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Abstract. Based on recently neurocomputational models inspired on neural
synchronization for perceptual grouping, we propose in this paper the Gestalt
Spiking Cortical Model (GSCM) and the Perceptual Grouping segmentation
(PGSeg). The GSCM is a network based on the mechanisms of perceptual
grouping models designed to detect scene attributes with excitatory and inhi-
bitory inputs. PGSeg is a neuroinspired method designed to detect object edges
presented in video sequences that involve time variant scenarios. Experimental
results using videos from the perceptual computing and ChaDet2014 databases,
show that PGSeg has better performance regarding edge detection and edge
coherence through video sequences.
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1 Introduction

Object perception is a complex human visual perception ability that involves inter-
pretation of multiple features such as motion, depth, color and contours. Among these
features, contour integration is a special case of perceptual grouping generated in the
lower layers of the visual cortex that allows psychophysiological measures which
contributes to integrate other features such as depth and movement [1]. There are many
theories about how neurons develop visual perceptions skills, and some of them pos-
tulate that neural groups represent object features through synchronization of their
pulse activity [2]. This synchronization plays an important role in perceptual grouping
and Gestalt principles [3]. Based on these theories, different models have emerged such
as oscillatory neural networks and Spiking Neural Networks (SNN). Among them,
Pulse-Coupled Neural Networks (PCNN) have been used on contour integration, edge
detection and other similar applications in image processing [4]. Several models based
on PCNN have been reported in the literature to deal with these applications [5–7].
However, most of them do not consider the Gestalt principles given by neural syn-
chronization and do not consider the most recently theories about contour perception in
visual cortex. Therefore, we propose in this paper the Gestalt Spiking Cortical Model
(GSCM), a PCNN simplified model based on the Gestalt rules generated from neural
synchronization. Furthermore, we developed the method termed Perceptual Grouping

© Springer International Publishing Switzerland 2016
J.F. Martínez-Trinidad et al. (Eds.): MCPR 2016, LNCS 9703, pp. 54–63, 2016.
DOI: 10.1007/978-3-319-39393-3_6



Segmentation (PGSeg) that applies the GSCM model to perform edge objects detection
in a similar way to the neurocomputational models that describes the process in the
lower layers of visual cortex for contour integration and perceptual grouping. Edges
caused by changes in object color, dynamic background conditions, lines inside
objects, reflections and shadows are not considered contours of objects. PGSeg was
designed for coherent edge object detection in video sequences that involve time
variant scenarios, while classical edge detection methods were designed for still images
with time invariant scenes. Furthermore, PGSeg consider background modeling of
complex scenarios while other spatio-temporal edge detection methods as the presented
in [8], consider only static backgrounds. In this paper, edge object detection refers to
detect only contours of objects. This paper is organized as follows. Section 2 describes
the GSCM. Section 3 describes the PGSeg method. Section 4 shows the results and
Sect. 5 describes the conclusions.

2 Gestalt Spiking Cortical Model (GSCM)

Based on the perceptual models presented in [2, 3], and stimulus and inhibitor con-
nections in the internal activity of Perceptual Grouping LISSOM presented in [1], the
GSCM was defined as follows:

Uðx; y; nÞ ¼ Uðx; y; n� 1Þ � exp �aFð Þ
þ Sðx; y; nÞ 1� Yðx; y; n� 1Þ �WSð Þ � Iðx; y; nÞ 1� Yðx; y; n� 1Þ �WIð Þ ð1Þ

Yðx; y; nÞ ¼ 1 Uðx; y; nÞ[Eðx; y; nÞ
0 otherwise

�
ð2Þ

Eðx; y; nþ 1Þ ¼ Eðx; y; nÞ � exp �aEð Þþ Yðx; y; nÞ ð3Þ

where (x, y) is the pixel position in the frame, n is the iteration index, U(x, y, n) is the
internal activity of a neuron, E(x, y, n) is the dynamic threshold and Y(x, y, n) is the
neuron response. aF and aE are the exponential decay factors of U(x, y, n) and E(x, y, n)
respectively. U(x, y, n) has two inputs: stimulus input S(x, y, t) and inhibitor input
I(x, y, n). WS, is the synaptic weights of the S(x, y, n) and WI is the synaptic weights of
I(x, y, n). The weights of GSCM are Gaussians defined by:

WðrmÞ ¼ wðx; y; rmÞ ¼ exp � x� xxð Þ2 þ y� yxð Þ2
r2m

 !
� dðxx; yxÞ; m ¼ fS; Ig

ð4Þ

(xx, yx) is the center of weights, rv is the neighborhood radius, which depends of the
scenario conditions. The Gaussian behavior is because of [2, 3], that indicates that
Gestalt rules such as similarity can be implemented with Gaussians connections between
oscillating neurons.
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3 Perceptual Grouping Segmentation Method

PGSeg is a hierarchical method and is illustrated in Fig. 1. The first layer is the input
that corresponds to a frame of a video sequence. The second layer is a module inspired
on lateral geniculate nucleus (LGN) of the visual cortex that performs an edge soft
detection. The third layer is based on the behavior of Orientation Receptive Fields
(ORF) of the primary visual cortex. The aim of the ORF layer is to generate an
orientation map and to improve the edge soft detection, which will be the input patterns
for next layer. The following layer called perceptual grouping, finds the object edges
using two GSCM networks: the first GSCM is used to model the background of the
video sequence, and the second one detects the lines that are going to be the input to the
edge detection layer. PGSeg includes background modeling of complex scenarios,
therefore it may seem more complicated than classic edge detection methods. In the
next subsections all layers will be explained.

The experiments were performed using different videos from the perceptual com-
puting (http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html) and ChaDet2014
(changedetection.net) databases, which are popular in literature. The selected videos
have time-variant scenarios with different conditions, which are described in [9].

3.1 Input Layer

The input layer acquires a frame I(x, y, t)RGB of a video sequence, where t is the frame
index. PGSeg does not require color information, therefore, the input layer extract the
Value component (V) of HSV color space computed from the RGB information.

3.2 Lateral Geniculate Nucleus Layer

The LGN layer is inspired in the Receptive Fields (RF) located in the Retinal Ganglion
Cells to Lateral Geniculate Nucleus on the visual cortex. Those RFs are modeled as
simple cells whose response is given by:

RFðx; yÞc ¼
X
a

X
b

Iðx� a; y� b; tÞVGða; bÞ; c ¼ ON;OFFf g ð5Þ

Fig. 1. PGSeg method.
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where G(x, y) is the response of the RFs, given by difference of gaussians (DoG) de-
fined in [10]. In order to simplify the method, PGSeg uses for next layers arithmetic
average of L(x, y, t)ON and L(x, y, t)OFF, Lav(x, y, t). Figure 2 shows the response of
Lav(x, y, t), which is a feature map that describes edges generated by the objects of the
scenario.

3.3 Orientation Receptive Fields Layer

After the LGN layer process, the visual information derived from RFs is projected to
the primary visual cortex (V1). V1 has a cortical layer that consists on a set of receptive
fields selective to orientation features (ORFs) [11]. Based on these ORFs, we design for
PGSeg a layer with a set of orientation selective filters which were inspired in the
model presented in [10], and defined by:

ORFðx; y; hÞ ¼ exp � x� xcð Þ cos h� y� ycð Þ sin h½ �2
r2d

� x� xcð Þ cos hþ y� ycð Þ sin h½ �2
r2f

 !

ð6Þ

where ORF(x, y, h) is selective to lines with orientations similar to h, (xc, yc) is the
center of the filter, rd and rf define the size of width and length of the filter. The ORF
are modeled as simple cells [11] and defined with:

Vaðx; y; h; tÞ ¼ Lavðx; y; tÞ � RFOðx; y; hÞ ð7Þ

In PGSeg, the orientation filters are selected with orientation h = {0, p/4, p/2, 3p/4},
rd = 3 and rf = 1. The values of h were selected to simplify the calculus (as S1 units of
HMAX model in [12]), rd and rf were defined by experimentation. In models such as
HMAX [12], the next layer of ORF is a set of nonlinear cells that select the highest
magnitude. In the same way, PGSeg finds the ORF with the highest magnitude to have a
better response of the edges, as follows:

Vrfoðx; y; tÞ ¼ max Vaðx; y; h; tÞð Þ ð8Þ

In addition, PGSeg defines an orientation map, as in the LISSOM models [10],
which are generated by obtaining the orientation with the greatest magnitude as
follows:

Fig. 2. Lav(x, y, t) response. (a) Streetlight video, t = 100. (b) Lav(x, y, t).
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Ihðx; y; tÞ ¼ max 4=p
� �

hðx; y; tÞþ 1
� �

ð9Þ

h(x, y, t) is the orientation value in each pixel. Figure 3 shows the response of
Vrfo(x, y, t) and Ih(x, y, t) (orientations are coded with colors). For pixels that belong to
edges (edges could be noise or edge objects), Ih(x, y, t) has the same value through the time.
For the rest of the pixels, Ih(x, y, t) have random values through the time. Therefore, it is
possible to find the parts of the scenario where there are edges if we analyze differences of
Ih(x, y, t) and Ihðx; y; t � 1Þ. PGSeg analyzes those differences in order to find edges of
the scenario that can be edges of objects. Then, next accumulator is computed:

AIhðx; y; tþ 1Þ ¼ AIhðx; y; tÞþ Ihðx; y; tÞ � Ihðx; y; t � 1Þj j ð10Þ
On initial conditions, pixels in AIh(x, y, t) are zero. After processing, AIh(x, y, t) has

values close to zero in pixels that belongs to edges. This information is used by PGSeg
to find possible edges. Figure 3(c) shows in black parts of the scenario where there are
different edges. Vrfb(x, y, t) and AIh(x, y, t) are the input patterns for the next layer,
which will be discussed later.

3.4 Perceptual Grouping Layer

The perceptual grouping layer has two GSCM as Fig. 4 shows. The first GSCM (GSCM1)
is used for background modeling, and the second one (GSCM2) is used to classify the
scenario in two classes: object-edges and no-edges. GSCM1 iterates once on each frame
(n = t), but in the case of the GSCM2, iteration index is restarted each eight frames. The
weightsWS andWI of PGSegwere defined based on LEGION [12] and PG LISSOMmodel
[1], in which, there are local excitatory and global inhibitory connections. Then, for PGSeg
we must have rI > rS, and according to the experiments, rI = 2 and rS = 0.5.

The input stimulus S1(x, y) of the GSCM1 is Vrfo(x, y, t) and for the inhibitory input
I1(x, y) is 1 - Y2(x, y, t), where Y2(x, y, t) is the output of the GSCM2. Vrfo(x, y, t)
contains a soft detection of lines and edges, and Y2(x, y, t) is used to reduce noise,
which will be discussed later. The output of the GSCM1, Y1(x, y, t), is a set of pulses
which are summed over time to generate the background modeling of Vrfo(x, y, t). In
consequence, the background model is obtained by

SY1ðx; y; tÞ ¼ E1ðtÞSY1ðx; y; t � 1Þþ Y1ðx; y; tÞ ð11Þ

Initially, SY1(x, y, t) is zero, E1(t) in the range of 0 < E1(t) < 1 is an entropy dif-
ference measure that depends on changes of the scenario composition and conditions.

Fig. 3. StreetLight video response at the frame t = 100. (a) Vrfo(x, y, t) (b) Ih(x, y, t). (c) AIh(x, y, t).
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If there are changes in the scenario composition, E1(t) decreases, causing a faster
background update since SY1(x, y, t) has less influence in the background modeling than
AY1(x, y, t). If there are no changes in the scenario composition, E1(t) � 1, then, SY1(x,
y, t) has more influence than Y1(x, y, t) to model the background. E1(t) is given by:

E1ðtÞ ¼ 1=2 eðtÞ � eðt � 1Þj j � eðtÞ � eðt � 1Þj jð Þ � 1j j þ 1ð Þ ð12Þ

e(t) is the entropy of each frame, which, according to [13] is related to the composition
change in the scenario. Figure 5 shows the results of background modeling.

In GSCM2, the input to S2(x, y) is SY1(x, y, t) normalized in range [0,1], and the
input to I2(x, y) is 1-AIh(x, y, t). SY1(x, y, t) is used to generate edges in Y2(x, y, t), while
AIh(x, y, t) inhibits neurons in Y2(x, y, t) connected to regions that do not contain
information of the edge objects candidates. The output of Y2(x, y, t) respect time is the
following. In first iteration all neurons are activated in Y2(x, y, t). In second iteration
few neurons are activated or in some cases none is activated. Neurons connected to
pixels associated with dark-light changes are activated in the third iteration, and neu-
rons connected to pixels associated with light-dark changes are activated in the fourth
iteration. In the next three iterations, neurons associated to pixels with noise are acti-
vated. However, neurons in Y2(x, y, t) connected to regions that do not have edges, have
no response after first iteration because of the inhibition of AIh(x, y, t). The next
iterations have same behavior but with more noise. Therefore, every time that t is a
multiple of eight, Y2(x, y, n) is restarted. Y2(x, y, n) is used as a feedback factor in the
GSCM1 as shown in Fig. 4, because it helps to improve the response in Y1(x, y, t) since
Y2(x, y, t) can help to inhibit the response in neurons connected to pixels with noise in

Fig. 5. Background modeling. (a) StreetLight frame t = 100. (b) SY1(x, y, t).

Fig. 4. Architecture of the GSCM module.
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Vrfo(x, y, t) related to edges caused by changes in object color, dynamic background
conditions, lines inside objects, reflections and shadows.

3.5 Edge Detection Layer

The information obtained by the pulses of iterations of light-dark and dark-light edges
is used for edge objects detection. Therefore, the background contours are obtained by

Yacumðx; y; tÞ ¼
X
p¼3;4

Y2ðx; y; pÞ ð13Þ

Isðx; y; tÞ ¼ 1=2 Yacumðx; y; tÞj j � Yacumðx; y; tÞð Þ � 1j j þ 1ð Þ ð14Þ

where p is the module of t/8; p = {3, 4} are the iterations with contours information
(edge objects). The iterations p = {1, 2, 5, 6, 7} are related to the class no-edges.
Figure 6 shows the result of PGSeg with an outdoor scenario.

4 Results of PGSeg

The metric F measure (F1) [14] was used to compare the performance of PGSeg with the
Canny, LoG, Roberts, Prewitt and Sobel methods which sometimes had been used for
comparison purposes in literature [15–18]. This comparison consists on obtaining F1
between the ground truth and each Is(x, y, t) resulting from the PGseg processing. Then,
the average of each F1 of Is(x, y, t) is obtained (lF1) for each video sequence. The videos
used to measure the performance, were selected based on the situations that generate
time-variant scenarios, and those videos are: Watersurface (WS), Subway Station (SS),
Lobby (LB), Cubicle (CU) and Park (PK). TheWS, SS andLBvideoswere obtained from
the data base of Perceptual Computing and the CU and PK videos were obtained from
ChaDet2014. The ground truths are images of edges that represent the contours of
background objects. The edges caused by changes in object color, dynamic background,
lines inside objects, reflections and shadows are considered false edges in this work.
Figure 7 shows a frame of each video sequence and Fig. 8 shows the ground truths.

As Fig. 8 shows, all the videos have people crossing the scenario, as dynamic objects.
Moreover, each video has different situations: in the case of the WS video, the sea
generates a dynamic background on the scenario; the SS video has a dynamic background
caused by the electric stairs and the light reflections in the floor could cause false edges;

Fig. 6. Edge detection with PGSeg. (a) StreetLight, frame t = 100. (b) Is(x, y, t).
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the LB video has sudden illumination changes; the CUvideo has several shadows that can
cause false edges. Finally, the PK video was recorded with a thermic camera with
camouflage issues. Table 1 shows the results of lF1 for each video sequence, where
PGseg has the better results. The parameters of Canny, LoG, Roberts, Prewitt and Sobel
were selected based on the best µF1 results for each method in each video.

Figure 9 shows the results of each method with the WS video. PGSeg has adequate
results, but with a few noise. However, Canny and LoG generates noise due dynamic
background, also, the edge detection is different between one frame and another,
although the scenario does not have changes its composition. The Roberts, Prewitt and
Sobel methods fail detecting the edges and generate noise. PGSeg generates better
results because Y2(x, y, t) inhibit the noise in the results in the background modeling,
and AIh(x, y, t) inhibits the neurons in Y2(x, y, t) that are connected to object that
generate false edges in the dynamic background. Furthermore, the feedback of
Y2(x, y, t) in Y1(x, y, t) allows a stable edge detection through the time, allowing edge

Fig. 7. Video sequence for validation. (a) ‘WS’ video, t = 500. (b) ‘SS’ video, t = 500. (c) ‘LB’
video, t = 370. (d) ‘CU’ video, t = 5000. (e) ‘PK’ video, t = 500.

Fig. 8. Ground truths. (a) ‘WS’ video. (b) ‘SS’ video. (c) ‘LB’ video. (d) ‘CU’ video. (e) ‘PK’
video.

Table 1. Results of lF1.

Video/method PGSeg Canny LoG Roberts Prewitt Sobel

WS 0.5798 0.23093 0.28701 0.28149 0.33062 0.3309
LB 0.2677 0.2551 0.1996 0.1795 0.1825 0.1825
SS 0.2761 0.2525 0.195 0.1331 0.1632 0.1626
CU 0.5801 0.4892 0.3806 0.2717 0.2718 0.2755
PK 0.3095 0.2382 0.2687 0.2573 0.2072 0.2081
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coherence through video WS. In Table 1, on the column of PGSeg, the lowest value of
µF1 was obtained with LB video. In this video, all methods were affected by false
edges caused by the plants, couches and reflections. However, among the methods,
PGSeg has better performance because even with illumination changes, edge detection
results remain constant. In the SS video, all methods generate false edges because of
reflections on the floor and the time and date shown in the display, but PGSeg generates
better results since it has a better performance detecting appropriately the edges of the
electric stairs. In the case of the CU video, PGSeg has better performance because this
method has coherence results in time and the rest of the methods were affected by
shadows. In the video PK, all methods were affected by false edges of a wall, but
PGseg has better results because generated less noise than the others in areas of the
scenario that have a tree and a garden. Results are not showed for videos LB, CU, SS
and PK for space reasons.

5 Conclusions

In this paper we propose a Spiking Neural Network known as GSCM, which was
applied in a novel method proposed also in this paper to detect edge called PGSeg.
GSCM generates pulses from an internal activity that is based on an excitatory input
and an inhibitory input. PGSeg is a method inspired in lower layers of the visual cortex
and uses the GSCM to generate the edges of objects in the background model of a
video sequence with time varying scenario. Results showed that PGSeg has better
performance than other edge methods on detecting edges without noise caused by
dynamic background, illumination changes, shadows, and reflections.

The parameters of the GSCM are used as constants in PGSeg. Hence, as future
work, the GSCM model is going to be modified such that the parameters of the model
can be adjusted based on scenario conditions to improve the performance of PGSeg in
edge detection or scenario analysis with any method that uses GSCM.

Acknowledgment. This research was supported by Fomix CONACYT-Gobierno del Estado de
Chihuahua under grant CHIH-2012-C03-193760 and PRODEP ITCHI-PTC-025.

Fig. 9. Edge detection results with frame t = 460 of WS the methods: (a) PGSeg. (b) Canny.
(c) LoG. (d) Roberts. (e) Prewitt. (f) Sobel.
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