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Abstract. For designing complex and sociotechnical (System that strongly
interact with humans (e.g., a ship is a large sociotechnical system).) systems,
designers are in charge of the functional specification because they have an
operational expert knowledge. However, these experts do not usually master the
programming knowledge of those who design supervision systems. Complex and
sociotechnical systems include supervision systems which comprise monitoring
interfaces and associated control codes. In this paper we propose an approach that
facilitates functional specification of supervision systems. This approach aims at
exploiting Example Based Programming (EBP) to propose a specification tool,
which contains a generalization module and an interface generation module. Our
tool allows experts who are acting as non-professional software developers to
describe high level system functional services from elementary services. These
functional services contain elementary interactions and configuration data. Thus,
the expert, involved in coding, avoids a lot of errors related to the interpretation
of the functional specifications. Our aim is to capture expert knowledge on the
system being designed in order to have verified and validated functional specifi‐
cations, without having to train experts in formal methods.

Keywords: Industrial supervision · Functional specification · Example based
programming · Model driven engineering

1 Introduction

Since the 80’s, the V-model [21] has become the industry standard designing model.
However, it is sometimes difficult to strictly implement this model especially when there
are significant changes in specifications, for example new features added by the customer
in an advanced project phase. There is a high risk that these changes will affect the system
so that it no longer matches the initial requirements as they progress over time. More‐
over, it is during the coding phase one often realizes that initial specifications were
incomplete, inconsistent, false or unfeasible. The late identification of these defects
affects development costs and application evolution.
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Other approaches such as agile software development methods are proposed to
facilitate changes of the initial design. The word “agile” refers to the ability to adapt to
changes in contexts and in specifications that might occur during the development
process. However, agile software development is mostly used by small teams, adding
value to direct communication in a changing environments. Thus these practices are not
suitable for all contexts [20].

In the context of large-scale projects such as the design of sociotechnical and
complex systems, the number of stakeholders and the diversity of required expertise
lead to overall consistency problems and specification misinterpretation. Indeed, errors
from misunderstandings are only detected during the system testing phase. In fact, 79 %
of failures come from design and implementation services [28], while 72 % of failures
are only detected during operational testing [26].

Mixing together Model Driven Engineering (MDE) and the component approach
has helped to overcome these problems. This approach aims at raising programming
activity abstraction level by using models at the very beginning of the software devel‐
opment process. It introduces models, metamodels and transformations notions as well
as representation, “conformity” and “based on” relationships. These terms are detailed
in [25]. As for the component approach, it improves the transmission of knowledge
through libraries or collections [4]. These two approaches are supported by our Anax‐
agore tool [4, 12] that enables to automatically generate applications corresponding to
a business model, from standard elements libraries and business models. To validate the
combination of both approaches, Anaxagore was applied to a concrete case.

The chosen example is a system for the production, storage and distribution of fresh
water, onboard a ship, called EdS (Eau douce Sanitaire in English Sanitary fresh‐
water). To date, Anaxagore enables to generate a control code and a monitoring interface
for this system. The generated monitoring interface only allows basic commands such
as “Open” or “Close” a valve. Elaborating high-level functions from this interface leads
to element-by-element interactions between the system and the user. Controlling such
a system onboard requires triggers (widgets) for high-level control and monitoring,
allowing functions to be run more easily. To implement these widgets, we need to
describe functional specifications. These specifications are user’s sequences of actions
on the system, required for performing functions taking into account all possibilities
(configurations). The task of the expert in system design is to define these functional
specifications. S/he writes these latter in natural language, and then provides them to the
designers of the supervision interface and the control-command code. The designers’
job is to implement and integrate these specifications into the system. Specification
interpretation errors come from the difference of technical knowledge between
prescribers (mechanic engineers) and designers (computer system engineers and/or
control-command engineers).

We propose in this article a specification tool that facilitates functional specification
and automatically generates the widgets for high level functions of complex and soci‐
otechnical systems. To validate our proposition, we evaluate the usability of the system
with expert users. Results are analyzed and detailed in this paper.
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2 State of the Art

Designing widgets for high-level control and monitoring leads to implement control code
and function interfaces. These implementations are based on functional specifications and
come to be tedious depending on the complexity of the system. Some works propose auto‐
matic generation of the control code, and others, automatic generation of the user interface.
Various approaches used for generating control code are surveyed in [5]. Despite their many
advantages, these approaches are inadequate for the control laws used to design industrial
monitoring for embedded systems on ships. In fact, the generated control code needs to be
transformed into normalized language before used in design phase.

In recent years, several works have explored the idea of automatically generating
user interface from detailed models of program functionalities, user knowledge, presen‐
tation environment etc. This simplified the user interface implementation process by
integrating it with the implementation of application logic. Systems proposed by these
works came to be known as model-based systems and are surveyed in [23]. The common
property of all these systems is that the user interface is automatically generated from a
specification. In the literature, several works has been focused on automatic user inter‐
face generation from abstract specification. Some model-based systems such as ERGO-
CONCEPTOR [22] enable graphical views specification based on detailed description
of the appliance. However, this description is tedious and prone to interrogations and
omissions. The performance of system degrades as the complexity of user interfaces
increases. Other models such as Jade or PUC include no specific detail about graphical
references, which keeps each specification small [23]. The generated user interface is
rarely sufficient for the entire application because the works focusses on only one aspect
of the system design. To address this, for example, ERGO-CONCEPTOR+ [22]
combines the knowledge-based system with the formal specification of the application.

Most of the time, describing requirements in natural language to establish specifi‐
cations is the first step in the development of embedded systems. Specification is a
communication base between customers and design teams [7]. Specification documents
should be as explicit as possible because they are the reference point for designers of
system functional axis [13]. A good functional specification must be correct, unambig‐
uous, complete and consistent. Some formal or semi-formal methods have been
proposed to help with respect to these properties.

Formal methods enable expression of specifications with notations and semantics based
on mathematical concepts. Baresi gives a survey of formal notations [2], models and tech‐
niques for specifying user interface and a lot of researches was published [9, 13]. Formal or
semi-formal methods are known for analyzing and validating the specifications, so that the
interpretation errors are limited. However, in some industrial sectors, such as shipbuilding,
specifications are typically written in natural language [30] as designers of specifications do
not have the required technical knowledge for using other languages. Although there are
defects detection techniques in the specifications [10], they require a lot of efforts and do not
necessarily detect all defects. Despite the use of some of these techniques, undetected errors
are still found in specification documents [29].

Usually, the design of control and monitoring applications is difficult because many
errors in applications can be traced to defects in their specifications. A main aspect of
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user-interface development is the specification of exactly what the user interface has to
do. The automatic interfaces generation is a difficult problem because it requires to
determine what abstract application specification is needed, how to formalize specifi‐
cations and to build an interface generator that can design usable interface from those
abstract specifications.

In our case, the business model can be considered as low level formal specification
because it is a standardized structuro-functional diagram which is used systematically
and earlier in the project, and follows system designing lifecycle [4]. However, this
specification is not enough to implement high-level application functions. To generate
a high-level application, it is important to know what functional information about the
application is necessary to create a usable interface. Business experts have this knowl‐
edge about applications but they do not have any training to express them in formal
languages. They can only describe them in natural language by using business model.
The issue is how can we help them to express the specification correctly?

Our goal is therefore to facilitate functional specification of complex systems by
proposing a tool that enables business expert without training in programming to create
program for system specification using a suitable interface.

3 Proposition

In interactive system design, the functional specification phase is preceded by task anal‐
ysis. Functional specifications contain a list of the major system functions (high-level
requirements) and scenarios of operations. They describe what the system needs to do, from
all of its user’s viewpoints. However, the clear expression of needs and requirements, and
their translation into functional specifications are not easy tasks, despite the importance of
the latter step in the design phase [17]. Task analysis enables to have a set of functional
requirements expressed by the designer that can be used in design approaches but this model
does not avoid errors related to the interpretation of the functional specifications. We define
a process for obtaining specifications by using an original approach based on task models
and the paradigm of Example Based Programming (EBP) [19].

Expression of functional requirements by the designer follows an iterative process
which first step is the formalization of functional specifications. This formulation is
based firstly on a review and analysis of the literature [1], and secondly on lessons learnt
by analyzing specifications established in past real projects and by interviewing design
experts. This formalization helps to identify the necessary information in specifications
and which must therefore be expressed by the designer for designing task models.

EBP is an extension of the concept of macro recorders, which allows users to record
and replay sequences of actions. However, replaying macros is reduced only to replaying
the recorded actions, whereas in the case of EBP, the system provides a generalization
of recorded actions to generate actual programs. Systems including EBP techniques
record, generalize and replay user’s actions through specific interfaces that keep the
functional aim of the application. Therefore, EBP systems allow non-computer scien‐
tists/engineers to build programs. EBP techniques enable users to automate repetitive
tasks [11], to adapt an application to their specific needs [8] and to integrate applications
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for developing a solution made to measure [27]. Systems including EBP techniques
record, generalize and replay user’s actions. An EBP system must provide specific
interfaces that can naturally integrate EBP techniques while maintaining the functional
goal of the application. A detailed state of the art of this paradigm [19] shows that its
implementation takes place in three phases. A first phase of recording enables the
designer to specify the behavior expected by the system interactively by using an inter‐
face template of the monitoring system. Then, the system creates generalized programs
and configurations from the recorded actions. The generalization remains a central and
complex problem of EBP. Although various generalization techniques exist, they are
not suited to the generalization of configurations in the designing of industrial complex
monitoring systems. For example, designing the base of knowledge to use inference
methods to generalize configurations can be a time consuming task. The generalization
configuration application proposed here is based on graph theory. Firstly the use of a
combination of algorithms enables to propose the user with all possible paths that a
system can use to achieve the functional purpose requested. These possible paths are
validated by business experts, then we combined them using a solver and a configuration
algorithm. The goal is to provide an exhaustive list of possible configurations to run the
specified functions. A last phase of replay enables the designer to validate the general‐
ized functions.

The described process is then implemented through a proof of concept, which is a spec‐
ification tool that consists of a specification interface, a generalization module based on
graph theory and a module for interface functions generation that exploits the task model
data. Figure 1 describes this process in detail with its phases. During the first phase, the
expert uses the specification interface to demonstrate examples of sequences execution for
all functions (examples of functional specifications). Two types of generalizations are made
during the second phase: the generalization of programs and the generalization of configu‐
rations. The third phase enables the use of generalized configurations and tasks models to
provide interface models for launching the system functions. The generated possible

Fig. 1. Specification tool

170 O. Goubali et al.



configurations and functions interface models must then be verified and validated by the
expert, in the last phase (4. Replay: verification and validation).

The specification interface is well-known by the expert and integrates the described
techniques. This interface has been used for specifying functions of the EdS system
taken as example here.

4 Case Study

For our case study, 7 functions need to be specified (transfer, treatment, embedded
distribution, distribution from quay, production, loading and unloading) and this implies
the description of a total of 73 unit configurations. In fact, given the architecture of the
system, each function can be performed according to several configurations. Further‐
more these configurations do not take into account the possibility of performing several
functions simultaneously. The expert’s task is to define these 73 functional specifications
as well as simultaneous executions. S/He provides them to the designers of the super‐
vision interface and the control-command code. The designer’s job is then to implement
and integrate these specifications into the system.

Figure 2 shows an extract of the business model (synoptic diagram) of the considered
system. The described system is composed of several elements: tanks, 2-ways valves,
water pumps, 3-ways valves, and a chlorination module for water treatment, respectively
numbered from 1 to 5. For example, we can consider the function that can transfer water
from a tank (St1) to another (St2) via one of the pumps (H1, H2 or H3). Each pump is
isolated from the tank St1 by 2-ways valves (V2VM03, V2VM05 and V2VM07). The
water transferred is sent to the tank St2 via 3-ways valves (V3VM01, V3VM02 and
V3VM03), the chlorination module (TRCH) and V2VM02 valve. The implementation
of this function requires the definition of sequences of actions made by the user on the
circuit for achieving the function. These are the “functional specifications”.

Fig. 2. A function on an extract of synoptic diagram of EdS system
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The proposed solution aims at offering the opportunity to the expert to express the
functional specifications through an interface that contains elements of the system and
integrates EBP techniques.

To test the feasibility of our approach we applied it to the specification of EdS’ system
functions. The design of the specification interface (Fig. 3) is based on a recorder/replaying
(RR) generic model adapted with information from task models, and on graphical views
of system components to design, as stored in the standard elements library of Anaxagore.

Fig. 3. Specification interface designed for EdS system

4.1 A Recording Model for Specification Interface

EBP techniques (recording, generalization and replay) are implemented through a RR
(Recorder Replaying) model present on specification interface. This model is designed
with Panorama E2 SCADA software [12] in the form of views. These views show the
recorder and the replaying commands (at the top left of Fig. 3).

The recorder command put the system into recording mode and memorize all the
expert’s actions. It is used for recording examples of sequences of execution for all
functions. The system generalizes the recorded examples to generate an executable
program in a different context. The replaying command can then replay the recorded
examples and their variants. The generic nature of this model allows its integration into
any monitoring system. However, setting the adequate parameters is required with the
information from the task models of the system to conceive.

4.2 Using the Specification Interface for Describing Functional Specifications

Obtaining functional specifications of a system from the implemented specification inter‐
face follows the three steps of EBP: recording, generalization and replay. During the
recording step, the system records the whole sequence of actions made by the expert and
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the state of the elements manipulated to perform the functions. For it to be generalized, two
examples must be recorded. A generalization system, integrated to the specification inter‐
face, uses these two examples to produce a generic program and all other possible config‐
urations for the function. Verification and validation of these configurations has to be
performed during the replaying phase. Validated configurations and generic programs are
then used to generate the monitoring interface and the control-command code that contain
high-level system functions.

The implementation of the interface specification enabled us to validate our approach
of using EBP to describe functional specifications of a system. To validate the proposed
interface, we have evaluated the usability of the system with real users to identify
required modifications, to verify our choice a posteriori, to analyze behavioral data,
critics and feedbacks on the interface and to involve users (system designers) who have
an expert knowledge of the system in designing the specification interface.

5 Evaluation

The evaluation method used is semi-structured interviews, aimed to collect specific and
qualitative information. This technique is often used for conducting exploratory studies
to improve knowledge of a field of study which main themes are familiar to experts but
present aspects requiring in-depth study.

The semi-structured interview was centered on the theme of the functional specifi‐
cation of complex systems. The interview guide used for our experiment is articulated
around questions related to three main themes. They have been defined on one hand with
respect to the knowledge that we had and wanted to acquire about the subject and on
the other hand with respect to the use and the improvement of our tool. The experimental
protocol and results analysis are described in this section.

5.1 The Protocol

The experiment took place with 5 participants at ENSM1, all with navigation experience
and functional knowledge of the involved type of systems. The equipment used for the
experiment included a 23-inch screen to display the specification interface, a mouse and
a keyboard. First, the synoptic diagram of the EdS system was presented and explained
to them. To verify that they have a good knowledge of this kind of system, it was asked
them to verbally describe the diagram (what is this diagram, how it works…). They were
also asked to describe the steps to achieve the Transfer from a tank to another, using the
same diagram. Next, we simulated with them task models (two task models describe
how to achieve the transfer with and without high-level command) through the Prototask
tool [18]. The objective of this part of the test was to check whether the method used to
define (specify) the transfer function, and then to launch (in use) is correct. Participants
were trained for about 15 min with the use of the specification interface (the part of the
interface they do not know); then they were required to use this interface to specify the

1 ENSM: École Nationale Supérieure Maritime – French Maritime College.
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“Transfer” function they had previously described verbally. Finally, when they had
finished using the interface, they answered a questionnaire that enabled us to get their
feedback in order to improve the interface.

5.2 Presentation and Interpretation of Results

Semi-structured interviews enabled participants to give their perceptions of functional
specification process. Most often, their remarks were general and not necessarily specific
to the application case; this allowed us to obtain a general feedback on the functional
specification approach. Describing and analyzing of the transcripts of the voice record‐
ings during the experiment gave us an initial response. The described tasks for
performing transfer by using a command were all validated unanimously. We were able
to verify compliance of task models which were used in specification interface
designing. The various steps proposed in the interface to achieve the specification of a
function have been validated. For each step, a widget is proposed to begin the actions.
Each widget is named according to the expert tasks at the phase. The action intuitiveness
related to the employed themes for the tasks of each phase is summarized in Fig. 4.

On a scale of 1 to 10, with 1 for “very easy” to 10 for “very complicated”, the
difficulty of using the specification interface is 4. All participants reported that the use
of interface became much easier after specifying the first function.

Fig. 4. Evaluation of widgets

The analysis of the experimental results enabled to confirm that our approach is an
original solution welcomed by all participants. The use of the interface has been more
or less intuitive for all. To complete our analysis, ergonomic expertise was carried out
based on the Jacob Nielsen’s ten heuristic principles [24] and the criteria of Bastien and
Scapin [3]. The information from this analysis will be used to improve the interface and
make it more intuitive for the user. Then, the specification interface will be submitted
to more stringent tests based on a SUS (System Usability Scale) questionnaire.
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6 Conclusion and Future Work

The presented work provides additional support in the process of a system functional
specification. Our goal is to reduce specifications effort while getting verified and vali‐
dated functional specifications through an interface familiar to designers. The introduc‐
tion of EBP techniques in a specification tool empowers the expert to express functional
specifications of the system s/he is designing by simple clicks on an interface; in the
same way s/he would describe the system verbally.

The use of this interface by experts in design, but not in software development, solves
communication and interpretation problems, which can significantly reduce functional
specification design time of a system, hence the project timeline and costs. However,
designing specification interface can be time consuming depending on the complexity
of system. Current works aim at reducing this design effort by offering methods and
tools to automatically generate the specification interface.

Although the specification interface has not yet been generated, its implementation
has enabled us to validate our approach of using EBP for describing functional specifi‐
cation of a system. Usability (ISO 9241-11 and ISO-13407) of the specification tool was
demonstrated during the semi-structured interviews with users.

In future work, the various defined models will be used to generate the specification
interface. From the business model previously used, the library, tasks models and a RR
model, information association methods and derivation models will enable to generate
gradually, in addition to existing models, the specification interface. Specification inter‐
face generation will follow the same steps as those of the low-level interface [4]. We
define a design flow based on the principles of MDE, which will enable us to implement
our entire approach to generate operational models. The enhanced specification interface
with tests results and ergonomic expertise, as well as high level interface generated from
these specifications will be evaluated.
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