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Abstract. In this article, we present a novel approach devoted to
robustly compute the Reeb graph of a digital binary image, possibly
altered by noise. We first employ a skeletonization algorithm, named
DECS (Discrete Euclidean Connected Skeleton), to calculate a discrete
structure centered within the object. By means of an iterative process,
valid with respect to Morse theory, we finally obtain the Reeb graph of
the input object. Our various experiments show that our methodology
is capable of computing the Reeb graph of images with a high impact
of noise, and is applicable in concrete contexts related to medical image
analysis.
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1 Introduction

The Reeb graph [15] is a compact discrete structure representing the topol-
ogy of a graphical object by associating edges to its branches and vertices to
their junctions. This graph is calculated on any compact manifold in two or in
three dimensions (2-D or 3-D respectively) thanks to the definition of a given
function h, in the sense of Morse theory [8,14]. The critical points of this h
function (extrema and saddle points) are related to the vertices of the graph.
As a natural consequence, Reeb graphs have been extensively explored by opti-
mizing algorithms for its construction, and especially for 3-D meshes [4,9,19].
For this construction, one of the keys is the definition of h. A classic viewpoint
is to consider a one-directional function as Morse induced (also named height
function, e.g. along one space axis X, Y or Z), but it could also be defined
as a geodesic distance in 2-D or in 3-D [10,19]. The first option, illustrated in
Fig. 1(a), can be justified since the topology of many objects may be represented
along an axis (statues, animals, persons, etc.), but it is generally not sufficient
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to model the topology of every kinds of complex objects, requiring geodesic-
like functions (see Fig. 1(b)). More generally, in pattern recognition, the Reeb
graph has been employed to model 2-D and 3-D shapes for many applications,
e.g. object retrieval [2,20], character recognition in license plates [18], noisy
contour vectorization [22], implicit curve tracing [21] and image segmenta-
tion [12,23].

Skeletons, medial axes and their extensions [1,3,5,13] are other digital struc-
tures capable of capturing some topological features of the processed shapes. As
a consequence, a natural strategy is to compute a skeleton or a medial axis of
an object to obtain its Reeb graph [10,16] and vice-versa [7]. However, in prac-
tice, these structures cannot be linked directly to Reeb graphs since they are
very sensible to image noise. Generally, they produce extra branches or other
unwanted data that do not belong to the Reeb graph, and the specific treatment
of these artefacts is a difficult task. The closest and most recent related work (to
the best of our knowlegde) following this strategy is presented in [10], wherein
the authors use a classic skeletonization scheme and local binary patterns to
obtain the Reeb graph of the input binary image.

h values

(a)

h values

(b)

Fig. 1. From a skeleton computed in 2-D binary shapes, we can obtain a valid Reeb
graph, by adopting h as a height function, along Y axis for instance, in (a), or by
respecting shape’s geometry with a geodesic distance (b). Skeleton edge pixels are
colored depending on their h function values (see palette below), and colored squares
represent the set of these pixels having the same value

Our paper focuses on the computation of the Reeb graph of 2-D binary
shapes, by employing a robust skeletonization scheme [13] (Fig. 1). Thanks to
an iterative process, we can build the Reeb graph of complex and possibly very
noisy objects by respecting a given height function, but also by considering
other functions (by following a centrifugal force for example). The reminder
of our article is the following: in Sect. 2, we recall the robust skeletonization
algorithm introduced in a previous work, so that we can obtain a valid Reeb
graph in Sect. 3. We propose in Sect. 4 experiments showing the robustness of
our approach, and its application in our context of medical image analysis.
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2 Skeleton Extraction

Througout our article, we will use the following notations. From any image I,
we denote a pixel by p ∈ Z

2 belonging to I with its X- and Y -coordinates x and
y respectively. To access randomly a pixel in I, we also use the notation I(x, y).

In this section, we remind the robust skeletonization algorithm intro-
duced in [13] named Discrete Euclidean Connected Skeleton (DECS for short).
Algorithm 1 summarizes the workflow of DECS, first calculating the sparse
reduced discrete medial axis (RDMA) from [5] of the foreground object E in
the input binary image I, as a part of the union of maximal balls:

E =
⋃

1≤k≤K

B
(
pk, δ(pk)

)
,where B (p, r) =

{
q ∈ Z

2 : dE(p,q) < r
}
. (1)

E represents the union of K balls (pk, δ(pk)) ∈ Z
2×N, δ(pk) is the radius of the

maximal ball centered in pk, and dE is the classic Euclidean distance. These radii
are obtained thanks to the computation of the Euclidean distance transform of
I (EDTI) by any algorithm of the literature [6]. The RDMA removes the balls
which are not maximal in E, and is generally illustrated by the set of balls’
centers {pk}k=1,K .

Algorithm 1. DECS Algorithm [13].

input : A binary image I.
output : The DECS of the foreground object in I.
begin1

compute the Euclidean distance map EDTI of I ; {See [6]}2

compute RDMAI the reduced discrete medial axis from EDTI ; {From [5]}3

compute Laplacian-of-Gaussian filtering of DI as RDGI ;4

combine RDGI and RDMAI to calculate a coarse skeleton SI ;5

thin and prune SI to obtain S∗
I ;6

return S∗
I ;7

end8

With the map EDTI , we also define the ridgeness map RDGI of I as

RDGI(x, y) =
1

πσ4

(
1 − x2 + y2

2σ2

)
exp

(
−x2 + y2

2σ2

)
× EDTI(x, y). (2)

In [13], the authors suggest to set σ = 1. This map is indeed obtained by applying
the Laplacian of Gaussian operator on EDTI , and represents the ridges wherein
main branches of the input object are located. A simple thresholding operation
on RDGI is not sufficient to obtain a valid skeleton, and a more relevant process
has to be designed for this purpose.

In this way, by combining both RDMAI and RDGI , the DECS algorithm
then leads to a coarse and thick skeleton SI of the image I, which is then
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pruned and thinned to obtain the final skeleton S∗
I . It should be noted that

(1) the complexity of this algorithm has been proved to be linear with respect
to the size of I in [13]; (2) the few parameters of this method can be set once for
a wide range of images, always leading to a robust skeletonization. Every phases
of DECS are illustrated in Fig. 2.

(a) DI (b) RDMAI (c) RDGI (d) SI (e) S∗
I

Fig. 2. Example of the application of DECS algorithm on a sample binary image I (for
notations, refer to Algorithm 1)

3 Reeb Graph Computation

3.1 Reeb Graph Definition

The goal of this section is to show that the calculation of a valid Reeb graph
of any binary image I can be carried out using the robust skeleton obtained
by DECS. We first need definitions related to topological spaces (Definition 1
below). Suppose we have an equivalence relation ∼ defined on a topological
space M . Let M∼ be the set of equivalence classes and let ψ : M → M∼ map
each point p to its equivalence class (also called the quotient map).

Definition 1 (Quotient topology and space). The quotient topology of M∼
consists of all subsets U ⊆ M∼ whose preimages, ψ−1(U) are open in M . The
set M∼ together with the quotient topology is the quotient space defined by ∼.

Then, we can present the definition of the Reeb graph in the continuous case as:

Definition 2 (Reeb graph). Let h be a continuous function defined on a com-
pact variety M , h : M → R. The Reeb graph of M , denoted by G(h), is the
quotient space defined by the equivalence relation p ∼ q ⇔ (p, h(p)) ∼ (q, h(q))
such that:

{
h(p) = h(q),
p and q belongs to the same connected component of h−1(h(p)). (3)

From this definition, we can extract the following properties of Reeb graphs.
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Fig. 3. Notations of G(h) for an
illustrative continuous shape

By construction, G(h) is defined by con-
sidering the level-sets of the function h,
and by associating points belonging to the
same connected component (equivalence rela-
tion ∼), for every level-sets of h. If we consider
h as a height function along an axis, as in
Fig. 3, G(h) is built by considering increasing
values of h along this axis. This shows that
Reeb graphs bring together topology (as it
is equivalent to a topological quotient space)
and geometry (by the expression of the func-
tion h over the shape of M). As a consequence,
the definition of h upon the geometry of M is
a key for the Reeb graph computation.

Once a h function is decided, the construction of the Reeb graph G(h) =
(V,E) is composed of edges in E associated to the shape’s branches, i.e. the
points belonging to the same connected component for any h value. In G(h),
vertices of V represent the critical points of the h function (see Fig. 3) as: begin
for the minimal h values and end for maximal h values, both having a degree
of one; merge and split for saddle values, with higher degrees. These points
are defined according to the construction of edges by merging or splitting them
respectively.

All previous notions hold in the discrete case. The consequence of our obser-
vations is that algorithms designed in the construction of G(h) employ an itera-
tive propagation process, througout a finite number of level-sets of h, calculating
vertices and edges of the graph of the input digital object. To obtain those ele-
ments, our strategy is to use the robust skeletonization process presented in the
previous section so that we compute a valid Reeb graph even for altered binary
images.

3.2 Robust Reeb Graph Computation with DECS

The construction of the Reeb graph based on the DECS is described in
Algorithm 2. Once a starting point pS is selected, a breadth-first search for
vertices and edges of the Reeb graph is launched. During this process, the func-
tion h is calculated in a discrete way by attributing increasing values to scanned
points of the graph (line 14). Vertices are added in V by associating the correct
label, with respect to the h function’s critical points, in line 10 (see also Fig. 3).

Proposition 1. For any binary image I, Algorithm2 computes the Reeb graph
of the foreground object GI(h).

We propose to justify this proposition with two axes: (1) the DECS skeleton
is able to represent the medial topological branches of the input foreground
object; (2) the rest of Algorithm 2 actually calculates its Reeb graph with its
edges, vertices and the associated h function.
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Algorithm 2. Reeb graph computation algorithm.
input : A binary image I.
output : The Reeb graph GI(h) of the foreground object in I.
begin1

compute the DECS S∗
I with Alg. 1 ;2

GI(h) = (V,E) ← ∅ ;3

select a starting point pS in S∗
I ;4

h(pS) ← 0 ;5

Q ← {pS} ;6

while Q �= ∅ do7

p ← top(Q) ; {Breadth-first construction of GI(h)}8

if p is associated to a critical point of h then9

add p in V with correct label amongst {begin, end,merge, split} ;10

add in E edges connected to p ;11

foreach point p′ adjacent to p in S∗
I do12

if p′ is not treated then13

h(p′) ← h(p) + 1 ; {Increasing level-set}14

Q ← Q ∪ {p′} ;15

return GI(h) ;16

end17

The medial axis RDMAI , used in the DECS algorithm, is able to capture
the topology of the foreground object in I [17]. As illustrated in Fig. 2, this
is a sparse and disconnected representation, but it is also able to reconstruct
the whole geometry of the input shape by calculating the union of maximal
balls expressed in Eq. 1. This minimal set of the maximal balls included in the
object is a relevant basis for the DECS algorithm, since this is an incomplete
but sufficient representation of its branches, from a topological point of view.
Conversely, the ridgeness map RDGI (see Fig. 2 again) of the input image is a
dense and complete model which smoothly locates main branches by ridges for
each image pixel.

Fig. 4. Illustration of the location of Reeb graph vertices points with respect to RDGI

map



210 A. Vacavant and A. Leborgne

Thanks to the combination of RDMAI and RDGI , the DECS skeleton leads
to the complete branches, stored in the edges of the Reeb graph GI(h) and, at
their junctions, the vertices of GI(h). Definition 2 shows that this graph co-exists
with a function defined on the input compact variety. In our case, the values of
this function are calculated during the breadth-first scanning of the object; the
starting point of our process is associated to zero (and is a begin critical point),
then scanned points are assigned with an increasing value. They can be saddle
critical points of h (merge, split) or maximal points (end).

Figure 4 shows the location of the Reeb graph vertices (black circles) with
respect to the RDGI map (see Eq. 2 for its formulation) plotted as an elevation
map, for each input image pixel. This figure illustrates that the Reeb graph
vertices correspond to the highest RDGI values, and so located on the most
relevant branches of the input shape.

As a validation of our contribution, the next section is devoted to the exper-
imental evaluation of our robust Reeb graph computation algorithm thanks to
synthetic and real images.

4 Experimental Evaluation

We first propose to build the DECS skeleton and the Reeb graph of noisy images,
generated from the synthetic examples given in Fig. 1. For this purpose, we use a
noise generation model close to the one proposed by Kanungo et al. [11], iterated
several times to increase its impact. This alters the contour of the input object by
switching the values of pixels belonging to the foreground object border. Figure 5
groups the results of our algorithm with noise generated once, then 5, 10, 50 and
100 times on the same image. We can observe that the S∗

I skeleton obtained by
the DECS algorithm is very robust, and enables to extract the Reeb graph of
the foreground object, which stays stable despite of the increasing noise. For the
simple one-hole object, we select the lowest skeleton point as the starting point
of the Reeb graph construction; for the spiral object, this is the most external
one. We can consider an h function along an axis (first case) or defined in a
geodesic way to respect the geometry of the input shape (spiral object).

To numerically represent the topology of the processed objects, we can cal-
culate the Euler number χ from the Reeb graph GI(h) = (V,E), thanks to this
formulation [15]:

χ =
∑

n∈V,n=begin∨n=end

deg(n) −
∑

n∈V,n=split∨n=merge

deg(n) − 2. (4)

For the first one-hole object, we always obtain an Euler number χ = 0, meaning
that it is homeomorpheous to a torus; for the spiral shape, we obtain χ = 2,
the same number as a point. We also remind that the Euler number can be also
calculated as χ = 2 − 2 × #holes, which confirms the values we obtain. This
numerical analysis will be further useful for the comparison of our contribution
with other computations of Reeb graphs based on skeletonization schemes.
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In Fig. 6, we propose to test our algorithm in a concrete application about
analysis of histological image of liver cells. In (a), we first enhance specific col-
ors of the complex input image of size 1280×1024 pixels1, to highlight then
hepatocytes (cell centers) by applying a double thresolding operation. Then, we
calculate the DECS of the image by considering the hepatocytes as background
objects (and the rest obviously as foreground). By using this structure, we can
then select different starting points to construct the Reeb graph (b). For exam-
ple, we can select the most upper left point of the skeleton, meaning that the
graph is built along a diagonal axis (from top-left to bottom-right). We can
also choose the central DECS point, leading to a breadth-first scanning follow-
ing a centrifugal direction. In this experiment, we have selected one starting
point as in Algorithm2, i.e. GI(h) contains only one begin node, and we could

(a) nit = 1 (b) nit = 5

(c) nit = 10 (d) nit = 50

(e) nit = 100

Fig. 5. Extraction of DECS and Reeb graph for more and more noisy synthetic images,
with an increasing number of iterations nit. The value of h function is depicted with
the palette used in Fig. 1

1 Available at https://embryology.med.unsw.edu.au/embryology/index.php/
Histology.

https://embryology.med.unsw.edu.au/embryology/index.php/Histology
https://embryology.med.unsw.edu.au/embryology/index.php/Histology
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(a)

h values

(b)

(c)

Fig. 6. Extraction of Reeb graph in a liver histological image, enhanced and segmented
to extract hepatocytes (a). In (b), we show that the graph can be computed by con-
sidering a one-directional height function h, from top-left to bottom-right (left), or a
centrifugal function (right). Graph edge pixels are colored depending on their h func-
tion values (see palette below), and colored squares represent the set of these pixels
having the same value. (c): Obtained Reeb graph superimposed on the segmented and
original images (color figure online)
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select multiple starting points as an extension. In this case, we would have to
handle several breadth-first constructions of separated graphs, and merge them
into a single graph. We show in Fig. 6(c) the Reeb graph we obtain, whatever
the starting point chosen, superimposed on the segmented image and on the
original image.

By using Eq. 4 expressed earlier, we can determine the number of holes within
the processed binary object thanks to the Euler number. In our case, we have
obtained χ = −812, leading to 407 holes in the image (and so 407 cell cen-
ters); this number can be verified with the original segmented image, depicted in
Fig. 6(a), by counting the number of connected components. Besides this numer-
ical evaluation, the Reeb graph brings obviously more information about the
shape and organization of hepatocytes in the histological image. Indeed, the
graph calculated as we propose would be of high interest to analyse further the
structure of the liver, since homogeneous and regular cells arranged around the
central vein imply that the liver is healthy, contrary to a cirrhotic one wherein
cells have irregular shapes and are disrupted around the vein.

We finally propose in Fig. 7 to compute the Reeb graph of the liver vessels
represented within a sample angiogram. The input image2 is first segmented
by considering a simple thresholding process based on angiogram intensities,
similar to the one we used in the previous experiment. This binary object is
then treated by our algorithm, to obtain the vascular structure with the Reeb
graph in Fig. 7(b). The starting point of our process has been selected at the
entrance of the vein (most right-bottom point in DECS), which permits to have
the complete path of blood inside the liver, from this entrance to the finest veins.

Fig. 7. Reeb graph computation in an angiogram of liver vessels

5 Conclusion and Future Works

In this article, we have proposed a novel approach able to compute robustly the
Reeb graph of a 2-D shape contained in a binary image. Our algorithm is capable
2 From http://health.siemens.com/ct applications/somatomsessions/index.php/

minimally-invasive-treatment-of-hepatocellular-carcinoma-using-a-siemens-miyabi-
system/.

http://health.siemens.com/ct_applications/somatomsessions/index.php/minimally-invasive-treatment-of-hepatocellular-carcinoma-using-a-siemens-miyabi-system/
http://health.siemens.com/ct_applications/somatomsessions/index.php/minimally-invasive-treatment-of-hepatocellular-carcinoma-using-a-siemens-miyabi-system/
http://health.siemens.com/ct_applications/somatomsessions/index.php/minimally-invasive-treatment-of-hepatocellular-carcinoma-using-a-siemens-miyabi-system/
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of constructing this graph, by considering a relevant h function depending on
the shape of the input object. We have shown the performance of our approach
throughout two main experiments involving synthetic and real images. In the
first case, we have confirmed that our contribution can compute the Reeb graph
despite of a very strong contour-based noise model. We have then illustrated the
application of our algorithm in a concrete context of medical image analysis.

A first future direction of our research concerns, still in the 2-D case, the
validation of our approach in a medical context as shown in Sect. 4. We would
like to test its performance on a large database of vascular images, requiring
that we extract finely the vessel structures and their bifurcations. Moreover,
we would like to compare our pipeline with other skeletonization algorithms,
to ensure that DECS is the most robust way to obtain a valid Reeb graph. To
do so, we can use a numerical evaluation by using the Euler number together
with a structural comparison by using graph matching techniques as graph edit
distance for example. Another important future work is to extend our approach
to 3-D. As explained in Sect. 2, the DECS computation is based on several stages
that can be adapted rather easily to higher dimensions. Then, the Reeb graph
construction employs a breadth-first search-like strategy, which could be adapted
to n-D. This work could also be highlighted in a medical context, to analyze the
vessels in 3-D volumes acquired from CT-scans or MRI for example. Finally, we
aim at designing matching algorithms for (2-D and then in higher dimensions)
patterns or objects based on Reeb graphs.
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