Chapter 13
Bottom Fixed Substructure Analysis, Model
Testing and Design for Harsh Environment

Duje Veic, Marek Kraskowski, and Tomasz Bugalski

Abstract The aim of this chapter is to study the various hydrodynamic loads
important for the design process of offshore wind turbines foundations. A numerical
study on weakly non-linear waves was conducted, using the commercial code
StarCCM+-4-. Open-source codes OpenFoam and OceanWave3D were used for
the simulation of breaking waves. Existing analytical and empirical formula-
tions, and the results and conclusions from the current numerical study are
presented.

13.1 Introduction

The main objective of this study is load analysis on fixed bottom support structures
of offshore wind turbines suitable for shallow waters and transitional depths
(up to 60 m). Usually, hydrodynamic loads cause lower impact on the tower
deflection than the wind loads, however for some conditions hydrodynamic loads
excite the structure more severely. Hydrodynamic loads are subject of the study
in this research, with the primary focus on impulse forces from the breaking
waves.

Quantitative data collection from model tests in the AQUILO' project is used
for the study on wave propagation and wave loads in the numerical wave tank, by
using commercial code StarCCM+-+. Furthermore, empirical solutions from the
Morison equation (Morison et al. 1950) are compared with experimental data as
well. Experiments were conducted on support structures installed in the intermediate
water depths (d =40-60 m).

' AQUILO—Development of the selection method of the offshore wind turbine support structure
for Polish maritime areas, project cofounded by NCBiR; www.morceko-aquilo.pl
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Collaboration with Deltares/Delft within the framework of WiFi?, allowed for
an insight into comprehensive experimental data for validation of numerical open-
source codes—OpenFoam and OceanWave3D. Experiments were conducted on a
monopile structure installed in relatively shallow water (d =30 m). A series of
impulse loadings from breaking waves were observed. It is expected that more
comprehensive results will be published after completion of the research. In this
chapter, a part of the numerical study is presented.

In short, the purpose of this paper is to present the types of hydrodynamic loads
important for the design process of offshore wind turbines foundations, to give a
note on existing analytical and empirical formulations and to present results and
conclusions from the numerical study.

13.2 Determination of Design Wave

Regular wave profiles in deep water, or intermediate water depth that is not too steep,
follow a sinusoidal shape and are well described by linear wave theory. As wave
height increases and water depth decreases the wave crest tends to become more
narrow and steep, whereas the wave trough becomes long and flat. This happens as
the wave starts to sense the bottom. Nonlinearity of wave increases with increased
steepness of the wave. Weakly non-linear, undisturbed waves are in general well
understood, and higher order perturbation solutions—such as Stokes 3rd, Stokes
5th, and fully non-linear stream function theories—exist for regular waves.

Figure 13.1 shows regions of recommended wave theories. Near the point of
breaking, a wave becomes highly nonlinear, and at the point of breaking releases
a high amount of energy; such events can have a significant contribution on the
loading of offshore wind turbines.

Sea states are approximated by wave spectra. The Pierson-Moskowitz (Pierson
and Moskowitz 1964) and JONSWAP spectrum are commonly used in practice.
Generally, the point of interest is the maximum wave elevation in a 3 h storm
duration which may occur once in 50-years. Within that duration, the maximum
expected wave height can be estimated as Hyox = 1.86H; (DNV 2014), where H is
significant wave height.

Marked positions on Fig. 13.1 correspond to representative cases from experi-
ments in the AQUILO and WiFi projects. Figure 13.2 presents comparison between
experimentally observed wave elevation just before wave breaking and theoritical
estimations.

2WiFi—joint industry project, Wave Impact on Fixed turbines; secondment at Del-tares/Delft.
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Fig. 13.1 Recommended wave theories (Source: DNV 2014)

13.3 Hydrodynamic Loads

The rotor thrust reaction to wind loads acts on a larger lever arm than loads from the
waves. Usually, hydrodynamic loads cause a smaller impact on the tower deflection
than wind loads. Wind loads are a dominant source of fatigue loading; however in
cases when wind and waves are misaligned, there is no influence of aerodynamic
damping, and fatigue from hydrodynamic loads has to be taken into consideration
as well.
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Fig. 13.3 Breaking wave impact (slam) force

Typical design drivers for foundations of offshore wind turbines are impact
forces from very steep and breaking waves (Fig. 13.3), which can be expected at
sites where monopile support structures are usually installed (in up to 30 m water
depth).

The extreme and fatigue response stresses depend strongly on the dynamic
behavior of the wind turbine structure. When harmonics of the wave frequency
coincide with the natural frequency of the structure, the resonance of the structure
may result in an amplification of the response. The foundations of fixed bottom wind
turbines are designed such that the natural frequency of the structure is out of the
range of wave spectrum frequencies. However, higher harmonics of wave excitation
can excite structures in resonance and thus amplify the total response. In literature,
the phenomena of “ringing” and “springing” are associated with higher harmonic
excitations from the incident wave (Faltinsen 1993).
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13.4 Analytical and Empirical Formulations

13.4.1 Morison Equation

The Morison equation (Morison et al. 1950) is by far the most used equation for
computing wave loads on slender structures such as jackets and monopiles. The
inline force on a slender body is estimated from fluid velocities and accelerations.
The Morison equation is a sum of two terms; one being an empirical drag term
proportional to the fluid velocity squared, and the other being an inertia term,
derived from potential flow theory, proportional to the fluid acceleration. The
Morison equation is defined as follows:

F= 1/2 CapD|U| U + CppA U] (13.1)

The empirical force coefficients C,, and C, in the Morison’s equation are determined
from 2D experiments. In general, the drag and inertia coefficients are functions of
the Reynolds number, the Keulegan-Carpenter number, the relative roughness, and
the ratio between waves and current. The Morison equation which is based on a
stream function wave theory predicts the loadings of weakly non-linear waves with
good accuracy.

13.4.2 Higher Harmonic Forces

An amplification of the structural response can be expected when higher harmon-
ics of non-linear waves coincide with the 1st structural natural frequency. The
“Ringing” phenomenon is usually associated with third harmonic excitations from
incident waves. The reason why the third harmonic force and “ringing” responses
are often associated is that fi,we/3 is close to typical peak frequencies of storm waves
(Paulsen 2013). When a “ringing” phenomenon is expected, it has to be considered
in the design process of wind turbine foundations (DNV 2014).

A comprehensive literature review and a study on higher harmonic loads can be
found in the work of (Paulsen 2013). Paulsen (2013) studied higher harmonic loads
numerically and compared the obtained results with third order perturbation theories
from Faltinsen (1993) and Malenica and Molin (1995). The study by Paulsen (2013)
also compared results with the Morison equation with an additional term proposed
by Rainey (1989).



198 D. Veic et al.
13.4.3 Impulse (Slam) Forces from Breaking Waves

Plunging wave breakers can excite the structure most violently. For the calculation
of the impact forces on slender structures, an additional part in the Morison equation
is introduced:

F = Fyorison + Fsiam = Finertia + Fdrag + Fstam (13.2)

where Fy,,,[N] is the slam force, defined as the integration of inline impact force,
fi[N/m], over the area of the impact (Fig. 13.4):

area

Fjam = ﬁ = nb)\'/ *ﬁ (13.3)

0
Fyiam = mpA * fi; rectangular force distribution (13.4a)
Fyjam = 0.5n,A % fi; triangular force distribution (13.4b)

The parameter which indicates how much of the wave crest (1,[m]) is active in the
impulse force is defined as the “curling factor” (1).
The line impact force is generally defined as:

fi = Cy()pRC,? (13.5)

where Cs is defined as the “slamming coefficient”.
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Fig. 13.4 Breaking wave parameters
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Studies on impact forces from breaking waves are usually compared with one of
the first studies on wave entry problems done by Von Karman (1929) and Wagner
(1932). They studied impact forces for a case when an infinitely long falling cylinder
hits a calm water surface. The cylinder was approximated as a flat plate. Von Karman
(1929) considered the momentum conservation during the impact as:

fi=dm,V) /dt (13.6)

where m;, = 0.57pc? is the added mass below the flat plate.
Wagner (1932) considered the velocity potential around a flat plate as:

¢ =—Ve(t)t =22 (13.7)

and by estimating ¢(f) = 2+/VIR, he solved temporal part of the Bernoulli’s
equation. Wagner (1932) also explained the so-called “pile-up” effect, which is the
deformation of the water free surface around the plate. Due to this “pile-up effect”,
the immersion of the cylinder occurs earlier. As a result, the duration of the impact
decreases and the maximum impact force increases. Thus, the force calculated by
applying Wagner’s theory is estimated as twice the line force calculated by von
Karman’s theory (Table 13.1). Both theories are time independent and present only
a maximum line force.

For the calculation of impact forces due to plunging wave breakers on offshore
wind turbines, a reference is usually made to the model developed by Wienke and
Oumeraci (2005). The theoretical description of their model is based on Wagner’s
(1932) 2D-model; to account for the temporal development of the impact they
compute the non-linear velocity term in Bernoulli’s equation.

Comprehensive experimental studies have been conducted to study impact forces
of breaking waves. High fluctuations and scattering from the point of view of local

Table 13.1 Overview on wave impact studies

Author Max inline force (pRc?) Max press (pc?)
von Karman (1929) T

Wagner (1932) 2 T

Goda et al. (1966) T

Sawaragi and Nochino (1984) 3 E

Tanimoto et al. (1987) 1.1 -1.8 E

Zhou et al. (1991) 4-13 E
Chaplin (1993) 2 4 E

Chan et al. (1995) 16-47 E
Wienke and Oumeraci (2005) 2 T 40 E
Ros (2011) 1.1 -14 E

Hildebrandt and Schlurmann (2012) 0.8 -1.1 N 4-12.5 E

T theory, E experiment, N numerical
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line forces and local pressures are observed. Table 13.1 gives an overview on wave
impact studies.

The nature of impulsive forces is characterized by very short durations, and the
resulting structural responses are sensitive to dynamic analysis; hence, both the
intensity and the time history of impact (slamming) forces are important design
parameters. The total impact duration and the “rising time”, are both important
parameters for dynamic structure analysis (Fig. 13.5).

13.5 Numerical Analysis

The Navier—Stokes equations can be solved in combination with volume of fluid
(VOF) surface capturing scheme. For an incompressible two phase flow, conserva-
tion of mass and momentum in an Eulerian frame of reference, is given by:

Vu=0 (13.8)

ad

&pu—i— p(Vu)u=-Vp*—(g-x) Vp+ Vp(rVu) (13.9)
where u = (u, v, w) is the instantaneous velocity in Cartesian coordinates, p is the
density, p* is the pressure in excess of the hydrostatic pressure, g is the acceleration
due to gravity, X is the Cartesian coordinate vector, | is the dynamic molecular
viscosity.
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The free surface separating the air and water phase is captured using a VOF
surface capturing scheme, which solves the following equation for the water volume
fraction (o):

%—?+V-uo¢+v-ura(l—a)=0 (13.10)
In Eq. (13.10), u, is a relative velocity (Berberovi¢ et al. 2009), which helps to retain
a sharp interface, and the term o (1 — o) vanishes everywhere except at the interface.
The marker function is 1 when the computational cell is filled with water, and 0
when it is empty; in the free surface zone, the marker function will have a value in
the interval o € [0; 1] indicating the volume fraction of water and air respectively.
The fluid density and viscosity is assumed continuous and differentiable in the entire
domain, and the following linear weighting of the fluid properties is adopted:

p=o0apy+ (1 —a)pa; b=0apy+ (1 —0a)p, (13.11)

In Eq. (13.9), the sub-indices w and a refer to water and air respectively.

13.5.1 Star CCM++

Numerical analyses within the framework of the AQUILO project were done by
using the commercial CFD package StarCCM+4-+-. Sensitivity analyses on the
regular wave propagation in the numerical domain were also conducted. The inlet
boundary condition in the computations is based on the free surface elevation
and the velocity components are calculated according to desired wave, using the
corresponding wave theory. Wave theories up to the Stokes 5th order theory are
implemented in the StarCCM++ package. Waves examined in the scope of the
AQUILO can be described as a weakly non-linear and they are well estimated by the
Stokes 5th order regular wave theory (Fig. 13.1). The sensitivity of mesh parameters,
time step, discretization method and turbulence model was investigated. It was
ensured that the reflections from the boundaries were neutralized. The following
conclusions were drawn:

e The domain should be refined in the free surface zone (around 25 cells per
wave height and 115 cells per wave length); the aspect ratio should be dx/dz <4
(Fig. 13.6)

» Second order time discretization should be used with at least five iterations
per time step; in the equation for volume fraction of water, the convection
flux was discretized using a special high-resolution interface-capturing (HRIC)
scheme which is designed to keep the interface sharp. To use the HRIC scheme
propagation, the wave should be less than half a cell per time step
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Fig. 13.6 Part of the numerical domain domain, grid refinement

* k-¢ turbulence models introduce significant generation of eddy viscosity at the
free surface interface; significant numerical diffusion was observed. After wave
propagation of few wave lengths, wave height was reduced up to the 20 %
compared with the initialized wave height.

» Better results were obtained by using an inviscid model. After wave propagation
of 20 wave lengths, the wave height was reduced up to the 6 % compared to the
initialized wave height

* The structure under analysis must not be placed too close to the inlet boundary
because of the reflected waves that propagate upstream toward the inlet boundary
and changing inlet values.

* In a case where the linear wave propagating in the numerical tank is influenced
by the sea bed, the obtained wave height at the position of interest was around
20 % lower than theoretically expected.

* It was found that the propagation of a wave, influenced by the sea bed, suffers
from significant damping. It is suggested that parameters of initialised wave be
close to the characteristics of the specific wave of interest.

As waves under the consideration in the AQUILO project are well approximated
by Stokes 5th order theory (which is also implemented in the StarCCM++), a
“forcing” technique for the further analysis. In the “forcing” technique, the idea is
to have free zone around the structure of the interest while, in the rest of the domain,
solutions are forced towards theoretical solutions (Fig. 13.7). At each time step, if
the solution differs from the theoretical solution it is “forced” towards theoretical
solution by assuming an additional source in the transport equation. The additional
term in the transport equation is defined as:

by = =M (¢ —¢*) (13.12)

where A is forcing coefficient; ¢ is the solution of the transport equation at the
given CV centroid; and ¢*is the value towards which the solution is forced. This
technique is used with very large values of A, when the solution needs to be fixed
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Fig. 13.8 Comparison between theoretical and computational results

to a certain value—after which then the remaining parts of the discretized equation
become negligible.

In this technique, waves that are reflected off the structure and propagate
upstream towards inlet boundary can be reduced and their influence on results can
be eliminated; additionally, the necessary wave damping towards the outlet can be
achieved more progressively, and the domain size can be reduced so that the speed
of computation is increased.

An almost perfect comparison between the theoretical and numerical compu-
tations is presented in Fig. 13.8. As the Stokes 5th order wave theory is the
highest wave theory implemented in STAR CCM++, theoretical solutions from
other sources need to be employed for an analysis of steeper, strongly non-linear
waves.
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13.5.2 OceanWave3D: OpenFoam

To correctly predict the nonlinearity of the incident waves, bathymetry changes
have to be taken into account as soon as the wave starts to get influenced by
the bottom. To simulate the propagation of a wave with a strong influence of the
sea bed (very steep, near breaking or breaking waves) the computation domain
should be very long—however, the solution would be significantly influenced by
numerical diffusion. To reduce the influence of numerical diffusion, and to reduce
the time of the computation, one can solve the Navier-Stokes/VOF equations in
a very small “inner” region of interest, while wave propagation up to the “inner”
region of interest is solved by existing wave theories. A fully non-linear domain
decomposed solver is presented by Paulsen et al. (2014). The fully non-linear
potential flow solver is combined with a fully non-linear Navier—Stokes/VOF solver
via generalized coupling zones of arbitrary shape.

To generate fully nonlinear boundary conditions for the Navier—Stokes/VOF
solver, the potential flow solver “OceanWave3D” developed by Engsig-Karup
et al. (2009) is applied. The model solves the three dimensional (3D) Laplace
problem in Cartesian coordinates while satisfying the dynamic and kinematic
boundary conditions. The equations evolve in time using a classic fourth order,
five step Runge—Kutta method. The Laplace equation is solved in a o-transformed
domain using higher order finite differences for numerical efficiency and accuracy.
Figure 13.9 depicts a comparison between the irregular wave elevation signal from
the OceanWave3D solver, and the same signal measured in the WiFi project for a
piston type wave maker.

The Navier—Stokes/VOF governing equations are solved using an open-source
computational fluid dynamics toolbox, OpenFoam®. The equations are discretized
using a finite volume approximation with a collocated variable arrangement on
generally unstructured grids. For the current investigation, OpenFoam® version
2.3.0 is combined with the open-source wave generation toolbox, waves2Foam.

02r
— Measurements

0.1 b =———0ceanWave3D

_{]. I L 1 1 1 1 J
90 95 100 105 110 115 120

Fig. 13.9 Comparison of irregular wave elevation, experiment vs. OcenWave3D
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13.6 Results

13.6.1 Stokes 5th Order

Experimental analyses were conducted within the framework of the AQUILO
project on four types of support structures: monopile, gravity based, tripod with
pile foundation, and gravity tripod structure (Fig. 13.10). Predictions of wave loads
are realized with theoretical JONSWAP energy spectra for a potential 50-year
storm condition in the Baltic Sea. Global forces and moments on the structures
were measured. The geometries do not represent any existing structures, and were
designed for purposes of the AQUILO project, by taking into account typical
shapes of existing structures and also the feasibility of manufacturing the physical
models.

Due to limitations of the wave maker operability, the depth of the towing tank
does not correspond to the design water depths (in a full scale case, the design
water depth for a tripod structure is 60 m, while in CTO facilities, the minimum
achievable water depth was 120 m). The location of the model relative to the free
surface is then adjusted by using an additional support structure mounted to the
bottom of the towing tank (Fig. 13.11). Obviously, the difference in water depth
results in an incorrect modelling of the wave kinematics. The proposed method
of model tests is a necessary compromise resulting from the limitations of the
testing facility. In order to minimize the vertical motion of water particles in the
vicinity of the foundations, a circular flat plate was mounted below the model
(Fig. 13.11).

As a part of this study, experimental results on tripod gravity structure were
compared with results from the Morison equation and numerical computations.
Waves which excite the structure with the maximum inline force were taken into the
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Fig. 13.10 Types of support structures analyzed in the AQUILO project
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consideration. Drag and inertia coefficients were estimated as Cd = 1.8 and Cm =2,
respectively. The numerical analysis was done with StarCCM++ code, by using
the “forcing” technique and an inviscid model. The inviscid model is found to be
suitable when the separation of the flow is not expected—i.e.—when the Keulegan-
Carpenter number is low (KC<5) (Faltinsen et al. 1995). A good agreement was

observed, as shown in Fig. 13.12.

A local wave breaking was observed during the experimental analysis on the
monopile structure equipped with an ice breaking cone (Fig. 13.13). The results of
the numerical computation done by StarCCM++ are compared with experimental
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Fig. 13.13 Monopilestructure equipped with ice-breaking cone; experiment vs Star CCM++
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Fig. 13.14 Inline force on monopile equipped with the ice breaking cone; comparison experiment-
Star CCM++

measurements for the most violent regular wave which can be simulated in
the CTO facilities. The comparison results are shown in Fig. 13.14. Because
of experimental limitations, the maximum expected wave height could not be
simulated (Hmax & 1.86Hs); thus, another numerical simulation was computed on
the maximum expected wave height (Fig. 13.15). An impulse peak force caused by
the local breaking of wave on the ice breaking cone is clearly visible: the total force
increased by approximately 30 % due to the breaking wave.
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13.6.2 Breaking Wave

Experimental analyses were conducted within the frame work of the WiFi project
on a rigid monopole excited by irregular waves; the waves were estimated using
the theoretical JONSWAP energy spectra for an expected 50-year storm condi-
tion. A series of impulse forces from breaking waves were observed. The total
forces and pressures were measured. Numerical analyses were also conducted
by OceanWave3D-OpenFoam interaction, and a good agreement between the
measurements and computations was observed (Fig. 13.16).

The examined waves start breaking just before the front of structure, as shown
in Fig. 13.17a, b. The pressure field presented in Fig. 13.17c is relative to
the stagnation pressure—which is water density (p= 1000 kg/m?) multiplied
by the squared wave celerity (¢ =2.2 m/s). The maximum computed pressure
peak is 1.5pc?. The maximum line force (f;) is calculated as an integration of
the pressure field around the circumference of the cylinder (around 40°) and
corresponds to the slamming coefficient value Cs = 1.8. The values of maximum

local pressure and slamming coefficient are lower than any values shown in
Table 13.1.
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13.7 Conclusions

A series of computations for hydrodynamic forces on fixed bottom support struc-
tures for offshore wind turbines have been carried out. It can be conclusively stated
that the Morison equation is an adequate and fast engineering tool for the estimation
of inline forces on the slender structures installed in relatively deep water, where
strongly non-linear waves are not expected. CFD tools are important for studies
related to local flow around the structure, wave run-ups, higher harmonic forces,
and impact forces from waves.

It is also noted that simulations of wave propagation (analyses with
StarCCM+-+) suffer from artificial numerical diffusion, especially when k-¢
turbulence models are included in the computations. CFD simulations are too
expensive and diffusive for simulation of undisturbed wave propagation—which
can instead be computed with the potential wave tools, such as OceanWave3D.

An OpenFoam-OceanWave3D interaction was used to simulate breaking waves
on a monopile support structure. A very good agreement between measurements
and computations was obtained. The maximum obtained peak pressure was 1.5pc?
and the maximum slamming coefficient (Cs) was 1.8, which is quite low compared
to the results of studies presented in Table 13.1.
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