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Abstract. The goal of this work is to automatically detect and clas-
sify a set of geoenvironmental zones of interest in panchromatic aerial
images. Focused on a specific area, the zones to be detected are veg-
etation/mangrove, degradation/desertification, interface water-sediment
and plain. These zones are very interesting from a geological point of
view due to their spatial distribution and interrelation, which contribute
to evaluate the natural anthropic impact level. The approach to unsuper-
visedly extract these zones from an input image has two steps. Firstly,
the image is automatically segmented in homogeneous colored regions
using the Bounded Irregular Pyramid (BIP). The BIP is a hierarchy
of successively reduced graphs which produces accurate segmentation
results with a low computational cost. Secondly, each obtained region is
classified using texture features to determine if it belongs to one of the
geoenvironmental zones of interest. As texture features, we have evalu-
ated two variations of the Local Binary Pattern (LBP) descriptor: the
Extended-LBP (ELBP) and the LBP variance (LBPV). Both methods
include a local contrast measure. For classifying the obtained features,
the Support Vector Machine (SVM) has been employed. At this stage, we
have evaluated the use of linear and radial basis function (RBF) kernels.
The whole framework was tested using images obtained from our specific
area of interest: the location of Carenero, Miranda state (Venezuela), in
years 1936 and 1992. They allow to study the variation of the geoenvi-
ronmental zones of interest of this location in this period of time. These
images are low quality images and present significant variations in illu-
mination. This makes difficult the texture classification of their zones.
However, the obtained results show that the proposed approach provides
good results in terms of identification of zones of geoenviromental inter-
est in these images.

Keywords: Aerial image segmentation * Irregular pyramid - Texture
classification

1 Introduction

The study of the anthropic impact produced in a given area is a key issue in
geology. For this purpose, aerial and satellite images are being widely used to
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obtain qualitative and quantitative geologic information [1,2] because they are
non-invasive methods which allow to work in areas of difficult access. To do
that, and depending on the geological features of the area to be studied, differ-
ent geoenvironmental zones and their evolution over the time need to be studied.
However, when the goal of an image processing algorithm is to divide the input
image in a manner similar to human beings, the adopted strategy cannot simply
be the grouping of image pixels into clusters (regions or boundaries) taking into
account low-level photometric properties. Aerial and satellite images are gener-
ally composed of physically disjoint regions whose associated groups of image
pixels may not be visually uniform. Hence, it is very difficult to formulate what
should be recovered as a region or boundary or to segment complex regions from
the image. With the aim of organizing low-level image features into higher level
relational structures, the perceptual organization of the image content is usually
thought as a process of grouping visual information into a hierarchy of levels of
abstraction. Starting from the lower level of the hierarchy (i.e. the input image
or an initial partition), each new layer groups the regions of the level below into
a reduced set of regions. This grouping needs to define a region model (the fea-
tures that describe each image region) and a dissimilarity measure (the metric on
those features). This paper proposes a texture-based automatic system to iden-
tify a predefined set of geonvironmental zones in panchromatic aerial images.
This system is divided in two steps: a pre-segmentation stage that accumulates
local evidences from the original image to a single graph. This graph will encode
a decomposition of the image into superpixels. This initial stage of the clus-
tering process is guided by the principles described by Levinshtein et al. [11].
Thus, blobs represent connected sets of pixels without overlapping among them.
They are compact and their boundaries coincide with the main image edges
when the pre-segmentation stops. Then, a second stage categorizes the previ-
ously obtained blobs into a reduced set of perceptually significant classes. This
stage characterizes every blob using a texture feature and then classifies them
into one of a collection of predefined zones. The performance of the texture-
based classification scheme has been evaluated using the Banja Luka dataset to
measure its ability to deal with real images. After confirming the validity of this
stage, the whole system has been applied to the detection and classification of
vegetation/mangrove, degradation/desertification, interface water-sediment and
plain zones in panchromatic aerial images captured in years 1936 and 1992in
the location of Carenero, Miranda state (Venezuela).

The rest of the paper is organized as follows: Sect.2 provides an overview
of the whole approach and describes how both stages are implemented. Experi-
mental results showing the performance of the approach are presented at Sect. 3.
Section 4 draws the conclusions and future work.

2 Proposed Method

Figure 1 provides an overview of the proposed method. In the pre-segmentation
stage, the Bounded Irregular Pyramid [7] has been used for segmenting an equal-
ized version of the input image. Instead of performing image segmentation based



292 M. Calderén et al.

on a single representation of the input image, a pyramid segmentation algorithm
describes the contents of the image using multiple representations with decreas-
ing resolution. In this hierarchy, each representation or level is built by comput-
ing a set of local operations over the level below, being the original image the
level 0 or base level of the hierarchy. Pyramid segmentation algorithms exhibit
interesting properties with respect to segmentation algorithms based on a single
representation. Thus, local operations can adapt the pyramidal hierarchy to the
topology of the image, allowing the detection of global features of interest and
representing them at low resolution levels. The pre-segmentation divides up the
input image into a collection of non-overlapping blobs. These blobs are char-
acterized using two variations of the Local Binary Pattern (LBP) descriptor:
the Extended-LBP (ELBP) and the LBP variance (LBPV) [6]. For classifying
the blobs as belonging to an specific environmental zone, the Support Vector
Machine (SVM) has been employed using linear and radial basis function (RBF)
kernels.

L ?}3 Image N
extr Geoenviromental
& ( Georeferenced e BIP Feature action — Classifier SVM —
(ELBP-, LBPV) zones
/ a.ud Equalized

Fig. 1. Overview of the proposed method

2.1 Pre-segmentation Stage

After equalizing the input image, it is divided up into regions using a specific
implementation of the Bounded Irregular pyramid (BIP). The BIP is an irreg-
ular; hierarchical procedure for image segmentation. For obtaining a new level
from the level below, the BIP combines a regular and an irregular decimation
procedures. The final result is the encoding of the image’s content as a hierar-
chy of simple graphs [7]. Using this scheme, the BIP is able to obtain similar
segmentation results to other irregular pyramids but in a faster way. Next, we
describe the properties and metric employed for building the hierarchy and the
decimation process.

Data Structure: Image Features and Metrics. Let G; = (N}, E}) be a
hierarchy level where IN; stands for the set of regular and irregular nodes and E
for the set of intra-level arcs. Let £ be the neighborhood of the node x defined
as{y € N; : (x,y) € E;}. It can be noted that a given node x is not a member of
its neighborhood, which can be composed by regular and irregular nodes. Each
node x has associated a vy value given by the averaged brightness of the image
pixels linked to x. Besides, each regular node has associated a boolean value hy:
the homogeneity [7]. Only regular nodes which have hy equal to 1 are considered
to be part of the regular structure. Regular nodes with an homogeneity value
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equal to 0 are not considered for further processing. At the base level of the
hierarchy Gy, all nodes are regular, and they have hx equal to 1. In order to
divide the image into a set of homogeneous blobs, the graph G is transformed in
(141 using a pairwise comparison of neighboring nodes. At the first levels of the
hierarchy, the pairwise comparison function, g(vx, , Vx, ), is true if the Euclidean
distance between the HSV values vy, and vy, is under an user—defined threshold
Ocolor- When the hierarchy reaches level [,,, and it is not possible to perform new
mergings, the algorithm automatically changes the metric to add to the process
the edge information. For this end, the roots of the blobs at level [, constitute
the first level of the new multiresolution output. Let P, be the image partition
at level [,, and [ > l,,, € R a level of the hierarchy, this second grouping process
assigns a partition @ to the couple (P;, ,1), satisfying that Q;  is equal to Py,
and that

dl, € Rt Q= an, vi>1, (1)

That is, the grouping process is iterated until the number of nodes remains con-
stant between two successive levels. In order to achieve the grouping process, a
perceptual pairwise comparison function must be defined. In this case, the pair-
wise comparison function g(vy,, Vy;) is implemented as a thresholding process,
i.e. it is true if a distance measure between both nodes is under a given thresh-
old opercep, and false otherwise. The defined distance integrates edge and region
descriptors. Thus, it has two main components: the color contrast between image
blobs and the edges of the original image computed using the Canny detector. In
order to speed up the process, a global contrast measure is used instead of a local
one. It allows to work with the nodes of the current working level, increasing
the computational speed. This contrast measure is complemented with internal
regions properties and with attributes of the boundary shared by both regions.
The distance between two nodes y; € N; and y; € N;, ¢*(yi,¥;), is defined as

d(yiv yj) ! min(b}’i ) by]')

Q- Cyy; + 6 ’ (inYj - CYz:Yj)

" (yi yi) = (2)

where d(y;, y;) is the gray-level distance between y; and y;. by, is the perimeter
of yi, by,y; is the number of pixels in the common boundary between y; and
y; and cy,y, is the set of pixels in the common boundary which corresponds to
pixels of the edge detected by the Canny detector. a and 3 are two constant
values used to control the influence of the Canny edges in the grouping process.
They should be manually tuned depending on the application and environment.

The Decimation Process. The decimation algorithm runs two consecutive
steps to obtain the set of nodes N;y; from N;. The first step generates the
set of regular nodes of G411 from the regular nodes at G; and the second one
determines the set of irregular nodes at level [+1. This second process employs
a union-find process which is simultaneously conducted over the set of regular
and irregular nodes of GG; which do not present a parent in the upper level [ + 1.
The decimation process consists of the following steps:
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1. Regular decimation process. The hy value of a regular node x at level [+1
is set to 1 if the four regular nodes immediately underneath {y;} are similar
and their hyy,y values are equal to 1. That is, hy is set to 1 if

{ ﬂ Q(Vijvyk)}m{ m hyj} (3)

Yy, yr€{yi} yi€{yi}

Besides, at this step, inter-level arcs among regular nodes at levels [ and [+1
are established. If x is an homogeneous regular node at level I+1 (hx==1),
then the set of four nodes immediately underneath {y;} are linked to x.

2. Irregular decimation process. Each irregular or regular node x € N; without
parent at level [+1 chooses the closest neighbor y according to the vy value.
Besides, this node y must be similar to x. That is, the node y must satisfy

{Ilvx = vyll = min(|[vx = va[ : 2 € &)} N {g(vx, vy)} (4)

If this condition is not satisfy by any node, then a new node x’ is generated at
level [41. This node will be the parent node of x. Besides, it will constitute a
root node and the set of nodes linked to it at base level will be an homogeneous
set of pixels according to the defined criteria. On the other hand, if y exists
and it has a parent z at level [+1, then x is also linked to z. If y exists but
it does not have a parent at level [4+1, a new irregular node z’ is generated
at level [+1. In this case, the nodes x and y are linked to z'.

This process is sequentially performed and, when it finishes, each node of
@ is linked to its parent node in Gy41. That is, a partition of IV, is defined. It
must be noted that this process constitutes an implementation of the union-
find strategy [7].

3. Definition of intra-level arcs. The set of edges Eji; is obtained by defining
the neighborhood relationships between the nodes N;; ;. Two nodes at level
[+1 are neighbors if their reduction windows, i.e. the sets of nodes linked to
them at level [, are connected at level [.

2.2 Texture Classification

Texture Descriptors. The Local Binary Pattern (LBP) descriptor, originally
proposed in [8] is a computational very simple algorithm which main advantage is
its robustness against illumination variations. The original LBP operator forms
labels for the image pixels by thresholding the 3 x 3 neighborhood of each pixel
with the center value and considering the result as a binary number. This binary
number is set to 1 if the neighbor is greater or equal than the central pixel and
it is set to 0 in other case. The histogram of these 2% = 256 different labels
can then be used as a texture descriptor (Fig.2). This descriptor was extended
(ELBP) in [9] to use circular neighborhoods of different radius.

A formal description of the ELBP operator is shown in the following equation:

P—1

LBPP,R(xcvyc) = Z S(gp - gc)2p (5)
p=0
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Fig. 2. Schematic description of the LBP approach

where (2, y.) is the central pixel with an intensity value of g, g, is the intensity
of the neighbor pixel, P is the number of pixels, R the used radius and s(x) is

a function with the form:
1 ifx >0,
s(x) = { . (6)

0 otherwise.

When a radius different of one is used, the neighbors are located in a circle
with the center in the studied pixel. If a point of the circle does not correspond
to an image pixel, it is interpolated.

In order to include local contrast information into the LBP descriptor and
make it rotation invariant, Guo et al. [6] present the Local Binary Pattern Vari-
ance descriptor (LBPV).

LBPVp p(k ZZw LBPpR(i,j), k) ke 0,K] (7)
=1 j=1

VARP,R(iaj) if LBPP,R(ivj) = ka

0 otherwise.

w(LBPp (i, ), k) = { (®)

P-1
1
VARpRr = P Z (9p — u)? (9)
=0

P—

Z 9p (10)

In this work, we have used the ELBP and the LBPV descriptors to character-
ize all nodes of the highest level of the hierarchy, x € N, . The irregular shape is
not a problem as the descriptor is locally computed for each pixel. Furthermore,
contrary to what is done in other works, we divide up the receptive field of x into
a grid of m regions. In each of these regions the descriptor is computed, having
one histogram per region. These m histograms are concatenated, obtaining the
final feature vector associated to the node. Both descriptors are evaluated at
Sect. 3.
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Classification. Once the texture of the nodes x € IV;, has been captured, the
final step of the approach aims to categorize these nodes into a set of classes.
To perform this step, the Support Vector Machine (SVM) classifier has been
selected. Given a set of patterns where each pattern belongs to one of two possible
classes, the goal of the SVM is to provide a model for classifying any new pattern.
Basically, this model defines a separating hyperplane in the space of the patterns
that maximizes the margin between the two classes. Training a SVM consists of
finding the optimal hyperplane, that is, the one with the maximum distance from
the nearest training patterns, called support vectors. However, it is not always
possible to find a perfect separation. Otherwise the result of the model cannot
be generalized for other incoming data. This problem is known as overfitting. In
order to deal with it, the SVM uses an internal parameter, C', which controls
the compensation between training errors and the rigid margins.

Whereas the easiest way to make the separation between classes is using a
straight line, a plane or a n-dimensional hyperplane, it often happens that the
sets to discriminate are not linearly separable in that space. To solve this issue,
one solution is to map the original space into a higher-dimensional space, and to
look for this hyperplane within this new space. This mapping is typically per-
formed using a kernel function k(z,y). Thus, the SVM classifier has the following
form:

1
flz) = sign(z oy K (x,2i) +b) (11)
i—1

being K (x,x;) the kernel function.
In the proposed work, two different kernel functions have been used: the
polynomial and the Gaussian radial basis function.

K(z;,xj) = (z; * x;)" Polynomial (12)

K(z;,zj) = exp (‘W (x; — mj)z) Gaussian radial basis function (13)

3 Experimental Results

This section includes the verification of the texture description and classification
stages and the validation of the whole system. For the first issue we have used
a publicly available database of aerial images: the Banja Luka database!. The
whole system has been tested using a collection of images from our specific area
of interest, located at Carenero, Miranda state (Venezuela). These images were
taken at 1936 and 1992. This will allow to analyze the anthropic impact produced
in this area.

Banja Luka Database. The Banja Luka database contains 606 images of
128 x128 pixels, which were manually classified into 6 classes: houses, ceme-
tery, industry, field, river and trees. The distribution of images in these cate-
gories is highly uneven [3]. Figure3 shows several images from the database.

! http://dsp.etfbl.net /aerial/.
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Panchromatic versions of these images were used for testing. Table 1 shows the
performance (mean classification accuracy and standard deviation) provided by
different approaches. In these experiments, half of the images were used for
training and the other half for testing. All approaches use SVM with radial basis
function kernel. Gabor descriptors were computed at 8 scales and 8 orientations
for all images, providing 128-dimensional vectors. Gabor (full) employs a Gabor
descriptor composed by the means and standard deviations of all filter responses,
while Gabor (mean) implies to use a descriptor obtained using only mean values.
The Gist descriptor [4] was computed by first filtering the image by a filter bank
of Gabor filters, and then averaging the responses of filters in each block on a 4
x 4 non-overlapping grid. The approach proposed by Lingua et al. [5] is used to
provide the MSIFT results. The BoW descriptor [10] is obtained by computing
SIFT descriptors on a regular grid and vector quantizing them using a codebook
with 1000 codewords. Histogram of codeword occurrences is a 1000-dimensional
BoW image descriptor. It can be noted that the proposed framework provides
better results than these approaches.

Fig. 3. Examples of classes in the Banja Luka database

Carenero Database. This database is formed by panchromatic aerial images
captured in the Carenero zone by the Geographical Institute of Venezuela (Simén
Bolivar) in the years 1936 and 1992. Their scale is 1:25.000 and they have
been geocited with dimensions of 675x471 pixels. The goal of this experiment

Table 1. Comparison of classification accuracy for in house dataset Banja Luka

Descriptor Accuracy (%)

Gist 88,75 + 2,07
MSIFT 84,33 + 1,70
Gabor(Full) 84,500 -
Gabor(Mean) 80,700 -
MBow 85,23 + 2,46
Proposed approach (r=1, p=8) | 97,5 + 1,25
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is to locate in these images the following zones: vegetation/mangrove, degrada-
tion/desertification, interface water-sediment and plain. For each class, 85 images
of 40x40 pixels was manually obtained for training. Figure 4 shows one example
of each category.

i

Interface Mangrove Plain Desertification

Fig. 4. Categories of texture samples in the Carenero database

The pre-segmentation using the BIP algorithm depends on two threshold
values: Tcolor aNd Opercep. The best results on the Caranero 1936 dataset were
obtained using as threshold values 0¢o10r=80 and opercep=90. But for Caranero
1992, the best values were ocoior=30 and opercep=50. There are a significant
difference on their values, but it must be noted that these images were captured
using two different sensors. Similar comments could be given respect to the

Fig.5. (a) Original image from Carenero 1936, (b) image decomposition provided by
the BIP approach, and (c) blobs associated to interface water-sediment (blue regions),
plain (green regions), desertification (red regions) and the mangrove (yellow regions)
(see text) (Color figure online).
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parameters « and (8 used for weighting the impact between color contrast and
edge information (typical values give more weight to color contrast).

Figure5 shows the regions obtained by pre-segmenting one of the original
images from Carenero 1936. The size of some of them are large and can be
characterized by the ELBP-LBPV method. Other ones have got a small size and
cannot be correctly characterized. They will remain as unclassified. Figure 5(c)
shows the blobs that have been labeled by the approach as interface water-
sediment (blue regions), plain (green regions), desertification (red regions) and
the mangrove (yellow regions). The classifier uses the SVM model with a RBF
kernel.

The global thematic accuracy, measured as a classification percentage,
reached a value of 92,50 %. Besides, it was counted on the cross validation to
identify the tuning parameters, for the radial gamma kernel (), in the linear
kernel degree and C'. Table2 shows the performance (mean classification accu-
racy and standard deviation) for classes on Carenero 1936 and Carenero 1992
databases. Figure 6 shows the average accuracy for all texture classes on the
Carenero 1992 dataset. It should be noted that the results are really good for
several combinations of parameters. There are however problems for classifying
the desertification areas. It can be also noted that there does not exist a pair of
parameters that can provide the best results for all classes.

Table 2. Classification accuracy (mean and standard deviation) for Carenero Equalized
1936 and Carenero Equalized 1992

Carenero 1936 Carenero 1992

T +o T +o
ELBP + SVM (RBF)
R=1, P=8 92,500 7,916 | 95,000 5,000
R=2, P=8 90,000 11,666 | 80,000 16,667
R=2, P=16 76,786 14,880 | 83,334 11,667
ELBP + SVM (LINEAR)
R=1, P=8 88,095 11,905 | 93,333 6,667
R=2, P=8 91,694 8,305 | 83,333 13,333
R=2, P=16 78,125 13,542 | 83,333 11,667
LBPV + SVM (RBF)
R=1, P=8 85,833 16,859 | 99,999 -
R=2, P=8 70,833 34,359 | 88,333 8,388
R=2, P=16 78,125 17,137 | 91,666 6,382
LBPV + SVM (LINEAR)
R=1, P=8 71,875 29,141 | 99,999 -
R=2, P=8 61,458 28,336 | 88,333 8,389
R=2, P=16 51,041 42,542 | 90,000 6,667
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The method is however considering that boundaries of the zones are abrupt,
i.e. that there do not exist gradual transitions between zones. This problem is
present on the images and we will need to work on how to deal with. Other
approaches [13] use the (multiple) indicator kriging for take these gradual tran-
sitions into account. In our case, it will be necessary to include the uncertainty
information within the categorization stage, providing for each region not only
the category but also the probability associated to this process.

1000
95,0
» 001
£ 85,0 . o
5 500 4 SVM_LNL_ELBPQ,16)
g 50 - ——SVM_LNL_ELBPQ,9)
:%: 70,0 —— SVM_LNL_ELBP(,9)
S 650 - —— SVM_RBF_ELBP(2,16)
< 600 - —— SVM_RBF_ELEP(,
55,0 1 ——SVM_RBF_ELBP(1,8)
50,0 -

MV I'W-S P D

Texture Classes

Fig. 6. Accuracy values for different geoenvironmental zones (Carenero 1992): veg-
etation/mangrove (V/M), degradation/desertification (D), interface water-sediment
(I/W-S) and plain (P)

4 Conclusion

The main contribution of this paper is the evaluation of a whole framework for
segmentation and classification of the regions composing an aerial image. The
BIP approach is used for pre-segmenting the input image, providing a decom-
position of the scene within uniform blobs. These blobs are arranged as a single
graph, where simple adjacency relationships are encoded on the arcs of the graph.
Then, these blobs are successfully categorized using texture. Regarding to this
last stage, the proposed system is able to obtain better results than other popular
approaches on the large Banja Luka dataset. Furthermore, the whole framework
is able to deal with the automatic decomposition and labeling of complex, real
images. Future work will focus on integrating within the framework the tools
that can allow the user to easily redraw the segmentation and/or classification
results (e.g. changing a provided label or choosing a lower level of decomposi-
tion for a specific region). We have also experience on introducing topological
information within the hierarchical segmentation of natural images, changing
the single graph by a combinatorial map [12]. This topological information will
allow to consider inclusion and complex adjacency relationships, which could
be useful to describe the geological evolution of the analyzed geoenvironmental
area.
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