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Abstract. System-of-systems modeling has traditionally focused on physical
systems rather than humans, but recent events have proved the necessity of
considering the human in the loop. As technology becomes more complex and
layered security continues to increase in importance, capturing humans and their
interactions with technologies within the system-of-systems will be increasingly
necessary. After an extensive job-task analysis, a novel type of system-of-
systems simulation model has been created to capture the human-technology
interactions on an extra-small forward operating base to better understand per-
formance, key security drivers, and the robustness of the base. In addition to the
model, an innovative framework for using detection theory to calculate d’ for
individual elements of the layered security system, and for the entire security
system as a whole, is under development.
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1 Introduction

Historically, systems of systems (SoS) modeling efforts have focused on depicting
physical systems and the connections (whether physical connections or communica-
tions related) between them. Man-made systems are modeled in detail, while humans
mainly play a supportive role when their inclusion is absolutely necessary. For
example, the human may be included in the model to provide maintenance to a system.
Yet the maintenance time is based on a specified distribution or even a static number,
giving little consideration to variation in individuals or circumstances. Due to this
idyllic treatment of humans in SoS modeling, many failures seen in real life are missed
in the modeling realm.

The danger of failing to include the human in the loop becomes apparent when
looking at historical cases. Take for example the security breach at NNSA’s Y-12
National Security Complex, which arose in part from distractions, improper technology
use, false alarm fatigue, and poor assumptions [1]. Unknown outsiders with unclear
intentions can also pose a threat as seen at Patrol Base Bushmaster when an outsider
charged the base with a vehicle outfitted with a 2,000 1b vehicle-borne improvised
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explosive device (VBIED) that killed and injured many of the soldiers [2]. Other
examples of human failures in security systems abound. In fact, Jarret Lafleur et al.
performed an analysis of 23 heists and found that “A common thread of all defeat
methods is that they attack segments of the security system in which humans are in the
loop...” [3]. Whether looking at the recent failure of the layered security system at
Y-12, successful heists, or the devastating bomb attack on Patrol Base Bushmaster, the
conclusion is that the opportunity for a major breakdown in SoS safety or security is
due in large part to the human in the loop.

2 Motivation

Since humans account for the majority of uncertainty in an SoS and in layered security,
the role of human-technology interaction must be understood. As technology becomes
increasingly sophisticated, uncertainties around human performance will grow dra-
matically. In addition, human inefficiency can lead to high costs, increased logistics,
and increased vulnerability. We are focusing our modeling efforts on a first attempt at
understanding the effects of human-technology interactions on SoS level performance.
From there, this understanding will be incorporated into SoS engineering processes
using empirical, data-driven methods. Only when the impact of humans and their
interactions with the physical systems present in an SoS framework is fully accounted
for will we be able to predict, assess, and improve performance and human efficiency in
SoS models and be able to accurately evaluate the effects of potential organizational,
doctrinal, or system changes.

3 Use Case

Our first step in beginning to capture human-technology interaction in an SoS was to
define a representative use case to focus on. For the initial modeling effort, the use case
focused on a patrol base (now classified as an extra-small forward operating base) in
the Middle East and the threat posed by vehicle-borne improvised explosive devices
(VBIEDs) as motivated by the attack on Patrol Base Bushmaster. The research team is
comprised of individuals with expertise in the fields of SoS modeling and
industrial-organizational psychology. To develop a conceptual model, all human
entities, tasks, and the corresponding systems most relevant to the use case were
identified. From there work was done to qualitatively characterize interdependencies
between both systems and also humans and systems.

It was also key to identify variables relevant to the performance of the tasks. In
simulated deployment environments such as the Navy SEAL’s Hell Week, factors such
as fatigue and environmental, physical, and psychological stressors were shown to
degrade human performance to a greater degree than that caused by intoxication,
sedatives, or hypoglycemia [4]. Variables were included in the SoS model to capture
factors that impact the ability of human-technology couplings to perform tasks. Such
variables include, but are not limited to, the number of tasks a human is required to
perform, fatigue, stress, distractions, and environmental conditions.
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4 Data Collection

To validate the SoS modeling approach we are engaging with subject matter experts
(SMEs) who have experience in layered security on military bases. Focusing on key
aspects of an extra-small forward operating base (FOB) such as vehicle checkpoints
and the tactical operations center (TOC), a detailed task analysis was conducted. The
SME:s filled in details such as the duration of each task, how many humans are needed
for each task, what types of technology are used for the task, and task interdepen-
dencies. They have also given critical input as to which human and external variables
may affect specific instances of human-technology interaction.

4.1 Job-Task Analysis

To begin to analyze the tasks humans perform on FOBs, duties were broken down into
guard duties and duties performed within the Tactical Operations Center (TOC) on the
base. The guard duties were further broken down to include tasks performed by guards
outside of base (i.e. at a checkpoint), at the base gate, and inside the base near critical
infrastructure. To model these tasks in an SoS model, tasks are considered to be
associated with a location on, or outside of, the FOB. The external guards perform their
tasks at a roadblock, the gate guards at the base gate, the internal guards near a target of
value, and the surveillance, command, and control tasks are performed inside the TOC.
Examples of tasks that would occur at the base gate are checking the driver’s identi-
fication and checking the vehicle for contraband items and VBIEDs. These examples
will be revisited below to help explain the more complex metrics included in the
job-task analysis. Each location’s tasks were vetted with the SMEs.

Each task listed includes multiple dimensions of data used in the model. Basic
metrics include the frequency of the task, how long the task takes to complete, the
number of people required to complete the task, and any technologies/equipment used
to carry out the task. The nature of the task, whether physical, mental, or both, is also
included to begin to capture the human element. Many variables will ultimately be
included in the model that act upon the human’s ability to successfully complete the
task. These include (among many others) factors such as heat, fatigue, time of day,
physical injury, dehydration, length of shift, and hunger. Some factors have a greater
impact to human performance when the task is more physical in nature, such as not
being able to use a complicated, hand-held user interface in extreme cold, while other
factors have a greater impact on primarily mental tasks, such as not being able to
accurately identify an ID as fake when working long shifts for months on end with little
sleep. Which factors impact which tasks was determined primarily through SME input.

In addition to factors that impact human performance, SMEs also helped determine
factors that would impact technology functionality. Depending on the technology or
equipment in question, these factors could include heat, humidity, rain, lightning, cold,
and high wind/sandstorms. It is conceivable that these factors could at times cause the
technology to malfunction or become unusable to the humans relying on that tech-
nology to complete a task. For example, a sandstorm could prevent a guard at a
roadblock from using binoculars to see a vehicle approaching at a distance, while
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lightning could temporarily disable the communications network and prevent a guard
from relaying a threat to the TOC.

While some conditions affect only the human or only the technology, it is clear that
many important effects are interactive; i.e., they only occur when a person is using a
particular kind of equipment under certain physical and mental conditions. These can
range from the cognitively and technologically banal (such as gloves reducing dexterity
in cold weather) to the complex (such as a soldier having difficulty using a weapon
technology’s complex interface during a cognitively demanding combat situation).
When including humans in the SoS model, it was of primary importance to capture
every time a human is interacting with technology and every way that interaction can
be changed by affecting the human, the technology, or both.

4.2 Business Rule Data Elicitation

In addition to the data-driven approach to the job-task analysis outlined above, work is
being done to capture the business rules needed for the model by interviewing SMEs
about life on base. The data elicitation helps clarify the chain of events from the time a
threat is detected to the time when a response team is sent. It also allows the team to
understand which tasks and/or technologies pose the greatest difficulty to personnel and
how the chain-of-command plays out both daily and in heightened-security situations.
A few examples of questions used for business rule elicitation include:

e What are the hardest things for new people to come up to speed with? What are the
most common mistakes?

e What equipment do you find most frustrating to use?

e Under what situations do you feel particularly stressed or confused? Bored?

e How often and in what environments do you train? How relevant do you feel the
training is to the actual job?
How many people are on a shift? Are teams usually the same people?
How is information passed during changes in personnel?

e How much sleep do you get each night? How often do you go between sleep? How
often is your sleep disrupted?

e How long does it take for a response team to get there after being dispatched?

Note that the same question may be asked multiple times in various ways to try to
be able to work around topics that may elicit strong reactions when worded a certain
way. For example, someone who has been on a FOB may not want to admit to having
had difficulty using a certain technology, but when asked which technologies new
recruits have the most problems with, they are free to respond without commenting on
their own personal capabilities.
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5 System-of-Systems Model

An SoS model to capture these human-technology interactions is now in the inter-
mediate stages of development. The model is built in FlexSim [5], an off-the-shelf
discrete event simulation software traditionally used to build manufacturing models,
but which offers flexibility through custom scripting and can thus handle a wide array
of models and logic. The simulation is portioned off into a series of tasks, each
requiring a specified number of people using given technologies to complete the tasks
as discussed in the previous section. Various threats such as malicious outsiders (or
insiders), contraband objects, suspicious activity outside the fence, and VBIEDs are
randomly generated as the simulation progresses. The model tracks how many times
the humans and layered security system are able to correctly detect, assess, and respond
to these threats (Fig. 1).

Fig. 1. FlexSim model of extra-small forward operating base

5.1 Human-Technology Performance

Each soldier has a probability distribution associated with their ability to successfully
complete the task(s) to which they are assigned. These performance factors are largely
based on existing studies and SME input. The factors not only capture a soldier
performing a task, they capture them performing the task using a certain technology.
This means that the likelihood of completing a task can be impacted by changes to the
soldier, changes to the technology, or both.

The factors impacting performance may be external, such as a dust storm, or
inherent to the system, such as a soldier suffering from extreme fatigue. In either case,
the human may or may not have control over the changing situation, yet their per-
formance may be impacted. Factors such as fatigue are obvious culprits but there are
seemingly innocuous factors that have an equally large influence. Take for example a
soldier using a mirror on a stick and a flashlight to search underneath a vehicle for
IEDs. Once the sun sets, the soldier is actually able to better use the technology since
the light from the flashlight is now concentrated on the mirror and bounces up onto the
undercarriage of the vehicle. Whereas daylight created additional shadows and glare,
night has created ideal conditions for this specific task.
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To capture the impacts of external and inherent factors on performance, the baseline
performance metrics are scaled up or down based on whether the factor is expected to
degrade or improve performance. Using Wincek and Haight’s human error rate for-
mulas [6] as a mathematical basis for our framework, we have modified the human
error rate equation to create the following calculation for human performance.

AHP = BHP « HPM,| x HPM, * - - - x HPM,, (1)

where AHP is the adjusted human performance, BHP is the baseline human perfor-
mance, and HPM is the human performance modifier. HPM is greater than one when
the factor increases human performance and less than one when the factor decreases
human performance. Each factor that impacts performance on the task in question
would be represented by a unique HPM factor. An HPM factor may capture an effect to
the human performing the task, to their technology, or to the combination.

To illustrate this method, this equation can be applied to the vehicle search at night
example. (Note that these values are notional and used only for illustrative purposes.)
The baseline human performance value for finding a contraband or explosive item on
the vehicle during the day is assumed to be 0.8 when the vehicle is driven by an
outsider. One human performance modifier is applied to account for the time of day,
giving the equation

AHP VehicleSearch — 0.8 x HPM TimeofDay (2)

where AHPvephiclesearch 18 the adjusted human performance for the vehicle search task,
0.8 is the baseline human performance, and HPMjpeopay i the human performance
modifier based on time of day. If the search takes place during daylight hours, the
human performance modifier is 1 to maintain the baseline human performance.
However if the search occurs at night, a scale factor of 1.1 is used to increase the
performance on the task by ten percent. This methodology is applied to all
human-technology performance factors for the external and inherent impacts of
interest. Each technology also has inherent reliability data such as how many hours it
can be used before needing new batteries, and how long its average lifespan is,
resulting in multiple failure modes for each technology in the model. More sophisti-
cated performance adjustment methods could be considered and used within the
framework if warranted (and supported by data); however, given the data available,
using the product of HPM factors is sufficient to allow exploration of interesting
conditional and interactive model behaviors.

5.2 Communications

Additionally, each task is linked into the communications network which can also
experience various types of failures. The communications network is primarily used to
relay detected threats, assess the situation, and take action to nullify the threat. Each
guard task defined in the job-task analysis is capable of communicating with the TOC
to report a threat. Communications in the model are handled according to the following
communications hierarchy (Fig. 2).



Exploring Human-Technology Interaction 247

Correct Action
Taken
Interpret Correctly

Incorrect Action
Taken
Correct Action
Taken

= Heard Completely

Interpret _
Incorrectly B Incorrect Action
Taken
Correct Action
Taken

odInterpret Correctly &g
Incorrect Action
Taken

™ Heard Partially = COTT?_CT(ACtlon
- Interpret axen
Incorrectly -
- Not Heard |nCOFE<Lteﬁctlon
ol Ask to Repeat

Fig. 2. Communications logic flow

+—
=
(¢))
(Vp]
()
oo
©
(%]
(%]
§
o+
©
()
-
<
l_

For every threat message that is radioed in to the TOC, the message can be heard
completely, heard partially, or not heard at all. Messages that are heard can either be
interpreted correctly or incorrectly with the additional option of asking the sender to
repeat the message if only part of the message is heard. If the message was never
received by the TOC, the sender tries again after a defined time interval. Whether the
message is interpreted correctly or incorrectly, the TOC personnel can still take either
the correct or the incorrect action. Imagine the scenario where the soldier in the TOC
has been trained for a different task or has simply received inadequate training for the
TOC. A threat is radioed in and they understand the message, but due to lack of
training they inadvertently activate the wrong response. Similarly, a message could be
heard incorrectly and the correct action could still be taken by dumb luck. Of course
these scenarios are less likely to occur, which are reflected in their probabilities relative
to the other scenarios. Each item in the communications logic flow is assigned a
probability in the model and the model automatically chooses the communication path
when a threat message is sent based on those allocations.
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5.3 Model Outputs

The intention is to use the completed extra-small FOB model to understand the range of
SoS performance, key drivers in security failures and successes, the base’s robustness
to unusual combinations of conditions, and conditions that enable particularly low
success rates. Through running different scenarios we hope to identify whether there
are recurring weaknesses in the layered security system or if the weaknesses are
situation-dependent. Moreover, the model provides a framework to assess SoS-wide
impacts of improving human-technology interaction through implementation of more
intuitive technology interfaces and operations, or through an increased emphasis on
training.

6 Detection Theory for Layered Security

Alongside development of the SoS model, a mathematical framework for calculating
the “goodness” of a layered security system using detection theory is also being
developed. Output metrics from the simulation will feed the probability equations in
the framework. Building upon the classic definition of d’ in Macmillan and Creelman’s
Detection Theory [7]

d’ = z(hit probability) — z(false alarm probability), (3)

where z is the number of standard deviations from the mean, a methodology was
created for calculating d’ for the four main components of layered security: detection,
delay, communications, and response. Each of the four security-area-specific d’ values
will then be rolled-up into a d’ representative of the layered security system as a whole.

The area-specific d’s vary based on the domain-specific terms that define what
constitutes the hit probability and the false alarm probability. Tables 1, 2, 3 and 4 are
given below to help the reader understand what is meant by a hit and a false alarm in
each instance.

Table 1. Terminology for detection d’

Response
Attack | Detected Undetected # Trials
Yes Hit Miss (false neg) |n
No False alarm (false pos) | Correct rejection | m

Table 2. Terminology for delay d°

Response
Incident | Delayed Insufficient delay | # Trials
Adversary | Hit Miss (false neg) |n
Friendly | False alarm (false pos) | Correct rejection | m
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Table 3. Terminology for communications d*

Response
Attack | Communicated Not communicated | # Trials
Yes Hit Miss (false neg) n
No False alarm (false pos) | Correct rejection | m

Table 4. Terminology for response d*

Response
Attack | Adequate Insufficient # Trials
Yes Hit Miss (false neg) | n
No False alarm (false pos) | Correct rejection | m

Once the terminology for hits and false alarms has been specified for each area,
probabilities for events happening in serial and parallel can also be defined. For
detection, delay, communications, and response the events are considered to be sensors,
barriers, messages, and responses, respectively. For example the probability of a hit for
sensors in parallel can be defined as

Phit.sl Phit 52
) 4
) 9 ( )

Py = min (Ppis1, Phir2)OR
where Py 51 is the hit probability of the first sensor and Py, is the hit probability of
the second sensor. The minimum would be used to calculate the “worst case” hit
probability while the average would be used to calculate the “average case” hit
probability. The probability of a false alarm for sensors in parallel can be defined as

Pra=1— (1 — Ppag1)(1 — Pras2), (5)

where Pga g1 is the probability of a false alarm for sensor one and Pga s is the
probability of a false alarm for sensor two.

Similar equations have been derived for events in series for multiple sensors, and in
series and parallel for the other three areas. As mentioned, the d’ values for the
individual areas are then combined into a base level d’ to measure the effectiveness of
the layered security system. The individual d’ are aggregated statistically according to
the event path through the security system. The result is a single measure of the
sensitivity—the ability to respond appropriately to a stimulus—of the physical security
system.

7 Future Work

While the methodology employed to capture humans within a systems-of-systems
model has shown great potential, many data gaps still exist that must be addressed. The
human performance factors used in the model have been obtained from studies with
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situations as close as possible to those of the tasks being performed in the base camp,
but the existing studies may or may not accurately capture the intricacies of using the
specific military technologies in question. Ideally, more studies involving military
personnel in deployment scenarios would be needed to further refine and validate the
model.
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