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Abstract. Knowing the activities that users perform is an essential part
of their context, which become more and more important in modern
context-aware applications, but determining these activities could be a
daunting task. Many sensors have been used as information source for
guessing human activity, such as accelerometers, video cameras, etc., but
recently the availability of a sophisticated sensor designed specifically for
tracking humans, as is the Microsoft Kinect has opened new opportuni-
ties. The aim of this paper is to determine some human activities, such as
eating, reading, drinking, etc., while a group of persons are seated, using
the Kinect skeleton structure as an input. Further, due to occlusion prob-
lems, it could be guessed that a combination of two Kinect sensors could
give an advantage in activity recognition tasks, especially in meeting set-
tings. In this paper, we are going to compare the performance of a two
Kinect system against a single Kinect in order to determine if there is
a significant advantage in using two sensors. Also, we compare several
classifiers for the activity recognition task, namely Naive Bayes, Support
Vector Machines and K-Nearest Neighbor.

Keywords: Kinect - Naive Bayes + Support Vector Machines - K-Nearest
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1 Introduction

In recent years, there has been an increased interest in recognizing human activ-
ities [1], as the user activity is an essential element of her/his context: if the
system can recognize and understand the activities performed by a human, they
can provide assistance to perform those activities [2]. This is indeed the focus of
Ambient Intelligence research (Aml). For example, AmlI systems can be used to
monitor elder people, perceive their needs and preferences, provide then different
services to comfort or helping them applying emergency treatment [3] etc.
Many sensors have been used for activity recognition, including accelerome-
ters [4], microphones video-cameras [5] and other. In recent years, the commercial
implementation of the Natal project by Microsoft, that is, the Kinect [6], though
it was originally intended as a video-game accessory, started to be used as an
experimental human-tracking sensor. The Kinect has a camera with other sen-
sors besides the RGB camera (like the infrared camera and the infrared projector).
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The Kinect became popular with researchers because it is useful for AmlI research,
and because it is cheap.

The capability of tracking the human skeleton in real time with the Kinect
sensor makes it possible to guess physical human activities, instead of using
computer vision algorithms to the raw video image. So, the Kinect sensor takes
part of the processing burden, and delivers a high-level data structure represent-
ing the human skeleton, which can be further analyzed by activity-recognition
algorithms, allowing these to become the main focus of the research.

We focus on tracking the skeletons of seated persons with one and two
Kinect sensors (Fig.1), and recognize what activities are being performed by
them, because this corresponds to meeting situations in enterprises, government,
schools, etc. The analysis of activities of participants in meetings could give valu-
able information concerning the level of focus of participants in a presentation,
the level of participation in a discussion, etc.

Tracking seated persons, and recognizing what activity is being performed by
each person, is a challenging task, because some several different activities look
almost the same. Another challenge is the occlusion that sometimes occurs when
a part of the virtual skeleton can not be tracked because something is blocking
the Kinect vision. So we proposed to use two Kinect sensors instead of one, as
a way to reduce the occlusion, because what is hidden to one Kinect could be
visible for the other one.

In this paper we propose specialized algorithms for analyzing the skeleton
structure of seated persons, so we can differentiate physical activities such as
drinking, eating, paying attention, using laptop, checking watch, checking cell-
phone, writing, using tablet, attending a call, and participating. Also, we are
going to compare the performance of two against one Kinect sensor, to see how
effective they are recognizing activities, and if there is actually a significant
advantage in using two Kinect sensors, and also we are going to experimentally
compare several classification algorithms for this activity recognition task.

The rest of the paper is organized as follows: Sect.2 outlines the related
works, Sect. 3 describes the method process used; experiments and results are in
Sect. 4, and finally conclusions are presented in Sect. 5.

Fig. 1. Seated skeleton

2 Related Work

Human activity analysis is made with data coming from a single sensor or a
group of sensors. These sensors can be embedded in the environment or can
be attached to the person body, so a basic distinction can be made between
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infrastructure-based approaches, which use fixed devices such as vision cameras,
sensitive floor, infrared sensors, etc., and wearable sensors, in which the person
about who the activities are going to be recognized is actually wearing the sensor,
like a smart watch with accelerometers [4]. Of course wearable approaches favor
user privacy, but they also impose requirements on the equipment the user must
carry. In this paper we are assuming infrastructure sensors, in particular a set
of Kinect sensors. The use of two Kinect sensors was also proposed by Mazurek
[7] as well as Sthone et al. [8], who combines data from multiple Kinect sensors
to create pose estimates of a human.

2.1 Classifiers for Activity Recognition

Several classification algorithms have been used for activity recognition system,
in particular Naive Bayes, Support Vector Machines (SVM) and k-Nearest Neigh-
bors algorithm (k-NN); we review the use of them in the following. The compar-
ison of classification algorithms is one of the goals of the present paper.

From the outset there is no particular reason for using one classifier instead
of another when it comes to activity recognition from sensors, but in our exper-
iments (Sect.4) we found that there could be significant differences in their
performance.

Naive Bayes [9] is a simple probabilistic classifier, which uses the Bayes the-
orem with a naive independent assumptions between the features. It requires a
small amount of data to be trained.

Works using the Naive Bayes classifier with infrastructure sensors include
Mazurek et al. [10], and others, while Ravi et al. [11] uses Naive Bayes to recog-
nize activities from the data collected from a wearable sensor. A Bayesian clas-
sifier is also used by Song et al. [12], who uses two image-related sensors with
the depth information from two cameras to track upper body movements.

Support Vector Machines (SVM) can classify linear and nonlinear data. Lin-
ear mapping searches for a lineal optimal line to separate “hyperplanes” [9].

Support Vector Machine classifiers are used by Cottone et al. [13], Megavannan
et al. [14] and others.

Multiple cameras and a SVM classifier are used by Cohen et al. [15], who
uses four cameras to capture 3D human body shapes and infers body postures
using SVM to identify the postures and the activity performed by the user.

The specific use of Kinect sensors and SVM is reported by Zhang et al. [16].

K-Nearest Neighbor (k-NN) finds for a given data point the nearest k points
in a dataset and assigns it to the most frequent class among those k points, so
it is a kind of voting algorithm [9].

The k-NN classifier has been used, together with image sensors, by Gordon
et al. [17], Ofli et al. [18] and others.

Wearable sensors with k-NN is used by Abdullah et al. [19], who uses a
smartphone attached to a person to recollect data.

The reviewed works fall short in the two aspects that we emphasize in the
present work, namely evaluating the advantage of using several Kinect sensors, and
comparing several very different classifiers, for assessing their relative strengths.
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3 Solution Method

The approach we follow for activity recognition is entirely data-driven: after
collecting data from the Kinect sensors during a meeting, we extract features and
then train classifiers. Validation experiments use the trained classifiers against
test data, and precision assessment is made using ground-truth made by humans
who identify the activity of each participant in every frame of a meeting session
(Fig. 3).

So the steps of our approach are the following:

1. Collect data from meeting sessions

2. Apply geometric transformation and consolidate skeletons from two Kinect

Sensors

Establish ground truth from video with the activities of each user

Extract features

5. Apply data to classifier (Bayes, SVM, k-NN) and obtain predicted activities
for each user

6. Check the result against the ground truth and calculate precision

Ll

In the following we will present the details of these steps.

3.1 Data Collection

Activities of participants in a meeting are going to be captured by a 60-degree
separated arrangement of Kinect sensors connected to a computer and special-
ized software (see details in Sect. 4).

The activities that we are going to consider are: drinking, paying attention,
using laptop (we are going to refer to it as laptop only), checking watch, checking

Fig. 3. Configuration of the meeting room and kinects
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cellphone, writing, using tablet, attending a call, pointing, raising hand, and par-
ticipating. Each joint coordinate is captured on a frame, a group of frames have
a group of joint’s coordinates. The skeleton consists on 8 joints, corresponding
to the head, shoulders, elbows and hands. The Kinect sensor captures 30 frames
each second, so the raw data comprise for each 30th of a second the 3D position
of each of the 8 considered joints, that is, 24 numbers for each Kinect, the double
for a set of two Kinect sensors.

When we use Two Kinect sensors, each one of them has a different reference
for determining the position of body joints, so we need to apply a coordinate
transformation to one of them in order to make its measures compatible with the
other Kinect. We are going to use one Kinect sensor as a reference and transform
the measurements made by the second Kinect using standard methods [20]

Once we have the measurements of two Kinect sensors aligned to the same
coordinate system, we can observe that there are small but significant differences
in the corresponding position estimations, so we need to apply a consolidation
operation, in which we take the middle point between the positions reported by
each of the two Kinect sensors. This is the position we consider for the two-Kinect
experiments.

3.2 Feature Extraction

Once the capture and consolidation process is finished, we have a data matrix
and a corresponding synchronized video for establishing the ground truth. The
next step in our method is to complement the raw data with derived features that
could help the classification process. While most authors use only static (pose,
posture) features for activity recognition, we decided to use also dynamic fea-
tures, such as the body joints speed and acceleration. Also, we included statistical
features like Andersson [21] from a 3s window (that is, 90 frames). Of course,
whether or not a feature is useful can only be established once the classification
task is performed and precision is established, though there are feature selection
techniques such as Principal Component Analysis (we used PCA against our
feature set, giving that position is the most important one).
So, the features we considered are:

— Static: Joint Position (x,y,z)

Dynamic: Absolute Linear Speed

— Dynamic: Absolute Acceleration

— Statistical: Mean position over a 3s window
Statistical: Median of position

— Statistical: Standard deviation of position

3.3 Classifiers

In this study we used and compared three different classification algorithms,
namely Naive Bayes, Support Vector Machines and k-nearest neighbor.
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4 Experiments and Results

The purpose of the validation experiments we are going to present is to compare
the performance of activity recognition using one Kinect and two ones, so we
test the hypothesis that two Kinect sensors will be able to overcome to a certain
degree the occlusion problems. We also want to test the precision of each classifier
at recognizing the activities of users. Besides precision, also the specificity and
sensitivity were calculated. We use a time window of 3s to classify the activity
performed, 1s equals 30 frames, so we analyze 90 frames. We use this time
window to extract features, the total of extracted features are 11.

For collecting data we need to setup and configure a computer with two
Kinect sensors. We used open source tools, in particular OpenNI/NiTE, Sim-
pleOpenNI, and Processing, installed on a Linux machine. OpenNI/NiTE is an
open source framework that provides a set of application programming interface
(API) that provide support for body motion tracking, hand gestures, and voice
command recognition. SimpleOpenNi is a wrapper for processing. It supports
all the functions of OpenNI, it provides a simple access to the functionality of
OpenNI. Processing is a programming language.

For the experiments with two Kinect sensors these ones were arranged with
a 60 degree angle as in Fig.2, so that users’ body parts that were occluded
to one Kinect could be visible for the other one. This arrangement has been
used in other works, but optimization of the exact arrangement remains to be
done (see Sect.5), and indeed depends on the exact room shape and furniture
arrangement.

The experiments consist of three types of meetings. One is an exposition of a
class, another type is a discussion meeting, and the third type is a work meeting.
The meetings are acted, but the subjects do not follow a script. In each meeting
there are two participants seated in front of a table, eventually with a laptop or
a block for notes or beverages such as coffee or a snack for eating. Of course, the
laptops are going to cause visual occlusion, which is one of the challenges in the
activities recognition task.

On average, meetings are 51 min long, and we collected 4 meeting rounds for
each type, thus 12 experiments, both for one and for two Kinect sensors, giving
a total of 24 individual meetings, each one together with a corresponding video
for establishing the ground truth (see below).

Each individual meeting data collection, taken by the Kinect at 30 frames per
second, generates a raw data file of around one hundred thousand lines. Overall,
the total number of data text lines collected for experiments in the 24 meetings
was 2,200,086 text lines.

Then we enrich the tables with the derived features that were presented in
Sect. 3.2, including the Mean, Median, Standard Deviation, Variance of the skele-
ton joint position in a time window of 3 s, as well as the velocity and acceleration
of the skeleton’s joints.

For all experiments, we are going to use the 80 % of the data collected for
training the classifiers, the rest, 20 % are going to be used for testing them.
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For the testing data, we use the ground truth as recognized by a human
experimenter. Activities are tagged in the frames matrix directly from the video
associated to the meeting, which has been synchronized with the Kinect data
capture. Needless to say this was an extremely meticulous task. So, the system
succeeds in predicting an activity when that prediction matches the tag given
by the human experimenter.

The first experiment was an exposition of a class. Users attended the class.
Relevant activities performed by the users were Point, Paying Attention, Drink-
ing Water and Raise Hand.

In the 4 rounds of this experiment we collected 58,235, 110,204, 114,013 and
58,237 lines of skeleton position data from the Kinect sensor (one Kinect) and
114,071, 120,803, 86,990 and 72,113 lines for two Kinect sensors.

In Table 1 we present the precision comparison for experiment 1 using one and
two Kinect sensors. Later on we will present the global analysis of experiments.

Table 1. Precision comparison between classifiers, with one Kinect and two Kinect
sensors for experiment 1

One Kinect Two Kinects
Classifiers Classifiers
NB SVM |KNN | NB SVM KNN
Raise hand 1.70% | 74.26 % | 81.21 % | 23.37% | 77.19% | 82.96 %
Point 8.19%|82.34%  92.01% | 3.85% | 14.47%| 75.00%

Paying attention | 95.44 % | 90.78 % | 98.17 % | 98.56 81.95% | 98.56 %
Drinking water 6.06% | 6.37%  90.76 % | 36.17 % | 100 % 100 %
Average 27.84% | 63.43% | 90.53 % | 40.48 % | 68.40% | 89.13%

In experiment 2, a discussion meeting is being held. Relevant activities are:
Participate, Paying attention, Drinking Water, Using Tablet, Eat, Raise Hand.

This experiment also has 4 rounds, both for one and for two Kinect sensors,
giving 8 experiment sessions. In this experiment we collected 34,781, 74,996,
102,328 and 114,070 lines of raw data for one Kinect, and 67,123, 110,183, 88,872
and 59,250 lines for two Kinect.

In Table2 we present the comparison between classifiers and one and two
Kinect sensors.

Experiment 3 is about a simulated work meeting, and the experimental set-
tings are very similar to the preceding ones. The relevant activities are Paying
attention, Drinking Water, Check cellphone, Using laptop and Participate; we
think they are self-explanatory.

As the preceding ones, this experiment has 4 rounds for one Kinect and 4
for two Kinect. The data collected was composed of 51,251, 94,574, 115,023 and
92,187 lines of data for one Kinect and 98,368, 116,413, 93,345 and 93,406 line
for two Kinect sensors.
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Table 2. Precision comparison between classifiers, with one Kinect and two Kinect
sensors for experiment 2

One Kinect Two Kinects

Classifiers Classifiers
NB |SVM [ KNN|NB |SVM |KNN
Participate 17.06 | 98.56 | 96.48 | 43.00 | 89.01 | 100.00
Paying attention | 61.90 | 79.17 | 80.30 | 89.22 | 87.30 | 98.11
Drinking water 9.02 | 85.57|79.21|13.12/93.11| 93.12
Using tablet 95.2582.23|97.40 | 84.22 |1 92.11 | 90.94

Eat 24.55 | 88.89 | 96.00 | 34.22 | 89.22 | 94.41
Raise hand 6.23 | 87.06 | 88.24 | 6.1593.76| 95.81
Average 35.67 | 86.91 | 89.61 | 44.99 |90.75 | 95.40

Results of this experiment are presented in Table 3.

Analyzing the data in the tables, we can see that, concerning the classifiers,
Naive Bayes fall behind the other two, which alternate being the best depending
on the activity (for instance, in experiment 1, raising hand, SVM is better, but
in writing KNN is better). In the average of one kinect, we can see that k-NN
performs slightly better than two kinects, because maybe an occlusion happened,
and it lowered the classifier performance. Overall, the NB precision was under
40 %, which is clearly very low, and on average SVM was below 80 %, while
k-NN precision was well above 90 %, establishing a clear advantage above SMV
and obviously NB. While the explanation for the low NB performance could
be the data independence assumption, which we think is not respected in this
task, the advantage of k-NN over SVM could be explained in terms of the high
non-linearity of our data; the SVM hyperplanes for data separation imply some
degree of linearity that could not be respected in our data.

Table 3. Precision comparison between classifiers, with one Kinect and two Kinect
sensors for experiment 3

One Kinect Two Kinects

Classifiers Classifiers
NB |SVM |KNN|NB |SVM | KNN
Paying attention | 20.96 | 94.65 | 80.00 | 45.98 | 81.79 | 100.00
Drinking water |16.13|70.53 |85.73|30.76 | 77.94| 96.88
Check cellphone |16.43 | 33.44 1 96.91 | 26.12 | 71.22 | 97.22
Using laptop 89.78 194.43 1 93.98 | 95.9592.96 | 99.34
Participate 21.01 | 87.16 | 90.42 | 38.56 | 98.31 | 100.00
Average 32.86 | 76.04 | 89.41 | 47.47 | 84.44 | 98.69
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We also see that having two Kinect sensors raises precision noticeably, namely
above 7 percent —which was of course something to expect due to occlusion
resolution in the case of the two Kinect sensors— but not dramatically. The
reasons why having two Kinect sensors does not raise precision 10 points or
more is difficult to grasp, as the skeleton detection itself is done inside the Kinect
system and could not be analyzed by us.

5 Conclusions

In this paper we have presented a data-driven method for recognizing the activ-
ities of users in meeting settings using two Kinect sensors. Indeed, what meeting
participants do in organizations get-together is important for assessing their
utility and eventual improvements.

We used as input the position of body joints, as given by two Kinect sen-
sors, together with derived features such as velocity and acceleration, as well as
statistical features over time windows. We established a reasonably good preci-
sion in activity recognition for common activities in meetings such as listening,
drinking, taking notes, using a laptop, raising hands for participation, etc.

We compared the performance of three different classifiers for the activity
recognition task, namely the Naive Bayes, Support Vector Machine, and the k-
Nearest Neighbour, finding that k-NN is the best classifier for this task, followed
by SVM and far behind Naive Bayes.

Further, we compared in a rigorous way the performance of the activity
recognition using one against two and one sensors, and established exactly how
much is the improvements of the two Kinect arrangement. This had never been
done to our knowledge.

As future work, we intend to optimize the Kinect arrangement, that is, the
angles, the distances and so on, which of course depend of specific meeting rooms,
and even tables. We also want to complement the skeleton detection of Kinect
with the analysis of sound, as taken from the Kinect microphones, because sound
is an additional clue for activities such as participation in a meeting; a two-Kinect
arrangements could be particularly suited for detecting the sound source, which
could give information about which participant in the meeting was talking.
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