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Abstract. The existence of characteristic structure, or shape, in com-
plex data sets has been recognized as increasingly important for mathe-
matical data analysis. This realization has motivated the development of
new tools such as persistent homology for exploring topological invari-
ants, or features, in large data sets. In this paper, we apply persis-
tent homology to the characterization of gas plumes in time dependent
sequences of hyperspectral cubes, i.e. the analysis of 4-way arrays. We
investigate hyperspectral movies of Long-Wavelength Infrared data mon-
itoring an experimental release of chemical simulant into the air. Our
approach models regions of interest within the hyperspectral data cubes
as points on the real Grassmann manifold G(k, n) (whose points para-
meterize the k-dimensional subspaces of Rn), contrasting our approach
with the more standard framework in Euclidean space. An advantage of
this approach is that it allows a sequence of time slices in a hyperspectral
movie to be collapsed to a sequence of points in such a way that some of
the key structure within and between the slices is encoded by the points
on the Grassmann manifold. This motivates the search for topological
features, associated with the evolution of the frames of a hyperspectral
movie, within the corresponding points on the Grassmann manifold. The
proposed mathematical model affords the processing of large data sets
while retaining valuable discriminatory information. In this paper, we
discuss how embedding our data in the Grassmann manifold, together
with topological data analysis, captures dynamical events that occur as
the chemical plume is released and evolves.

Keywords: Grassmann manifold · Persistent homology · Hyperspectral
imagery · Signal detection · Topological data analysis

1 Introduction

Hyperspectral imaging (HSI) technology allows the acquisition of information
across the electromagnetic spectrum that is invisible to humans. In a very real
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sense, these cameras allow us to “see the unseen” by including wavelengths
spanning ultraviolet and far infrared. In contrast, humans can observe a very
limited range of the electromagnetic spectrum, i.e. wavelengths of approximately
400–700 nm are visible to the human eye.

Fig. 1. Illustration of one frame, or data cube, of a hyperspectral movie collected with
the Fabry-Pérot Interferometer.

Multi- and hyper-spectral imaging technology has become widely available,
and there is an increasing number of canonical data sets available for scientific
analysis including, e.g. the AVIRIS Indian Pines1 and the ROSIS University of
Pavia2 data sets. In addition, moving objects may be detected with devices such
as the Fabry-Pérot Interferometer [10] which can capture hyperspectral movies
at frame rates of approximately 5 Hz. See Fig. 1 for an illustration. The resulting
4-way arrays of spatial-spectral-temporal data provide a high fidelity view of our
environment and may help in the monitoring of pollution in the air and water.
An application that concerns us in this paper is the characterization of gaseous
plumes as they are released into the environment.

Traditionally, one of the primary applications of hyperspectral image analysis
consists of object detection and classification. The focus is generally on the iden-
tification of anomalous pixels in the image and the determination of the composi-
tion of the materials in the pixel. A range of mathematical tools have been devel-
oped for the analysis of hyperspectral images including, e.g. matched subspaces,
the RX algorithm, and the adaptive cosine estimator [19]. More recently, man-
ifold learning algorithms have been applied to hyperspectral images to exploit
topology and geometry, i.e. mathematical shape, or signatures, in data at the
pixel level [1,18].

The subspace perspective is also taken in this paper, but in the direction of
understanding the topology and geometry of the Grassmann manifold (Grass-
mannian) associated with hyperspectral images, i.e. the manifold parameteriz-
ing the k-dimensional subspaces of n-dimensional space. While we are motivated
by ideas similar to those found in prior applications of manifold learning algo-
rithms, e.g. [1,18], our application data is not at the pixel level. By constructing
1 Available from https://engineering.purdue.edu/∼biehl/MultiSpec.
2 Available from http://www.ehu.es/ccwintco/index.php/.

https://engineering.purdue.edu/~biehl/MultiSpec
http://www.ehu.es/ccwintco/index.php/
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subspaces of pixels we are able to exploit the rich metric structure of the Grass-
mannian based on measuring angles between subspaces. The advantage of this
approach is that a set of pixels used to form a subspace is seen to capture the
variability in the data missing in a single pixel observation.

An example that illustrates the power of this framework is the application to
illumination spaces in the face recognition problem. The variation in illumination
on an object may be approximated by a cone captured in a low-dimensional
subspace. Subspace angles can be used to compute similarity of illumination
spaces and the effect on classification accuracy was striking when applied to the
CMU-PIE data set, even on ultra-low resolution images [4]. More recently, tools
have been developed to represent points on Grassmannians via subspace means
[20], or nested flags of subspaces [12]. In another application to video sequence
data, we used the setting of the Grassmannian to extend an algorithm on vector
spaces for detection of anomalous activities [25].

In this paper, we address the question of the existence of topological sig-
natures in the setting of hyperspectral movies mapped to the Grassmannian.
Our approach builds on applying the Grassmannian architecture to hyperspec-
tral movies that has shown promise in preliminary work [6,7]. Here, our focus is
on application of persistent homology (PH) to the characterization of the evo-
lution of chemical plumes as acquired by hyperspectral movie data sets. As in
the application to face recognition, we encode a single frame of a hyperspectral
movie (or a collection of pixels of a single frame in the movie) as a point on the
Grassmann manifold. We speculate that this manifold representation affords a
form of compression of information while capturing essential topological struc-
ture. We consider the application of this approach to the characterization of
chemical signals as measured by the Long-Wavelength Infrared (LWIR) data set
[10]. Our goal is to establish the existence of topological signatures that can
provide insight into the evolution of complex 4-way data arrays.

The paper outline includes an overview of PH in Sect. 2 and the geometry of
the Grassmannian in Sect. 3. Computational experiments are discussed in Sect. 4
and conclusions are given in Sect. 5.

2 Persistent Homology

Homology is an invariant that measures features of a topological space and can
be used to distinguish distinct spaces from one another [16]. Persistent homology
encodes a parameterized family of these homological features. It is a computa-
tional approach to topology that allows one to answer basic questions about
the structure of point clouds in data sets at multiple scales [3]. This proce-
dure involves (1) interpreting a point cloud as a noisy sampling of a topological
space, (2) creating a global object by forming connections between proximate
points based on a scale parameter, (3) determining the topological structure
made by these connections, and (4) looking for structures that persist across
different scales. PH has been used to understand the topological structure of
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data arising from applications including [8,11,17,21,22,24]. For a detailed dis-
cussion of homology, see [16], and for further discussions of persistent homology,
see [3,14,15].

One way to associate a family of topological objects with a point cloud is to
use the points to construct a family of nested simplicial complexes. The Vietoris-
Rips complex builds a simplicial complex Sε with vertices as the data points
and higher dimensional k-simplices formed whenever k + 1 points have pairwise
distances less than ε. The k-dimensional holes of this simplicial complex generate
a homology group Hk(Sε) whose rank, known as the k-th Betti number, counts
the number of k-dimensional holes. For instance, Betti0 measures the number of
connected components (clusters) of the point cloud, while Betti1 indicates the
existence of topological circles (loops), or periodic phenomenon. To avoid picking
a specific scale ε, persistent homology seeks structures that persist over a range
of scales, exploiting the fact that as ε grows, so do the simplicial complexes
Sε1 ⊆ Sε2 ⊆ Sε3 ⊆ . . . indexed by the parameters ε1 ≤ ε2 ≤ ε3 ≤ . . .. Thus, PH
tracks homology classes of the point cloud along the scale parameter, indicating
at which ε a kth order hole appears and for which range of ε values it persists.
The Betti numbers, as functions of the scale ε, can be visualized in a distinct
barcode for each dimension k [15].
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Fig. 2. Betti0 (top right) and Betti1 (bottom right) barcodes corresponding to point
cloud data sampled from the unit circle (left).

Figure 2 is an example of the k = 0 and k = 1 barcodes generated for a
point cloud sampled from a circle. Each horizontal bar begins at the scale where
a topological feature first appears and ends at the scale where the feature no
longer remains. The kth Betti number at any given parameter value ε is the
number of bars that intersect the vertical line through ε. Short-lived features are
often considered as noise while those features persisting over a large range of scale
represent true topological characteristics. In the case of Betti0, at small values of
ε there will be a distinct bar for each point, as the simplicial complex Sε consists
of isolated vertices. At large values of ε, only one bar remains, as all data will
eventually connect into a single component. For the circle, Betti0 = Betti1 = 1
which correspond to the number of connected components and number of loops,
respectively, shown by the longest (persistent) horizontal bars in each plot. We
use JavaPlex, a library for computing PH and TDA in this paper [23].
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3 The Geometry of the Grassmann Manifold

The (real) Grassmann manifold G(k, n) is a parameterization of all k-dimensional
subspaces of n-dimensional space [13]. A point on G(k, n) can be represented by
a tall n × k matrix Y with the property that Y T Y = Ik where Y is an element
of the equivalence class �Y � consisting of all matrices of the form Y Q with
Q ∈ O(k), the orthogonal group that consists of k × k orthogonal matrices [13].

Hyperspectral data is a 3-way cube x × y × λ that can be mapped to points
in a Grassmannian in a variety of ways. Here, we select a subset of k frequencies
λi. For each of the k frequencies we propose to “vectorize” the xy = n spatial
components to form an n × k matrix X. It is assumed that the construction is
such that k < n/2−1 so subspaces don’t overlap trivially. To map X to a matrix
Y representing a point on the Grassmann we compute any orthogonal basis for
the column space of X. For instance, the n × k matrix U in the thin singular
value decomposition X = UΣV T provides one option as a representation of a
point on the Grassmanian G(k, n).

The mapping described above allows us to construct a sequence of points
on G(k, n), each one taken from the same spatial location in the 3-way array
of hyperspectral pixels or from the same frame of a hyperspectral movie. The
pairwise distances between the points in this sequence are computed in terms of
the principal angles between the subspaces. The implementation of the Grass-
mannian framework is, in part, motivated by the rich metric structure of a variety
of distance measures including the chordal, geodesic, and Fubini-Study distances,
which are all functions of the k principal angles between the subspaces [2,9].

The experiments in this paper use the (pseudo)distance between two sub-
spaces measured by the smallest principal angle. This (pseudo)distance has been
effective in other numerical experiments [4,6], and in fact, we observed, in the
experiments in this paper, that using it resulted in stronger topological signals
than other distance measures. Once a distance matrix for the points on the
Grassmannian is computed, we apply PH to determine topological structure.
In particular, we explore Betti0 barcodes to estimate the number of connected
components and Betti1 barcodes to detect topological circles. The goal is to
associate physical properties in the HSI image that relate to these structures.

4 Experimental Results

In this section, we apply PH to Long-Wavelength Infrared (LWIR) multispectral
movies, each of an explosive release of a chemical and resulting toxic plume
which travels across the horizon of the scene [10]. The simulants released included
Triethyl Phosphate (TEP) and Methyl Salicylate (MeS) in quantities of 75 kg and
150 kg, respectively. The LWIR data sets are captured using an interferometer
in the 8–11 μm range of the electromagnetic spectrum. A single frame, or data
cube, of this movie consists of 256×256 pixels collected at 20 IR bands. A given
movie is a sequence of data cubes consisting of pre-burst and post-burst frames.

The purpose of this paper is not to propose a new algorithm for detecting
chemical plumes but rather to investigate the topological features associated
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Fig. 3. The ACE detector on LWIR data cubes: (a) ACE values of a pre-burst cube
indicating that no plume is detected; (b) ACE values of a post-burst cube with a plume
detected. We have magnified the plume region to illustrate the performance of the ACE
detector.

with a known plume. The data processing workflow consists of the following
steps: (1) band selection, (2) identification of the region containing the chemical
plume, (3) mapping data to the Grassmannian, (4) computing (pseudo)distances
on the Grassmannian using the smallest principal angle, (5) determination of PH
Betti0 and Betti1 barcodes, and, finally, (6) interpretation of the structure in
the data as encoded by the topological invariants. We describe more detail of
steps (1) and (2) below.

Band Selection. We applied the sparse support vector machine (SSVM) algo-
rithm for optimal in situ band selection, i.e. the SSVM identifies wavelengths
that best discriminate the plume from the natural background [5]. In another
approach, we visually choose bands which have the strongest plume signal in data
cubes which have had the background removed and thus, have visible plume.

Plume detection. The location of the chemical plume in the post-burst cubes
is determined using the well-known adaptive-cosine-estimator (ACE) [19]. The
ACE detector is one of the benchmark hyperspectral detection algorithms which
computes the squared cosine of the angle between the whitened test pixel and
the whitened target’s spectral signature. Based on a chosen threshold, an ACE
score indicates if the chemical is present in the test pixel. Figure 3a depicts an
image corresponding to a cube without a plume, and Fig. 3b depicts a cube with
a chemical plume detected by the ACE.

4.1 Experiment on Triethyl Phosphate Movie

We first consider the 561 frame multispectral movie of the data collection event
of chemical Triethyl Phosphate (TEP) being released into the air. The data
consists of the raw, unpreprocessed data including background clutter. It was
determined that the wavelengths {9.53, 8.30, 10.68} (nm) were optimal for dis-
criminating TEP from background using the SSVM band selection algorithm.
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In this experiment, we determine Betti0 barcodes using all 561 TEP cubes,
where 4 × 8 × 3 subcubes have been extracted from regions of each data cube
along the plume location region.

The Betti0 barcode in Fig. 4a arises from the 561 Grassmanian points cor-
responding to the left horizon 4 × 8 × 3 region in each data cube, limited by
pixel rows 124 to 127 and pixel columns 34 to 41. This region belongs to the
area when a plume forms and first becomes visible at frame 112 as detected
by the ACE. At scale ε = 1.5 × 10−3, there are 31 bars corresponding to 31
connected components on G(3, 32), with 28 isolated points from frames 111 to
142, one cluster containing frames {134, 135, 137}, one cluster containing frame
519, and another containing all other frames. At scale ε = 2 × 10−3, we have
19 bars corresponding to 19 connected components on G(3, 32), with 18 isolated
frames from 112 to 129, and one cluster containing all the rest. These bars per-
sist for a large range of parameter value (to just beyond 3 × 10−3), indicating a
large degree of separation. At ε = 4 × 10−3, we have 13 clusters with 11 isolated
frames 112, 114 to 118, 120 to 123 and 125, one cluster of frames {119, 124},
and another containing everything else; see also [7]. Cubes following frame 111
are where the plume first occurs with the highest concentration of chemical, and
the composition of the plume changes quickly as time progresses. PH detects
separation of these cubes from pre-plume cubes and those cubes where plume
no longer remains at multiple scales.

Fig. 4. (a) Betti0 barcode generated on 4×8×3 left horizon (plume formation) region
limited by pixel rows 124–127 and columns 34–41, through all 561 TEP cubes, mapped
to G(3, 32). (b) Betti0 barcode generated on 4 × 8 × 3 horizon region limited by pixel
rows 124–127 and columns 75–82, through all 561 TEP cubes, mapped to G(3, 32).

After the plume is released, the plume drifts to the right in the multispectral
movie as time progresses. We now consider a plume patch corresponding to
a horizon region located to the right of the original plume location discussed
above. That is, a 4 × 8 × 3 patch is drawn from pixel rows 124 to 127 and pixel
columns 75 to 82 for each of the 561 data cubes in the TEP movie. This data
is embedded in G(3, 32), and PH is implemented to uncover the structure of
the data. Figure 4b contains the 0-dimensional barcode. Analyzing connected
components as ε varies, we observe that they differ from those found in the
previous experiment, see Fig. 4a. At scale ε = 1.5 × 10−3, we have 52 connected
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components on G(3, 32) corresponding to 47 isolated points from 119 to 141, 145
to 165, and 170 to 172. The other points are connected into four smaller clusters
{142,143,144}, {166,167}, {168,169}, and {173,174}, and one cluster containing
all the other points. At scale ε = 2 × 10−3, there are 30 connected components
on the Grassmannian, including 25 isolated points from 119 to 127, 129 to 140,
149, and 151 to 156; four clusters each containing {128,136–138}, {141–150},
{157,158}, {162–164}; and one cluster containing all the rest. Further, at scale
ε = 3 × 10−3, the barcode plot has 5 bars that persist over a large range of
values, namely, up to a little beyond 4 × 10−3: 4 isolated points from frame 121
to 124 and one cluster containing all the rest.

We observe that for this region, PH separates points from frame 119 and later,
in contrast to the frames separated from frame 112 in the previous experiment
(Fig. 4a). Note that points corresponding to frames 112 to 118 are “plume-free”
as the plume does not reach this region until frame 119. It is also interesting to
note that points corresponding to frames 121 to 124 are kept isolated for a large
range of scales, i.e. they are far away from each other and the rest of the points.
PH, under the Grassmannian framework, treats these frames as being the most
distinct in this region.

4.2 Experiments Detecting a Loop in Methyl Salicylate Movie

The next two experiments consider the multispectral movie of the data collection
event of chemical Methyl Salicylate (MeS) being released into the air, consisting
of 829 frames. Here we use 3 out of 20 wavelength bands {10.57,10.68,10.94} (nm)
that were determined by visual inspection of a background-removed data cube
where plume was present. These bands, in particular, were selected as strong
plume signal was visible at these corresponding wavelengths. In this movie, the
plume first becomes visible at frame 32.

In the first experiment, we construct a sliding window along the horizon,
where the plume is released, in both a frame with and without a plume present
(frames 32 and 1, respectively) to compare the topological structure of each.
This sliding window is constructed by selecting 4 × 8 × 3 patches of each frame
limited by rows 125–128 and columns 190–245 where each new point samples
8 columns, incrementing by one. Each patch is then embedded into G(3, 32)
and the topological structure is analyzed with PH. In this experiment and the
next, our focus is on the Betti1 information which measures the number of loops
present in the data.

Observe in Fig. 5 that no persistent topological circle is present in the Betti1
barcode of frame 1, while a persistent loop is present in the Betti1 barcode of
frame 32. This is interpreted as follows. In frame 32, where a plume is present,
the sliding window first constructs points in G(3, 32) of the natural background,
then traverses through points that contain plume, finally returning to points of
the natural background. This creates a closed loop in G(3, 32). This behavior is
captured in the topological structure of the plume cube. On the other hand, the
sliding window in frame 1 only has points in G(3, 32) of the natural background,
and thus, no persistent loop is formed in this space.



236 S. Chepushtanova et al.

0.45 0.5 0.55 0.6 0.65

D
im

e
n
s
io

n
 1

(a)

0.4 0.5 0.6 0.7

D
im

e
n
s
io

n
 1

(b)

Fig. 5. Data constructed by sliding a window along the horizon region of a single frame
of the MeS movie, embedded into G(3, 32) and analyzed with PH. (a) Betti1 barcode
of frame 1. (b) Betti1 barcode of frame 32. Observe that a persistent loop is present.

We mention that this experiment was done on background removed frames.
In analysis with raw data, loops were not as prevalent with this framework.
However, the next experiment does in fact use raw data in our analysis.

In the second experiment, we consider the first one hundred frames of the
MeS cubes and focus on a “plume location” patch of size 4 × 8 × 3, limited by
pixel rows 125 to 128 and pixel columns 217 to 224, embedded into G(3, 32) for
each cube.

Figure 6a displays the Betti0 and Betti1 barcodes from applying PH to this
Grassmannian data. A fairly persistent bar appears in the Betti1 barcode that
begins at ε = 0.00979 and ends at ε = 0.0141. This represents a loop through the
data in G(3, 32). All other bars are considered as noise. Let us inspect this loop
further. It begins once all of the data has been connected into a single component
(refer to ε = 0.00979 in the Betti0 barcode). The maximum pairwise distance–
measured by the smallest angle between subspaces–for this data is 0.0308. This
loop persists until just under half this distance.

We conclude the following from this experiment. The first few frames start
with a fixed background. Then, the plume begins to form, spreading through the
plume patch until the plume no longer remains in the 4×8×3 sampled region. The
remaining cubes then return to a fixed background, reflecting periodic behavior
in the data. This collection of cubes traces out a closed loop, encoded in the
Grassmann manifold G(3, 32). PH captures this loop in the persistent Betti1
bar. Figure 6b displays a schematic of one possibility in the equivalence class of
the edges that form this loop. While not all data cubes are present, we notice
that those cubes immediately following 31 connect to one another sequentially.
This is when the chemical is first released and begins to evolve. Cubes before this
frame (where no plume is present) do not follow sequentially and connect with
later cubes which no longer contain plume in the sampled plume patch. That
is, the time dependent information of ‘pre-plume’ and ‘post-plume’ cubes–which
simply contain information about the natural background and not the evolving
plume–is not as important as ‘plume’ cubes.
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Fig. 6. (a) Betti0 and Betti1 barcodes generated on 4× 8× 3 plume locations limited
by pixel rows 125–128 and columns 217–224, of the first one hundred frames of the MeS
movie, mapped to G(3, 32). (b) Schematic of the edges forming the persistent Betti1
feature.

5 Conclusion

We propose a geometric and topological model for capturing dynamical changes
in hyperspectral movies. The HSI data cubes (or a sequence of pixel patches)
are viewed as a sequence of points on the Grassmann manifold. The tools of
persistent homology are then applied to capture topological novelty in the setting
of the Grassmann manifold. This approach models cubes as points, a technique
that permits the processing of potentially large amounts of data while retaining
basic dynamical structure.

The dynamic structure recorded by the multispectral movie of the gas plume
consisting of the simulant Triethyl Phosphate was illuminated in the Betti0
barcodes. Frames containing the plume were identified as topological singletons,
i.e. isolated points on the manifold for large ranges of scale. Grassmann points
before the release, as well as long after the release, appeared as clusters of points.
At a location to the right of this region, we see that later frames had a similar
behavior, indicating that the geometric model of the Grassmannian allows the
dynamics of the scene to be effectively characterized in a topological sense.

In the next two experiments, we use the Betti1 barcode on the movie of
the release of Methyl Salicylate mapped to the Grassmannian to reveal that a
closed loop is present on the manifold, again reflecting the evolution of the plume.
First, we consider a sliding window of pixels along the plume location region and
observe that a loop is present in a frame with a plume unlike a frame without
a plume. Second, we consider a patch of pixels in each of the first one hundred
frames and observe a closed loop that encompasses frames immediately following
the release of the chemical in a sequential manner. We mention that in other
HSI movies in the LWIR data set, when the amount of chemical released was
not as much as in the MeS cubes, the signal of this loop was not as strong. These
experiments illustrate that the use of the Grassmann manifold together with PH
provide insight into the presence and concentration of chemical contamination
in a hyperspectral movie.
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