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Abstract. Condition monitoring of mechanical systems is an impor-
tant topic for the industry because it helps to improve the machine
maintenance and reduce the total operational cost associated. In that
sense, the vibration analysis is an useful tool for failure prevention
in rotating machines, and its main challenge is estimating on-line the
dynamic behavior due to non-stationary operating conditions. Neverthe-
less, approaches for estimating time-varying parameters require the shaft
speed reference signal, which is not always provided, or are oriented to
off-line processing, being not useful on industrial applications. In this
paper, a novel Order Tracking (OT) is employed to estimating both the
instantaneous frequency (IF) and the spectral component amplitudes,
which does not require the shaft speed reference signal and may be com-
puted on-line. In particular, a nonlinear filter (Square-Root Cubature
Kalman Filter) is used to estimate the spectral components from the
vibration signal that provide the necessary information to detect dam-
age on a machine under time-varying regimes. An optimization problem
is proposed, which is based on the frequency constraints to improve the
algorithm convergency. To validate the proposed constrained OT scheme,
both synthetic and real-world application are considered. The results
show that the proposed approach is robust and it successfully estimates
the order components and the instantaneous frequency under different
operating conditions, capturing the dynamic behavior of the machine.
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1 Introduction

Vibration analysis of rotating machines is one of the most used techniques for
fault diagnosis and condition monitoring due to its high performance and low
implementation cost. Nowadays, the main challenge in vibration analysis is to
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track and reduce the influence of changes during time-varying operation condi-
tions and loads. In this regard, the order tracking (OT) techniques had been
proposed, oriented to obtain the fundamental component features of the shaft
reference speed (called basic order) and capture the dynamics of the measured
vibration signals. The OT have shown to be useful within the analysis of non-
stationary vibration signals, condition monitoring and fault diagnosis [5]. This
technique allows to identify the rotation speed and the spectral/order compo-
nents, which are fundamental to describe the state of both, the machine and its
conforming mechanisms, during changing loads and speed regimes [11].

Particularly, a suitable estimation strategy is carried out using Kalman filter-
ing in [5]; its improved version with increased precision, termed Vold-Kalman fil-
tering (VKF OT), was proposed in [14]. However, it requires measuring the shaft
speed, which makes the order analysis still complex. The measurement of the shaft
speed implies installing additional equipment near to the machine, which in certain
situations is inconvenient. In [4], another approach is discussed consisting of a non-
linear leastminimumsquares algorithm,which estimates the amplitude, frequency,
and phase of a non-stationary sinusoid, but the principal shortcomings come from
its lack of robustness in the estimation procedure. In [6,15], a frequency tracker
based on an oscillatory model, is introduced, where its parameters are calculated
byExtendedKalmanFiltering (EKF), obtaining the amplitude, phase, andmainly
the frequency of a harmonic signal for de-noising in non-stationary signals. How-
ever, the tuning of model parameters is complex and requires an expertise degree.

In [12] an extended version of EKF frequency tracker for non-stationary har-
monic signals is presented, where the time-varying amplitude is another state
variable attached to the oscillatory model, outperforming the conventional meth-
ods aforementioned. Nonetheless, the increment in the amount of state variables
implies more computational cost affecting the on-line tracking task. In contrast,
in [8] the time-varying amplitude is estimated assuming the state variables as the
in-phase and quadrature components of the signal, and computing the quadratic
mean between those components. Besides, the EKF is based on the lineariza-
tion by using Taylor’s series expansion, however, the computation of Jacobian
matrix induces high running complexity, limiting the application capability. To
overcome the drawbacks of EKF on estimation accuracy, stability, convergence,
among others., a novel nonlinear filtering approach is proposed in [1], termed
Cubature Kalman Filter (CKF). In order to improve the CKF performance, a
extended version was proposed in [3], so-called square-root cubature Kalman
filter (SRCKF). The SRCKF propagates the probability distribution function in
a simple and efficient way and it is accurate up to second order in estimating
mean and covariance [3]. Based on explained above approaches, this paper dis-
cusses an OT approach with improved IF estimation by means of SRCKF, which
introduces a frequency tracker that allows to capture the signal intrinsic dynam-
ics, and thus, the OT deals with non-stationarity associated to several parts of
the machine when determining the fundamental frequency of a vibration signal.
Additionally, a simple method to incorporate state constraints is presented to
improve the precision and the tolerance to the parameters initialization.
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2 Materials and Methods

From the input signal y(n), Order Tracking provides the estimation of modes
and amplitudes present in each oscillation. The machine shaft speed is the basic
order, while superior orders are related as the shaft speed harmonics. Thus,
the shaft speed, η = 60f , is equivalent to shaft fundamental frequency of the
machine, where η is given in revolutions per minute (rpm) and f in Hz.

2.1 Oscillatory Model and Instantaneous Frequency Estimation

The vibration signal, y(n) ∈ IR, acquired from a rotating machine can be repre-
sented as a superposition of K sinusoidal functions (termed order components),
as follows:

y(n) =
K∑

k=1

ak(n) cos(kω(n)n + ϕk(n)) (1)

where ak(n) and ϕk(n) denote the amplitude and the phase of the k-th order
component, respectively; ω(n) = 2πf0(n) is the angular frequency of a rotational
frequency f0(n). The variables ak(n), ϕk(n) and ω(n) are time-varying.

Accordingly to [9], it is possible to extract both the instantaneous frequency
(IF) and the order component amplitudes by the following state-space model:
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where the remaining terms of the state transition matrix are zero filled,
and xk(n) = [xc(n)xd(n)]T ∈ IR2×1 is the state variable vector, being
xc(n) = a(n) cos(ω(n)n + ϕ(n)) and xd(n) = a(n) sin(ω(n)n + ϕ(n)), which
are the in-phase and quadrature components, respectively. In consequence,
the order component amplitude and IF estimation are computed by a(n) =√

xc(n)2 + xd(n)2 and ω(n) = xK+1(n). The matrix M(xK+1(n)) ∈ IR2×2 is a
rotation matrix that is defined as follows:

M(ω(kn)) =
[
cos ω(kn) − sin ω(kn)
sin ω(kn) cos ω(kn)

]
(4)

As regards the model parameters, ξ(n) ∼ N(0,Q(n)) ∈ IR2K×1 is the process
noise, where Q(n) ∈ IR2K×2K is the covariance matrix of process noise; h =

[
1 0

]
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forms the measurement matrix H ∈ IR1×2K+1, v(n) ∼ N(0, r(n)) ∈ IR is the
measurement noise, and r (n) ∈ IR is the measurement variance.

It is worth noting that the model described in Eqs. (2) and (3) could be
applied under the assumption that the speed does not present strong changes
neither discontinue behaviors [7], it means, the following approximations hold:
a(n + 1) ∼= a(n), ϕ(n + 1) ∼= ϕ(n) and ω(n + 1) ∼= ω(n).

For the sake of simplicity, the process equation (Eq. (2)) could be rewritten
in short form as

X (n + 1) = ϑ (n,X (n)) + w (n) (5)

where ϑ (n,X (n)) is the state transition nonlinear function. In this case, the
estimation of state variable vector implies a set of nonlinear equations. Therefore,
a recursive solution can be computed by means of nonlinear Kalman filtering.

2.2 Estimation of Model Parameters

As seen in Eqs. (2) and (3), parameter computation implies a recursive nonlin-
ear analysis allowing to get an approximated solution when Gaussian noise is
assumed but avoiding calculation of corresponding Jacobians of state variables.
To this end, the Square-Root Cubature Kalman Filter (SRCKF), which is based
on the recursive propagation of variable state moments (mean and variance), is
suggested in [2], under the assumption that implicated nonlinear function, ϑ,
should be reasonably smooth. In this case, a quadratic function near the prior
mean is used assuming that it could properly approximate the given nonlinear
function. To this end, the error covariance matrix should be symmetric and pos-
itive definiteness to preserve the filter properties on each update cycle. So hence,
SRCKF uses a forced symmetry on the solution of the Ricatti equation improv-
ing the numerical stability of the Kalman filter [10], whereas the underlying
meaning of the covariance is embedded in the positive definiteness [2].

The SRCKF algorithm that is described in Table 1 carries out the QR decom-
position (termed triangularization procedure, S = tria{·}), where the S is a
lower triangular matrix and denotes a square-root factor [2]. Besides, aiming
to parameterize the SRCKF is mandatory taking into account the process and
measurement covariance parameters, where the main parameter is q because it
comprises the information related with variances of the state estimates as follow:

diag(Q) =
[
qa1 qa1 · · · qaK qaK qfK+1

]
(6)

where qai (i = 1, ...,K) denotes the amplitude variance of the order components
and qfK+1 denotes the frequency variance, which describes the dynamic behavior
of the system.

2.3 State Estimation with Constraints

Constraints on states x(n) to be estimated are important model information
that is often not used in state estimation. Typically, such constraints are due to
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Table 1. SRCKF algorithm (Part 1), [9]

physical limitations on the states. In Kalman filter theory, there is no general
way of incorporating these constraints into estimation problem. However, the
constraints can be incorporated in the filter by projecting the unconstrained
Kalman filter estimates onto the boundary of the feasible region at each time
step [16,17]. The numerical optimization at each time step may be a challenge
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in time-critical applications. In this section, a simple method introduced in [13]
is applied to handle state constraints in the SRCKF.

Assume that the constraints of state variables are represented by box con-
straints as follow:

xL(n) ≤ x(n) ≤ xH(n) (7)

where subindexes L and H denote the lower and upper boundaries, respectively.
The method is illustrated for x(n) ∈ IR2. In the case of a second order system,
the feasible region by the box constraints can be represented by a rectangle as
in Fig. 1. It is showed the illustration of the steps of constraint handling of the
SRCKF algorithm from one time step to the next. At t = n− 1, the actual state
xn, its estimate x̂n−1 and state covariance are selected. The constraints infor-
mation can be incorporated in the SRCKF algorithm in a simple way during
the time-update step. After the propagation of the sigma points (step 5.), the
(unconstrained) transformed sigma points which are outside the feasible region
can be projected onto the boundary of the feasible region and continue the fur-
ther steps. In Fig. 1, at t = n two sigma points which are outside the feasible
region are projected onto the boundary (right plot in the figure). The mean and
covariance with the constrained sigma points now represent the a priori state
variable (x−SRCKF

n ) and covariance, and they are further updated in the mea-
surement update step. The advantage here is that the new a priori covariance
includes information on the constraints, which should make the SRCKF estimate
more efficient (accurate) compared to the SRCKF estimate without constraints.
Extension of the proposed method to a higher dimension, d, is straightforward.
Alternative linear constraints, e.g., Cx ≤ d are easily included by projecting the
sigma point violating the inequality normally onto the boundary of a feasible
region. It is observed that the new (constrained) covariance obtained at a time
step is lower in size compared to the unconstrained covariance. If in case, the
estimate after the measurement update is outside the feasible region, the same
projection technique can be extended. In a practical point of view, the bound-
aries are fixed according to maximum and minimum values that could take the
state variables. In consequence, in case of the order components La = min y(n)
and Ha = max y(m), whereas the IF constraints depend on the approximated
knowledge of the machine speed range, where Lf and Hf are usually fixed as
zero or idle speed and maximum speed, respectively.

Xn-1
^

Initial set up, t=n-1 SRCKF, t=n

Transformed sigma points

Xn

Covariance
- SRCKF

Fig. 1. Illustration of sigma constrained points.
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3 Simulation Study

A synthetic signal is desing to validate the performance of considered OT
schemes for the closed-order component identification, as recommended in [14].
The synthetic signal comprises three order components including 1, 4 and 4.2.
The assumed reference shaft speed linearly increases from 0 to 1800 rpm for 5 s.
A sampling frequency of 1 kHz is used through this simulation. The Table 2 illus-
trates the amplitudes assigned to these order components. Order amplitude level
is set as time-varying, since it is assumed that, most of the machine mechanisms
have different vibration levels.

Table 2. Spectral components composing the in synthetic signal

Order numbers 1 4 4.2

Amplitude Linearly increasing
from 0 to 10

Linearly increasing
from 0 to 3

Linearly increasing
from 0 to 2.5

In Fig. 2, the time-frequency representation of the synthetic signal is shown,
as well as its generative time series. It can be observed the difficult to dis-
tinguish closed-order components using methods based on Fourier transforms.
Also, it is worth noting that the amplitude differences between the first order
and its harmonics make almost insignificant the low-frequency information. As
a result, it generates a wrong representation of required components. Instead,
when using OT techniques based on parametric models, it is possible to capture
properly the information about the behavior of each order component. Compu-
tation parameters that influence tracking performance, such as the correlation
matrix of process noise and the error covariance propagation, are investigated
here. The algorithms are tested under different parameter values, i.e., two values
for variance of process noise and two values for error covariance propagation,
in order to shows the improvement achieved with constraints. The Fig. 3 shows
the waveform reconstruction (WR), amplitude (A) and frequency estimation
errors. It is possible to see a high performance (accuracy) in the WR, specially
when SRCKF with constraints is used. It is important notice that the frequency
estimation, by SRCKF without constraints (segmented line), presents a inverse
behavior, which is a wrong interpretation of the algorithm and it may produce
errors during the signal analysis.

3.1 Case Study: Wind Turbine if Estimation - CMMNO2014
Contest

This experiment consisted of estimating the instantaneous speed in rpm, or
instantaneous frequency in Hz, from a wind turbine operating under non-
stationary conditions. The information given hereafter, as well as the signal,
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Fig. 2. Time-Frequency representation from synthetic signal obtained by STFT (ham-
ming window, 512 frequency samples, and 50 % overlap)
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Fig. 3. Estimated order components of the synthetic signal using the parameters p =
1e−1, qa = 1e−10, qf = 1e−12 and r = 1e−9. (··) Original signal, (- -) unconstrained
and (-) constrained estimation

have been kindly provided by Mäıa Eolis to solve the contest in the frame-
work of the International Conference on Condition Monitoring of Machinery
in Non-stationary Operations (CMMNO), December 15–16, 2014 Lyon-France1.
The provided signal comes from an accelerometer located on the rotor side of
the gearbox (high speed shaft) casing in the radial direction, and the speed of
the main shaft (also called low speed shaft) is between 13 and 15 rpm during
the recording. The sampling frequency is 20 KHz and the acquisition time is
547 s approx. As regards to high-speed shaft estimation, from the kinematics of
the machine the boundaries [Lf ,Hf ] from the desired IF are defined between
25.99 Hz and 29.98 Hz. However, after to carried out the testing, it was found
that the minimum boundary must be fixed at 15 Hz. In Fig. 4 is shown the

1 Contest rules link: http://cmmno2014.sciencesconf.org/conference/cmmno2014/
pages/cmmno2014 contest V2.pdf.

http://cmmno2014.sciencesconf.org/conference/cmmno2014/pages/cmmno2014_contest_V2.pdf
http://cmmno2014.sciencesconf.org/conference/cmmno2014/pages/cmmno2014_contest_V2.pdf
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provided signal, where it is possible to observe the signal in time and frequency
((a) and (b) parts, respectively). In frequency domain are marked the harmonics
obtained using an harmonic algorithm discussed in [9], by the Fourier transform
computation from 20 s signal segment. Here, the harmonic 26.2 Hz is used as the
first order, obtaining in total a set of 26 orders. In addition, the SRCKF parame-
ters associated to process and measurement covariances are fixed as qai = 10−3,
qf = 10−10 and r = 10−11.
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Fig. 4. Provided signal by CMMNO2014 contest in time and frequency domain.
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(b) a comparison with the tacho reference.

As a result, Fig. 5 displays the IF estimated using the proposed constrained
OT model. Obtained IF is highlighted with a black line on the time-frequency
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representation Fig. 5(a), where it is possible to see that the estimation match
with the high speed shaft, ranging from 20Hz to 30Hz, which confirms the bound-
aries fixed into the model. A comparison with the tacho reference is shown in
Fig. 5(b), and besides, the IF estimation (red line) using a traditional method
based on time-frequency representation (noted as STFT), which consists of track-
ing the maxima values in the STFT [18]. It is worth noting that using the afore-
mentioned method was achieve the fifth place in the contest. In that sense, the
proposed IAS-OT model allows to improve the result obtained using the based-
STFT method, reaching a relative error under ±3% despite the fact that the
intervals [220−250] and [320−350]s there are a delay between the reference and
the estimated IF.

4 Conclusions

The study proposes, derives and implements a novel constrained SRCKF app-
roach based on a nonlinear state-space model, where it is possible simultane-
ously extract multiple order/spectral components together with IF estimation
and decouple close orders. An improvement of the tracking algorithm is ren-
dered incorporating constraints to the state variables, allowing to have a better
performance of the SRCKF. The SRCKF captures the dynamic behavior of the
system in terms of the IF estimation, which is an advantage when it is necessary
to analyze machines where the reference shaft speed cannot be measured. There-
fore, the proposed approach is an useful tool to compensate the non-stationary
operating conditions of the machine and it contributes with the diagnostic analy-
sis. The future work will be centered into optimization of the initialization of
the model parameters and validation the proposed scheme in other kind of
applications.
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