al.

– Force 1: Making the validation of the system by customers and typical users
from the very beginning and frequently during development.

– Force 2: Keeping the documentation updated according to already-
implemented user needs.

– Force 3: Evaluating features within agile iterations, with less time to run
tests.

Solution: Creating automatic acceptance tests using Test Driven Development
(TDD), which is already part of agile methods. Tests are created with the cus-
tomers or typical user participation by using standard formats similar to natural
language, such that non-experts on programming are capable of describing user
needs. By conducting automatic tests based on TDD, a report is generated show-
ing the status of the defined tests. This practice helps validating the user needs and
creates an updated documentation of everything the system does, which function-
alities already have tests, and whether the tests are executed successfully.

Examples: Dyba et al. [29] describe automatic acceptance testing as a good
practice to validate user interface design. The agile community acknowledged the
importance of acceptance tests and built tools such as the Framework for Inte-
grated Test (fit.c2.com), JBehave (jbehave.org), and Cucumber (cucumber.io) to
help automate them. Automated testing is performed frequently, at least every
day or several times a day. Manual tests with users, on the other hand, are nor-
mally conducted one iteration ahead. At the end of an iteration, many agile teams
implement a system functioning in a testing environment, where automated tests
of the system and tests with users are conducted. The team continues to develop
version N+1 of the system while gathering reports on version N. Failure reports
are treated as any other requirement: they are estimated, prioritized, and put
into a requirement list to be treated in the future [30]. According to Rice [31],
these tests should not be treated as “functional tests based solely on user require-
ments”, since you are “likely to miss the same things in testing that were missed
in defining the requirements”.

5 Conclusion

According to Sy [6], all the activities of the UCD cycle should be performed
for each subset of features in agile iterations. The patterns presented organize
the practices described in the literature in a common format. Therefore, it is
possible to select the patterns of each phase of the UCD cycle that best fit
specific development environments and apply them within an agile iteration.

In addition, the patterns presented here can help understand how to integrate
the practices of UCD and agile methods, allowing developers to visualize the
similarities shared, and also the commonalities among other communities that
could use the patterns in their contexts of development. We described a set
of patterns of agile usability practices for UCD final stages extracted from the
literature. The presentation of patterns in a format including name, context,
problem, solution, and examples can increase their applicability.

http://fit.c2.com/
http://jbehave.org/
https://cucumber.io/


Agile Usability Patterns for User-Centered Design Final Stages 443

Overall, the patterns described for the UCD stage - Create design solutions
- have in common the fact of seeking knowledge sharing in order to facilitate
understanding the requirements and the user interaction flow with the system.
For the patterns described for the UCD stage - Evaluate designs - there is the
need of user interface refinement for the following iteration. The goal is to eval-
uate designs during the development process, from early stages with prototypes
in low fidelity. This work complements our previous study on the early stages
of UCD [7]. Future studies may define an order of application of the patterns
according to the stage of development in an agile environment while maintaining
the DCU cycle for each agile iteration.

Acknowledgements. This research was supported by FAPESP, Brazil, proc.
2012/24409-2, and the European Comission, proc. 034763.

References

1. Brhel, M., Meth, H., Maedcher, A.: Exploring principles of user-centered agile
software development: a literature review. Inf. Softw. Technol. 61(C), 163–181
(2015)

2. Salah, D., Paige, R.F., Cairns, P.: A systematic literature review for agile devel-
opment processes and user centred design integration. In: Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering,
13–14 May 2014

3. Silva da Silva, T., Silveira, M., Maurer, F., Hellmann, T.: User experience design
and agile development: from theory to practice. J. Softw. Eng. Appl. 5, 743–751
(2012)

4. Silva da Silva, T., Martin, A., Maurer, F., Silveira, M.: User-centered design and
agile methods: a systematic review. In: Imperial College Robotics Society (ed.)
Agile Conference (Agile) 2011, pp. 77–86 (2011)

5. Fox, D., Sillito, J., Maurer, F.: Agile methods and user-centered design: how these
two methodologies are being successfully integrated in industry. In: Agile 2008,
AGILE 2008 Conference, pp. 63–72 (2008)

6. Sy, D.: Adapting usability investigations for agile user-centered design. J. Usability
Stud. 2(3), 112–132 (2007)

7. Bertholdo, A.P.O., da Silva, T.S., de O. Melo, C., Kon, F., Silveira, M.S.: Agile
usability patterns for UCD early stages. In: Marcus, A. (ed.) DUXU 2014, Part I.
LNCS, vol. 8517, pp. 33–44. Springer, Heidelberg (2014)

8. Beck, K., Andres, C.: Extreme Programming Explained Embrace Change. Addison-
Wesley Professional, Reading (2004)

9. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, 1st edn. Pren-
tice Hall PTR, Upper Saddle River (2001)

10. Silva Da Silva, T., Selbach Silveira, M., Maurer, F.: Usability evaluation practices
within agile development. In: 2015 48th Hawaii International Conference on System
Sciences (HICSS), pp. 5133–5142. IEEE (2015)

11. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., King, I.F., Angel, S.:
A Pattern Language: Towns, Buildings, Construction. Center for Environmental
Structure Series. Oxford University Press, New York (1977)

12. Association, U.E.P.: What is user-centered design? January 2014



444 A.P.O. Bertholdo et al.

13. Fox, D., Sillito, J., Maurer, F.: Agile methods and user-centered design: how these
two methodologies are being successfully integrated in industry. In: Proceedings of
the Agile 2008, pp. 63–72 (2008)

14. Detweiler, M.: Managing ucd within agile projects. Interactions 14, 40–42 (2007)
15. Patton, J.: Emerging best agile ux practice (2008). http://agileproductdesign.com/

blog/emerging best agile ux practice.html
16. Williams, H., Ferguson, A.: The ucd perspective: before and after agile. In: AGILE

2007, pp. 285–290 (2007)
17. Hussain, Z., Milchrahm, H., Shahzad, S., Slany, W., Tscheligi, M., Wolkerstorfer,

P.: Integration of extreme programming and user-centered design: lessons learned.
In: Abrahamsson, P., Marchesi, M., Maurer, F. (eds.) Agile Processes in Software
Engineering and Extreme Programming. LNBIP, vol. 31, pp. 174–179. Springer,
Heidelberg (2009)

18. Six, J.M.: Integrating ux into agile development, April 2011. http://www.
uxmatters.com/mt/archives/2011/04/integrating-ux-into-agile-development.php.
Accessed Dec 2011

19. Ungar, J., White, J.: Agile user centered design: enter the design studio - a case
study. In: CHI 2008 Extended Abstracts on Human Factors in Computing Systems.
CHI EA 2008, pp. 2167–2178. ACM, New York (2008)

20. Dubakov, M.: Ux meets agile: design studio methodology, May 2011. http://www.
targetprocess.com/blog/2011/05/ux-meets-agile-design-studio-methodology.html.
Accessed Dec 2011

21. Evans, W., Gothelf, J.: Design studio and agile ux: process and pitfalls, November
2011. http://uxmag.com/articles/design-studio-and-agile-ux-process-and-pitfalls.
Accessed Dec 2011

22. Govella, A.: Agile + ux: six strategies for more agile user experience (2008). http://
www.thinkingandmaking.com/view/agile-ux-six

23. Beltrame, M.: Just married: user centered design and agile, May 2011. http://
www.memibeltrame.ch/slides/. Accessed Dec 2011

24. Tyne, S.V.: User experience design in agile development (2011). http://www.
slideshare.net/sdeconf/sdec-2011-uxagilesvt. Accessed Dec 2011

25. Enterprise E: Incorporating user-centered design into an agile develop-
ment process, December 2011. http://experoinc.com/incorporating-user-centered-
design-into-an-agile-development-process/. Accessed Dec 2011

26. Obendorf, H., Finck, M.: Scenario-based usability engineering techniques in agile
development processes. In: CHI 2008 Extended Abstracts on Human Factors in
Computing Systems, pp. 2159–2166. ACM, New York (2008)

27. Lu, C., Rauch, T., Miller, L.: Agile teams: best practices for agile development.
vol. 9, no. 1, pp. 6–10 (2010)

28. Leggett, N.: User research findings - analyzing the user research segment - the
power of doing it rite, July 2008. http://www.userresearchfindings.com/2008/07/
power-of-doing-it-rite.html. Accessed Dec 2011

29. Dingsoyr, T., Dyb̊a, T., Moe, N.B.: Agile Software Development - Current Research
and Future Directions, 1st edn. Springer, Heidelberg (2010)

30. Ambler, S.W.: Introduction to agile usability user experience activities on agile
development projects - user testing on an agile project (2009). http://www.
agilemodeling.com/essays/agileUsability.htm#AcceptanceTesting. Accessed Dec
2011

31. Rice, R.W.: What is user acceptance testing? (2009). http://www.riceconsulting.
com/articles/what-is-UAT.htm. Accessed Dec 2011

http://agileproductdesign.com/blog/emerging_best_agile_ux_practice.html
http://agileproductdesign.com/blog/emerging_best_agile_ux_practice.html
http://www.uxmatters.com/mt/archives/2011/04/integrating-ux-into-agile-development.php
http://www.uxmatters.com/mt/archives/2011/04/integrating-ux-into-agile-development.php
http://www.targetprocess.com/blog/2011/05/ux-meets-agile-design-studio-methodology.html
http://www.targetprocess.com/blog/2011/05/ux-meets-agile-design-studio-methodology.html
http://uxmag.com/articles/design-studio-and-agile-ux-process-and-pitfalls
http://www.thinkingandmaking.com/view/agile-ux-six
http://www.thinkingandmaking.com/view/agile-ux-six
http://www.memibeltrame.ch/slides/
http://www.memibeltrame.ch/slides/
http://www.slideshare.net/sdeconf/sdec-2011-uxagilesvt
http://www.slideshare.net/sdeconf/sdec-2011-uxagilesvt
http://experoinc.com/incorporating-user-centered-design-into-an-agile-development-process/
http://experoinc.com/incorporating-user-centered-design-into-an-agile-development-process/
http://www.userresearchfindings.com/2008/07/power-of-doing-it-rite.html
http://www.userresearchfindings.com/2008/07/power-of-doing-it-rite.html
http://www.agilemodeling.com/essays/agileUsability.htm#AcceptanceTesting
http://www.agilemodeling.com/essays/agileUsability.htm#AcceptanceTesting
http://www.riceconsulting.com/articles/what-is-UAT.htm
http://www.riceconsulting.com/articles/what-is-UAT.htm

	Agile Usability Patterns for User-Centered Design Final Stages
	1 Introduction
	2 Background
	3 Method
	4 Agile Usability Patterns for UCD Final Stages
	4.1 Create Design Solutions
	4.2 Evaluate Designs

	5 Conclusion
	References


