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Abstract. We consider Turing machines as actions over configurations
in %' which only change them locally around a marked position that can
move and carry a particular state. In this setting we study the monoid of
Turing machines and the group of reversible Turing machines. We also
study two natural subgroups, namely the group of finite-state automata,
which generalizes the topological full groups studied in the theory of
orbit-equivalence, and the group of oblivious Turing machines whose
movement is independent of tape contents, which generalizes lamplighter
groups and has connections to the study of universal reversible logical
gates. Our main results are that the group of Turing machines in one
dimension is neither amenable nor residually finite, but is locally embed-
dable in finite groups, and that the torsion problem is decidable for
finite-state automata in dimension one, but not in dimension two.

1 Introduction

1.1 Turing Machines and Their Generalization

Turing machines have been studied since the 30s as the standard formalization of
the abstract concept of computation. However, more recently, Turing machines
have also been studied in the context of dynamical systems. In [20], two dynam-
ical systems were associated to a Turing machine, one with a ‘moving tape’ and
one with a ‘moving head’. After that, there has been a lot of study of dynamics
of Turing machines, see for example [1,11,12,15,16,19,28]. Another connection
between Turing machines and dynamics is that they can be used to define sub-
shifts. Subshifts whose forbidden patterns are given by a Turing machine are
called effectively closed, computable, or IT{ subshifts, and especially in multiple
dimensions, they are central to the topic due to the strong links known between
SFTs, sofic shifts and IT-subshifts, see for example [4,9]. An intrinsic notion of
Turing machine computation for these subshifts on general groups was proposed
in [3], and a similar study was performed with finite state machines in [26,27].
In all these papers, the definition of a Turing machine is (up to notational
differences and switching between the moving tape and moving head model) the
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following: A Turing machine is a function 7' : X% x Q — X% x Q defined by a
local rule fr: X x Q — X x Q x {—1,0,1} by the formula

T(z,q) = (0-a(®),q) if fr(zo,q) = (a, ¢, d),

where o : X% — X7 is the shift action given by o4(z). = z._4, To = a and
Z|z\ 10y = Z|z\{0}- In this paper, such Turing machines are called classical Tur-
ing machines. This definition (as far as we know) certainly suffices to capture
all computational and dynamical properties of interest, but it also has some
undesirable properties: The composition of two classical Turing machines — and
even the square of a classical Turing machine — is typically not a classical Turing
machine, and the reverse of a reversible classical Turing machine is not always
a classical Turing machine.

In this paper, we give a more general definition of a Turing machine, by
allowing it to move the head and modify cells at an arbitrary (but bounded)
distance on each timestep. With the new definition, we get rid of both issues:
With our definition,

— Turing machines are closed under composition, forming a monoid, and
— reversible Turing machines are closed under inversion, forming a group.

We also characterize reversibility of classical Turing machines in combinatorial
terms, and show what their inverses look like. Our definition of a Turing machine
originated in the yet unpublished work [25], where the group of such machines
was studied on general Z-subshifts (with somewhat different objectives).

These benefits of the definition should be compared to the benefits of allowing
arbitrary radii in the definition of a cellular automaton: If we define cellular
automata as having a fixed radius of, say, 3, then the inverse map of a reversible
cellular automaton is not always a cellular automaton, as the inverse of a cellular
automaton may have a much larger radius [8]. Similarly, with a fixed radius, the
composition of two cellular automata is not necessarily a cellular automaton.

We give our Turing machine definitions in two ways, with a moving tape and
with a moving head, as done in [20]. The moving tape point of view is often
the more useful one when studying one-step behavior and invariant measures,
whereas we find the moving head point of view easier for constructing examples,
and when we need to track the movement of multiple heads. The moving head
Turing machines are in fact a subset of cellular automata on a particular kind of
subshift. The moving tape machine on the other hand is a generalization of the
topological full group of a subshift, which is an important concept in particular in
the theory of orbit equivalence. For topological full groups of minimal subshifts,
see for example [13,14,17]. The (one-sided) SFT case is studied in [24].

1.2 Our Results and Comparisons with Other Groups

In Sect. 2, we define our basic models and prove basic results about them. In
Sect. 2.3, we define the uniform measure and show as a simple application of it
that injectivity and surjectivity are both equal to reversibility.
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Our results have interesting counterparts in the theory of cellular automata:
One of the main theorems in the theory of cellular automata is that injectivity
implies surjectivity, and (global) bijectivity is equivalent to having a cellular
automaton inverse map. Furthermore, one can attach to a reversible one- or two-
dimensional cellular automaton its ‘average drift’, that is, the speed at which
information moves when the map is applied, and this is a homomorphism from
the group of cellular automata to a sublattice of Q¢ (where d is the corresponding
dimension), see [18]. In Sect. 3 we use the uniform measure to define an analog,
the ‘average movement’ homomorphism for Turing machines.

In Sect.3, we define some interesting subgroups of the group of Turing
machines. First, we define the local permutations — Turing machines that never
move the head at all —, and their generalization to oblivious Turing machines
where movement is allowed, but is independent of the tape contents. The group
of oblivious Turing machines can be seen as a kind of generalization of lamp-
lighter groups. It is easy to show that these groups are amenable but not resid-
ually finite. What makes them interesting is that the group of oblivious Turing
machines is finitely generated, due to the existence of universal reversible logi-
cal gates. It turns out that strong enough universality for reversible gates was
proved only recently [2].

We also define the group of (reversible) finite-state machines — Turing
machines that never modify the tape. Here, we show how to embed a free group
with a similar technique as used in [10], proving that this group is non-amenable.
By considering the action of Turing machines on periodic points,’ we show that
the group of finite-state automata is residually finite, and the group of Turing
machines is locally embeddable in finite groups (in particular sofic).

Our definition of a Turing machine can be seen as a generalization of the
topological full group, and in particular finite-state machines with a single state
exactly correspond to this group. Thus, it is interesting to compare the results
of Sect. 3 to known results about topological full groups. In [14,17] it is shown
that the topological full group of a minimal subshift is locally embeddable in
finite groups and amenable, while we show that on full shifts, this group is non-
amenable, but the whole group of Turing machines is LEF.?

Our original motivation for defining these subgroups — finite-state machines
and local permutations — was to study the question of whether they generate
all reversible Turing machines. Namely, a reversible Turing machine changes the
tape contents at the position of the head and then moves, in a globally reversible
way. Thus, it is a natural question whether every reversible Turing machine can
actually be split into reversible tape changes (actions by local permutations)
and reversible moves (finite-state automata). We show that this is not the case,
by showing that Turing machines can have arbitrarily small average movement,

! The idea is similar as that in [23] for showing that automorphism groups of mixing
SFTs are residually finite, but we do not actually look at subsystems, but the periodic
points of an enlarged system, where we allow infinitely many heads to occur.

2 In [25] it is shown that on minimal subshifts, the group of Turing machines coincides
with the group of finite-state automata.
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but that elementary ones have only a discrete sublattice of possible average
movements. We do not know whether this is the only restriction.

In Sect. 4, we show that the group of Turing machines is recursively presented
and has a decidable word problem, but that its torsion problem (the problem of
deciding if a given element has finite order) is undecidable in all dimensions. For
finite-state machines, we show that the torsion problem is decidable in dimension
one, but is undecidable in higher dimensions, even when we restrict to a finitely
generated subgroup. We note a similar situation with Thompson’s group V:
its torsion problem is decidable in one-dimension, but undecidable in higher
dimensions [5,6].

1.3 Preliminaries

In this section we present general definitions and settle the notation which is used
throughout the article. The review of these concepts will be brief and focused on
the dynamical aspects. For a more complete introduction the reader may refer
to [22] or [7] for the group theoretic aspects. Let A be a finite alphabet. The set
Az = {x : Z¢ — A} equipped with the left group action o : Z¢ x ALY 2
defined by (04 (2))u = Tu—» is a full shift. The elements a € A and z € AZ
are called symbols and configurations respectively. With the discrete topology
on A the set of configurations A2 s compact and given by the metric d(z,y) =
2~ Inf{[vIEN] 2o #y0}) wwhere |v| is a norm on Z? (we settle here for the || - ||oo
norm). This topology has the cylinders [a], = {z € A% |z, = a € A} as a
subbasis. A support is a finite subset F' C Z?. Given a support F, a pattern with
support F is an element p of AF. We also denote the cylinder generated by p in
position v as [ply = Ny plPulvtu, and [p] = [plo.

Definition 1. A subset X of A% is a subshift if it is o-invariant — o(X) C X -
and closed for the cylinder topology. Equivalently, X is a subshift if and only if
there exists a set of forbidden patterns F that defines it.

X= (1 A"\

peEF ,veZd

Let X,Y be subshifts over alphabets A and B respectively. A continuous
Z%-equivariant map ¢ : X — Y between subshifts is called a morphism. A
well-known Theorem of Curtis, Lyndon and Hedlund which can be found in
full generality in [7] asserts that morphisms are equivalent to maps defined by
local rules as follows: There exists a finite ' C Z¢ and & : A" — B such that
Ve € X : ¢p(x)y = P(0_y(x)|r). If ¢ is an endomorphism then we refer to it as a
cellular automaton. A cellular automaton is said to be reversible if there exists
a cellular automaton ¢! such that o™ = ¢~ o¢ = id. It is well known that
reversibility is equivalent to bijectivity.

Throughout this article we use the following notation inspired by Turing
machines. We denote by X' = {0,...,n — 1} the set of tape symbols and Q =
{1,...,k} the set of states. We also use exclusively the symbols n = |X| for
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the size of the alphabet and k = |@Q| for the number of states. Given a function
[ 82 — [l;e; Ai we denote by f; the projection of f to the i-th coordinate.

2 Two Models for Turing Machine Groups

In this section we define our generalized Turing machine model, and the group
of Turing machines. In fact, we give two definitions for this group, one with a
moving head and one with a moving tape as in [20]. We show that — except
in the case of a trivial alphabet — these groups are isomorphic.? Furthermore,
both can be defined both by local rules and ‘dynamically’, that is, in terms of
continuity and the shift. In the moving tape model we characterize reversibility
as preservation of the uniform measure. Finally we conclude this section by
characterizing reversibility for classical Turing machines in our setting.

2.1 The Moving Head Model

Consider @ = {1,...,k} and let X}, be the subshift with alphabet @ U {0} such
that in each configuration the number of non-zero symbols is at most one.

Xp={ze{0,1,... . kY | 0¢ {2y, 2o} = u=0}

In particular Xg = {OZd} and i < j = X; C Xj. Let also ¥ ={0,...,n—1}
and X, = 7« X}, For the case d = 1, configurations in X, ; represent a
bi-infinite tape filled with symbols in X' possibly containing a head that has a
state in Q. Note that there might be no head in a configuration.

Definition 2. Given a function
FiYFxQ— XF xQxz4

where F,F' are finite subsets of Z¢, we can define a map Ty Xpk — Xnk
as follows: Let (x,y) € X,k If there is no v € Z% such that y, # 0 then
T(z,y) = (z,y). Otherwise let p = 0_4(2)|F, ¢ = y» # 0 and f(p,q) = (v', ¢, d).
Then T'(z,y) = (Z,7) where:

N {xt ift—v ¢ F’ - {q' ift=v+d
Ty = Yt =

Py ift—veF’ 0  otherwise

Such T = Ty is called a (moving head) (d,n, k)-Turing machine, and f is its
local rule. If there exists a (d,n, k)-Turing machine T~* such that T o T~ =
T—'oT =id, we say T is reversible.

3 Note that the dynamics obtained from these two definitions are in fact quite different,
as shown in [20,21].
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Note that o_(x)|F is the F-shaped pattern ‘at’ v, but we do not write x| g
because we want the pattern we read from x to have F' as its domain.

This definition corresponds to classical Turing machines with the moving
head model when d = 1, F = F' = {0} and f(z,q)3 € {-1,0,1} for all z,q.
By possibly changing the local rule f, we can always choose F = [—r;,7;]¢ and
F' = [=74,7,]¢ for some 7;,7, € N, without changing the Turing machine T} it
defines. The minimal such r; is called the in-radius of T, and the minimal r,
is called the out-radius of T. We say the in-radius of a Turing machine is —1
if there is no dependence on input, that is, the neighborhood [—r;, ;] can be
replaced by the empty set. Since 2" x @ is finite, the third component of f(p, q)
takes only finitely many values v € Z%. The maximum of |v| for such v is called
the move-radius of T. Finally, the maximum of all these three radii is called the
radius of T. In this terminology, classical Turing machines are those with in-
and out-radius 0, and move-radius 1.

Definition 3. Define TM(Z%,n, k) as the set of (d,n, k)-Turing machines and
RTM(Z?,n, k) the set of reversible (d,n, k)-Turing machines.

In some parts of this article we just consider d = 1. In this case we simplify
the notation and just write RTM(n, k) := RTM(Z,n, k).

Of course, we want TM(Z?,n, k) to be a monoid and RTM(Z?,n, k) a group
under function composition. This is indeed the case, and one can prove this
directly by constructing local rules for the inverse of a reversible Turing machine
and composition of two Turing machines. However, it is much easier to extract
this from the following characterization of Turing machines as a particular kind
of cellular automaton.

For a subshift X, we denote by End(X) the monoid of endomorphisms of X
and Aut(X) the group of automorphisms of X.

Proposition 1. Let n,k be positive integers and Y = X,, o. Then:

TM(Z4,n, k) = {¢ € End(X,, 1) | ¢y =id, ¢ (Y) =Y}
RTM(Z%, n, k) = {¢ € Aut(X, 1) | ¢y =id}

s

Corollary 1. We have ¢ € RTM(Z%,n, k) if and only if $ € TM(Z?, n, k) and
¢ s bijective.

Clearly, the conditions of Proposition 1 are preserved under function compo-
sition and inversion. Thus:

Corollary 2. Under function composition, (TM(Z%,n, k), o) is a submonoid of
End(X,, 1) and (RTM(Z%,n,k),0) is a group.

We usually omit the function composition symbol, and use the notations
TM(Z%,n,k) and RTM(Z% n,k) to refer to the corresponding monoids and
groups.
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2.2 The Moving Tape Model

It’s also possible to consider the position of the Turing machine as fixed at 0,
and move the tape instead, to obtain the moving tape Turing machine model. In
[20], where Turing machines are studied as dynamical systems, the moving head
model and moving tape model give non-conjugate dynamical systems. However,
the abstract monoids defined by the two points of view turn out to be equal,
and we obtain an equivalent definition of the group of Turing machines.

As in the previous section, we begin with a definition using local rules.

Definition 4. Given a function f : ¥ x Q — DF % Q x Z¢, where F,F' are
finite subsets of Z%, we can define a map T} : T2 Q — I Q as follows:
If f(z|lr,q) = (p,d', d), then T¢(x,q) = (0a(y),q') where

[z, ifu g F’
Y7 \pus ifue P,

18 called the moving tape Turing machine defined by f.

These machines also have the following characterization with a slightly more
dynamical feel to it. Say that x and y are asymptotic, and write x ~ y, if
d(oy(x),04(y)) — 0 as |v| — co. We write & ~y, y if z, = y, for all |v| > m,
and clearly x ~ y <= Im:xz ~p, y.

Lemma 1. Let T : X%° x Q— ZZ % Q be a function. Then T is a moving tape
Turing machine if and only if it is continuous, and for a continuous function s :
Y2 %Q — 7 and a € N we have T(z,q)1 ~a Os(z,q) () for all (z,q) € 2% Q.

Note that in place of a we could allow a continuous N-valued function of
(z,q) — the definition obtained would be equivalent, as the a of the present
definition can be taken as the maximum of such a function.

We call the function s in the definition of these machines the shift indica-
tor of T, as it indicates how much the tape is shifted depending on the local
configuration around 0. In the theory of orbit equivalence and topological full
groups, the analogs of s are usually called cocycles. We also define in-, out- and
move-radii of moving tape Turing machines similarly as in the moving head case.

We note that it is not enough that T'(z,q)1 ~ 0g,q(z) for all (z,q) €
LA Q: Let @ = {1} and consider the function 7' : X% x Q — X% x Q
defined by (T(x,1)1); = @—; if @[_j;41,)5—1] = 0%~ and {z;,z_;} # {0}, and
(T'(x,1)1); = x; otherwise. Clearly this map is continuous, and the constant-0
map s(z,q) = 0 gives a shift-indicator for it. However, T' is not defined by any
local rule since it can modify the tape arbitrarily far from the origin.

As for moving head machines, it is easy to see (either by constructing local
rules or by applying the dynamical definition) that the composition of two mov-
ing tape Turing machines is again a moving tape Turing machine. This allows
us to proceed as before and define their monoid and group.



56 S. Barbieri et al.

Definition 5. We denote by TMgy(Z¢,n, k) and RTMg, (Z%, n, k) the monoid
of moving tape (d,n, k)-Turing machines and the group of reversible moving tape
(d, n, k)-Turing machines respectively.

Now, let us show that the moving head and moving tape models are equiv-
alent. First, there is a natural epimorphism ¥ : TM(Z9, n, k) — TMg, (Z4, n, k).
Namely, let T € TM(Z%,n, k). We define ¥(T) as follows: Let (x,q) € T2 % Q.
Letting y be the configuration such that yo = ¢ and 0 everywhere else and
T(xz,y) = (2/,y') such that y, = ¢’ we define ¥(T)(z,q) = (0_,(z"),q’). This is
clearly an epimorphism but it’s not necessarily injective if n = 1. Indeed, we have
that RTMg, (Z%, 1, k) = S;, and TMg,(Z%, 1, k) is isomorphic to the monoid of
all functions from {1,..., k} to itself while Z¢ < RTM(Z¢,1,k) < TM(Z%, 1, k).
Nevertheless, if n > 2 this mapping is an isomorphism.

Lemma 2. Ifn > 2 then:

TMiy (2%, n, k) = TM(Z%, n, k)
RTMgy (24,1, k) = RTM(Z%, n, k).

The previous result means that besides the trivial case n = 1 where the tape
plays no role, we can study the properties of these groups using any model.

2.3 The Uniform Measure and Reversibility

Consider the space DI Q. We define a measure g on B(ZZd x Q) as the
product measure of the uniform Bernoulli measure and the uniform discrete
measure. That is, if F' is a finite subset of Z¢ and p € X, then:

pllp] * () = ey

With this measure in hand we can prove the following:
Theorem 1. Let T € TMgy(Z% n, k). Then the following are equivalent:

1. T 1s injective.

2. T is surjective.

3. T € RTMg(Z%, n, k).

4. T preserves the uniform measure (u(T~*(A)) = u(A) for all Borel sets A).
w(T(A)) = pu(A) for all Borel sets A.

“

Remark 1. The proof is based on showing that every Turing machine is a local
homeomorphism and preserves the measure of all large-radius cylinders in the
forward sense. Note that preserving the measure of large-radius cylinders in
the forward sense does not imply preserving the measure of all Borel sets, in
general. For example, the machine which turns the symbol in FF = {0} to 0
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without moving the head satisfies u([p]) = u(T[p]) for any p € £ with S D F.
But u([]) = 1 and u(T([))) = u([0]) = 1/2, where [] = {0, ...,n}% is the cylinder
defined by the empty word.

Using the measure, one can define the average movement of a Turing machine.

Definition 6. Let T € TMgy(Z%, n, k) with shift indicator function s : L
Q — Z%. We define the average movement o(T) € Q% as

a(T) =E,(s) = / s(z, q)du,

i Q

where p is the uniform measure defined in Subsect. 2.3. For T in TM(Z%,n, k)
we define « as the application to its image under the canonical epimorphism ¥,
that is, a(T) := a(¥(T)).

We remark that this integral is actually a finite sum over the cylinders p €
YF. Nonetheless, its expression as an expected value allows us to show the
following: If 71, To € RTM(Z%, n, k) then (T} o Ty) = a(Ty) + a(Ty). Indeed, as
reversibility implies measure-preservation, we have that

E#(ST1OT2) = E#(ST1 oTy + st) = E#(ST1) + EM(STz)'

This means that o defines an homomorphism from RTM(Z4, n, k) to Q<.

2.4 Classical Turing Machines

As discussed in the introduction, we say a one-dimensional Turing machine is
classical if its in- and out-radii are 0, and its move-radius is 1. In this section,
we characterize reversibility in classical Turing machines. If T has in-, out-
and move-radius 0, that is, Ty only performs a permutation of the set of pairs
(s,q) € ¥ x @ at the position of the head, then we say Ty is a state-symbol
permutation. If T7 has in-radius —1, never modifies the tape, and only makes
movements by vectors in {—1,0, 1}, then T} is called a state-dependent shift.*

Theorem 2. A classical Turing machine T is reversible if and only if it is of the

form Ty o Ty where Ty is a state-symbol permutation and Ty is a state-dependent
shift.

It follows that the inverse of a reversible classical Turing machine is always
of the form Ty o Ty where Ty is a state-symbol permutation and 77 is a state-
dependent shift. In the terminology of Sect.3, the theorem implies that all
reversible classical Turing machines are elementary.

4 Note that these machines are slightly different than the groups SP(Z,n,k) and
Shift(Z, n, k) introduced in Sect. 3, as the permutations in SP(Z, n, k) do not modify
the tape, and moves in Shift(Z;n, k) cannot depend on the state.
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3 Properties of RTM and Interesting Subgroups

In this section we study some properties of RTM by studying the subgroups it
contains. We introduce LP, the group of local permutations where the head does
not move and RFA, the group of (reversible) finite-state automata which do not
change the tape. These groups separately capture the dynamics of changing the
tape and moving the head. We also define the group of oblivious Turing machines
OB as an extension of LP where arbitrary tape-independent moves are allowed,
and EL as the group of elementary Turing machines, which are compositions of
finite-state automata and oblivious Turing machines.
First, we observe that a(RTM(Z9,n, k)) is not finitely generated, and thus:

Theorem 3. For n > 2, the group RTM(Z%,n, k) is not finitely generated.

Although « is not a homomorphism on TM(Z%,n, k), using Theorem 1, we
obtain that TM(Z%,n, k) cannot be finitely generated either.

3.1 Local Permutations and Oblivious Turing Machines

For v € Z¢, define the machine T}, which does not modifies the state or the tape,
and moves the head by the vector v on each step. Denote the group of such
machines by Shift(Z?, n, k). Clearly « : Shift(Z¢, n, k) — Z% is a group isomor-
phism. Define also SP(Z%,n, k) as the state-permutations: Turing machines that
never move and only permute their state as a function of the tape.

Definition 7. We define the group LP(Z% n,k) of local permutations as the
subgroup of reversible (d,n,k)-Turing machines whose shift-indicator is the
constant-0 function. Define also OB(Z% n,k) = (Shift(Z%,n, k), LP(Z%,n, k)),
the group of oblivious Turing machines.

In other words, LP(Z%,n, k) is the group of reversible machines that do not
move the head, and OB(Z?, n, k) is the group of reversible Turing machines whose
head movement is independent of the tape contents. Note that in the definition
of both groups, we allow changing the state as a function of the tape, and vice

versa. Clearly Shift(Z4,n, k) < OB(Z%, n, k) and SP(Z%,n, k) < LP(Z% n, k).

Proposition 2. Let S, be the group of permutations of N of finite support.
Then for n > 2, S, < LP(Z9 n, k).

In particular, RTM(Z4, n, k) is not residually finite. By Cayley’s theorem,
Proposition 2 also implies that RTM(Z?, n, k) contains all finite groups.

Proposition 3. The group OB(Z4,n, k) is amenable.
Write H ! G for the restricted wreath product.
Proposition 4. If G is a finite group and n > 2, then G17Z% — OB(Z,n, k).
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The groups GiZ% are sometimes called generalized lamplighter groups. In fact,
OB(Z4,n, k) can in some sense be seen as a generalized generalized lamplighter
group, since the subgroup of OB(Z?,n, k) generated by the local permutations
LP(Z%,n,1) with radius 0 and Shift(Z%, n, 1) is isomorphic to A = S,, 1 Z9.

Interestingly, just like the generalized lamplighter groups, we can show that
the whole group OB(Z%,n, k) is finitely generated.

Theorem 4. OB(Z% n, k) is finitely generated.

3.2 Finite-State Automata

Definition 8. We define the reversible finite-state automata RFA(Z?,n, k) as
the group of reversible (d,n,k)-Turing machines that do not change the tape.
That is, the local rules are of the form f(p,q) = (p,q,z) for all entries p €

2Fqeq.
This group is orthogonal to OB(Z?,n, k) in the following sense:
Proposition 5
RFA(Z%, n, k) NLP(Z% n, k) = SP(Z% n, k)
RFA(Z%, n, k) N OB(Z%, n, k) = (SP(Z%,n, k), Shift(Z¢, n, k))
As usual, the case n = 1 is not particularly interesting, and we have that
RFA(Z%,1,k) =2 RTM(Z4, 1, k). In the general case the group is more complex.
We now prove that the RFA(Z?, n, k)-groups are non-amenable. In [10], a

similar idea is used to prove that there exists a minimal Z2-subshift whose topo-
logical full group is not amenable.

Proposition 6. Let n > 2. For all m € N we have that:
Z)2Z % --- % /27 — RFA(Z% n, k)

m times

Corollary 3. For n > 2, RFA(Z% n,k) and RTM(Z% n, k) contain the free
group on two elements. In particular, they are not amenable.

By standard marker constructions, one can also embed all finite groups and
finitely generated abelian groups in RFA(Z%, n, k) — however, this group is resid-
ually finite, and thus does not contain Sy, or (Q,+).

Proposition 7. Let n > 2 and G be any finite group or a finitely generated
abelian group. Then G < RFA(Z%,n, k).

Theorem 5. Letn > 2.k > 1,d > 1. Then the group RFA(Z4,n, k) is residually
finite and is not finitely generated.

The proof of this theorem is based on studying the action of the group on
finite subshifts where heads are occur periodically. Non-finitely generatedness
is obtained by looking at signs of permutations of the finitely many orbits, to
obtain the sign homomorphism to an infinitely generated abelian group.
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3.3 Elementary Turing Machines and the LEF Property of RTM

Definition 9. We define the group of elementary Turing machines
EL(Z% n,k) := (RFA(Z% n,k),LP(Z% n,k)). That is, the group generated by
machines which only change the tape or move the head.

Proposition 8. Let Q, = %Z. Then a(RFA(Z%,n, k) = a(EL(Z%,n, k)) = Q4.
In particular, EL(Z4,n, k) C RTM(Z4, n, k).

We do not know whether a(T) € Z? implies T € EL(Z% n, 1), nor whether
EL(Z% n, k) is finitely generated — the sign homomorphism we use in the proof
of finitely-generatedness of the group of finite-state automata does not extend
to it.

By the results of this section, the group RTM(Z?, n, k) is neither amenable
nor residually finite. By adapting the proof of Theorem 5, one can show that it
is locally embeddable in finite groups. See [29-31] for the definitions.

Theorem 6. The group RTM(Z%,n, k) is LEF, and thus sofic, for all n,k,d.

4 Computability Aspects

4.1 Basic Decidability Results

First, we observe that basic management of local rules is decidable. Note that
these results hold, and are easy to prove, even in higher dimensions.

Lemma 3. Given two local rules f,g: XF x Q — XF x Q x 29,

— it is decidable whether Ty =T,

— we can effectively compute a local rule for Ty o Ty,

— 1t is decidable whether Ty is reversible, and

— we can effectively compute a local rule for Tfl when T’y is reversible.

A group is called recursively presented if one can algorithmically enumerate its
elements, and all identities that hold between them. If one can furthermore decide
whether a given identity holds in the group (equivalently, whether a given element
is equal to the identity element), we say the group has a decidable word problem.
The above lemma is the algorithmic content of the following proposition:

Proposition 9. The groups TM(Z% n,k) and RTM(Z%,n,k) are recursively
presented and have decidable word problems in the standard presentations.

4.2 The Torsion Problem

The torsion problem of a recursively presented group G is the set of presentations
of elements g € G such that ¢" = 1g for some n > 1. Torsion elements are
recursively enumerable when the group G is recursively presented, but the torsion
problem need not be decidable even when G has decidable word problem.
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In the case of RTM(Z%,n, k) the torsion problem is undecidable for n > 2.
This result was shown by Kari and Ollinger in [19] using a reduction from the
mortality problem which they also prove to be undecidable.

The question becomes quite interesting if we consider the subgroup
RFA(Z n,k) for n > 2, as then the decidability of the torsion problem is
dimension-sensitive.

Theorem 7. The torsion problem of RFA(Z,n, k) is decidable.

Theorem 8. For alln > 2,k > 1,d > 2, there is a finitely generated subgroup
of RFA(Z4,n, k) whose torsion problem is undecidable.
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