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Abstract. Associating meaning with data in a machine-readable for-
mat is at the core of the Semantic Web vision, and typing is one such
process. Typing (assigning a class selected from schema) information
can be attached to URI resources in RDF/S knowledge graphs and
datasets to improve quality, reliability, and analysis. There are two types
of properties: object properties, and datatype properties. Type informa-
tion can be made available for object properties as their object values
are URIs. Typed object properties allow richer semantic analysis com-
pared to datatype properties, whose object values are literals. In fact,
many datatype properties can be analyzed to suggest types selected
from a schema similar to object properties, enabling their wider use in
applications. In this paper, we propose an approach to glean types for
datatype properties by processing their object values. We show the use-
fulness of generated types by utilizing them to group facts on the basis of
their semantics in computing diversified entity summaries by extending
a state-of-the-art summarization algorithm.

Keywords: Type inference · Datatype properties · RDF triples ·
Feature grouping and ranking · Entity summarization · Dataset
enrichment

1 Introduction

The rise of open data initiatives (e.g., Linking Open Data) has encouraged large-
scale publication of data on the Web. Resource Description Framework (RDF)
has been used extensively to encode information and publish as Semantic Web
datasets and knowledge graphs. The direct consumers of these datasets, most of
the time, are machines or software such as search and rank services. Therefore, it
is imperative to enrich the datasets with additional information so that machines
can interpret them properly. Assigning ontology classes as types to resources
(typing) in RDF via the rdf:type property (which we refer to as semantic
types) is one example of a data enrichment process. This can help machines to
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identify similar or related resources by analyzing their types. Such enrichment
can be exploited to improve the quality and reliability of datasets and facilitate
analytics. Typing is performed on URI resources and, hence, only applies to
object properties. Datatype property values are literals, and are usually associ-
ated with types by virtue of their syntactic data representation (which we refer
to as syntactic types). For example, one assigns datatypes such as xsd:string,
xsd:integer, and xsd:date to literals.

Syntactic types do not make explicit information that can be exploited for
data analysis. However, the amount of information that datatype properties rep-
resent compared to object properties is significant in some real-world datasets.
For instance, a recent version of DBpedia [10], which is one of the largest and
most comprehensive encyclopedic datasets on the Web, has 1,600 datatype prop-
erties compared to 1,079 object properties1. Many of the literal values (other
than noise) can be associated with types selected from a set of ontology classes
that can promote proper semantic interpretation and use. For example, the prop-
erty http://dbpedia.org/property/location has about 1,05,047 unique and sim-
ple literals that can be mapped to entities to infer the types (e.g., “California”,
“United States”). An entity is a thing (e.g., person, book, place) at the data
level that encapsulates facts and is represented by a URI.

The importance of type information has been demonstrated by researchers
in the Semantic Web community, including for inferring missing types for enti-
ties [13], ranking types for entities [17], and generating summaries using type
graphs [18]. All these approaches make use of existing type information of “enti-
ties” or infer additional/missing types from them. There has not been any work
related to inferring or computing types for literals in RDF/S datasets. In this
work, we propose to address the issue of computing “semantic types” whenever
possible for literal values of datatype properties. When types are available for
datatype properties, they can be used in many interesting applications such as
data integration, property alignment, and entity summarization. For example, in
property alignment [5,7], we can utilize types to prune the candidates for align-
ment. Further, type prediction on datatype properties provides benefits similar
to the works on type prediction for entities as in SDType [13]. We demonstrate
the application of generated semantic types by extending the FACES entity
summarization algorithm [6] and show how to group and rank features based on
datatype properties. Our contributions in this work are twofold:

1. We analyze the object value of datatype properties and select a suitable class
as the type from a given set of ontology classes.

2. We extend FACES (FACES-E) to group and rank both object and datatype
properties to create entity summaries and demonstrate the usefulness of types
to generate comprehensive entity summaries.

The rest of the paper is organized as follows. In Sect. 2, we analyze the
problem of typing literals in datatype properties, and in Sect. 3, we define the
problem and notions related to typing and summarization. In Sect. 4, we present

1 http://wiki.dbpedia.org/About.

http://dbpedia.org/property/location
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our typing algorithm and feature ranking for datatype properties, followed by
evaluation in Sect. 5. We present a general discussion with future directions in
Sect. 6, and present related work in Sect. 7. Finally, we conclude in Sect. 8.

2 Problem Analysis

Web Ontology Language (OWL) defines the types of properties: object proper-
ties that connect individuals to individuals and datatype properties that connect
individuals to data values (literals)2. The object value of an object property is
a URI that can be assigned an ontology class as its type via rdf:type property.
But object values of datatype properties do not have ontology classes assigned
as types and the only types available for them are the syntactic types referring
to primitive, low-level implementation types. In this work, we try to suggest a
class from a given set of classes as the type of the literal of the datatype prop-
erty. See Fig. 1 which shows two triples (2) and (3) having datatype properties of
the entities dbr:Barack Obama and dbr:Calvin Coolidge taken from DBpedia.
The dotted boxes show the types for the two literals that we intend to com-
pute, supplementing the syntactic type xsd:string which is already available.
Whenever a semantic type can be computed for a literal, it can be used in prac-
tical applications for inferencing, grouping, and matching. For example, both
computed types are rdfs:subClassOf dbo:Politician class in the DBpedia
ontology and hence can be utilized for matching or grouping of related literals.

Datatype properties may have been provided instead of object properties for
entities in datasets for various reasons, such as (i) the creator was unable to
find a suitable entity URI for the object value, and hence chose to use a literal
instead, (ii) the creator of the triple did not want to attach more details to the
value and hence represented it in plain text, (iii) the value contains only basic
implementation types like integer, boolean, and date, and hence not meaningful
to create an entity, or (iv) the value has a lengthy description spanning several
sentences (e.g., dbo:abstract property in DBpedia) that covers a diverse set
of entities and facts. We attempt to assign a semantic type by analyzing cases

Fig. 1. Two triples corresponding to datatype properties and one triple corresponding
to an object property taken from DBpedia. Computed types are shown in dashed boxes.

2 http://www.w3.org/TR/owl-ref/#Property.

http://www.w3.org/TR/owl-ref/#Property
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(i) and (ii) for text (up to a sentence long, delimited by a period) and avoid
assigning a “type” to lengthy literal values as mentioned in (iv) because its
focus is not clear (and multiple conflicting types can result).

3 Problem Statement

3.1 Typing Datatype Properties

Problem Statement: Let S P O be an RDF triple specifying subject (S),
property (P), and object (O), and C be all classes (in the schema) for the set of
triples D. If P is an object property, then O is an entity (i.e., individual). The
type of O is a class assignment to O via the RDF triple, O rdf:type c, where
c ∈ C. We refer to this as “semantic typing” in this work. Since the value of a
datatype property instance is a literal, no semantic typing can be found for the
value. We want to suggest a class c̄ ∈ C for the value of a datatype property in
addition to the syntactic type. As explained earlier in Sect. 2, we focus on text
that is up to one sentence long. This realistic restriction has been imposed to
ensure entity and type coherence. That is, deriving a unique type, which may
not apply for longer texts, say a paragraph. Figure 1 illustrates types suggested
for the object values of the triples (2) and (3).

For clarity of presentation, we define Type Set (TS(v)) for property value
v as the set of classes that are assigned (via rdf:type) or inferred (via
rdfs:subClass Of) from the class set C. If p is an object property, then
|TS(v))| > 0, otherwise |TS(v)| = 0.

3.2 Ranking and Grouping Datatype Properties

Preliminaries: Let E, P , and L be sets of all entities, properties, and literals,
respectively, in the triple set D (capturing a knowledge graph or dataset). V
is the set of all property values and V ⊆ E ∪ L. E and P are represented by
URIs. An entity e ∈ E is described using property-value pairs of the form (p, v)
where p ∈ P and value v ∈ V . Each of these property-value pairs of an entity
is called a feature f of the entity. Furthermore, an entity and one of its features
together correspond to an RDF triple in D. prop(f) and val(f) are two functions
that return the property and its object value, respectively, for a feature f . The
feature set of an entity e, denoted by FS(e), is the set of all features that can
be found for e in D. Using these notions, a faceted entity summary of entity
e, which is a subset of all features that can be associated with e, is defined as
follows (reproduced from [6] for completeness).

Definition 1 (Facet). Given an entity e, a set of facets F(e) of e is a parti-
tion of the feature set FS(e). That is, F (e) = {A1, A2, . . . An} such that F(e)
satisfies the following criteria: (i) Non-empty: ∅ /∈ F(e). (ii) Collectively exhaus-
tive:

⋃

A∈F (e)

A = FS(e). (iii) Mutually (pairwise) disjoint: if Ai, Aj ∈ F(e) and

Ai �= Aj then Ai ∩ Aj = ∅. Each Ai is called a facet of e.
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Faceted entity summary computation requires the identification of facets.
Note that there can be multiple partitions for a given feature set, but in faceted
entity summary generation, we compute a unique desirable partition by grouping
related features together using a clustering algorithm that employs property
name expansion (using WordNet3) and the “type information” associated with
property values [6]. Informally, if the number of facets is n and the size of the
summary is k, at least one feature from each facet is included in the summary
when k > n. This can be achieved by iteratively picking features from each
facet based on their ranking. If k ≤ n, then at most one feature from each facet
is included in the summary to improve diversity. Definition 2 formalizes the
aforementioned idea about a faceted entity summary in set-theoretic terms.

Definition 2 (Faceted Entity Summary). Given an entity e and a positive
integer k < |FS(e)|, faceted entity summary of e of size k, FSumm(e, k), is
a collection of features such that FSumm(e, k) ⊂ FS(e), |FSumm(e, k)| = k.
Further, either (i) k > |F(e)| and ∀X ∈ F(e), X ∩ FSumm(e, k) �= ∅ or
(ii) k ≤ |F(e)| and ∀X ∈ F(e), |X ∩ FSumm(e, k)| ≤ 1 holds, where F (e) is
a set of facets of FS(e).

The ranking of features in each facet is computed using the informativeness
Inf(f) of feature f (Eq. 1) and popularity Po(v) of value v, where v = val(f)
(Eq. 2). N = |E| is the total number of entities in triple set D. The final rank
score Rank(f) is computed using Eq. 3. In our prior work [6], these ranking
features have only been defined for object properties. In Sect. 4.2, we discuss
how to adapt them for datatype properties.

Inf(f) = log(
N

|{e ∈ E|f ∈ FS(e)}| ) (1)

Po(v) = log|{triple t ∈ D|∃ e, f : t ≡ (e prop(f) v)}| (2)

Rank(f) = Inf(f) ∗ Po(val(f)) (3)

Problem Statement: Ranking and grouping features of object properties can
be achieved using the entities that their values represent. For ranking, we can
utilize Eqs. 1 to 3, and for grouping semantically related features, we could use
their types [6]. Ranking features belonging to datatype properties cannot be
done similarly because their literal values do not have a unique representation
across the dataset (which URIs do provide for object properties) as the same
entity may be referred to using minor variants of a literal. Therefore, we need to
reflect related entities in ranking datatype properties by modifying Eqs. 1 to 3.
For example, consider the third triple of Fig. 1 where we can spot: dbr:Governor
and dbr:Massachusetts; here, we can use their frequency as opposed to checking
the frequency of the entire literal value of the property.

3 https://wordnet.princeton.edu/.

https://wordnet.princeton.edu/
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Grouping (conceptually similar) datatype properties is non-trivial compared
to grouping object properties where types are available. Note that multiple enti-
ties and/or classes spotted in a datatype property value can confuse the group-
ings. For example, the second triple in Fig. 1 has the entity dbr:United States
having the type dbo:Country but eventually results in the class dbo: President
as the type. In general, this requires recognizing multiple types (e.g., country
and president) and then resolving them suitably (e.g., to president) to enable
the grouping of similar triples (among both object and datatype properties). See
triple (1) and (2) in Fig. 1, where the first represents an object property and the
second represents a datatype property. In fact, both values convey information
about a person, while for the datatype property value, it is not explicit. The
object property clearly has a type assigned to its value and if we compute the
type for the datatype property as dbo:President, then we can abstract their
values to type dbo:Politician which can be inferred for the datatype property
value using rdfs:subClassOf.

4 Approach

First, we will investigate how to compute types for the values of datatype proper-
ties and then utilize them in grouping related properties and values based on the
computed types. We will also discuss how to generate entity summaries based
on new ranking measures for the datatype properties and groupings.

4.1 Typing Datatype Property Values

Determining the relevant type for a datatype property value is challenging due
to several reasons. First, picking some term used in the literal value to determine
the entity or class for the datatype property value does not work. For example, in
triple (3) in Fig. 1, if we select the term “Massachusetts” as the entity to represent
the entire value and use its type dbo:PopulatedPlace as the type, we obtain an
incorrect interpretation. The main focus of the text is the term “Governor” and
not “Massachusetts”, as it conveys information about the governor. Therefore,
we propose identifying this term, which we call the focus term, by analyzing the
grammatical structure of the text. Then, we match the identified focus term to
a suitable entity or a class in deriving the type for the value.

We utilize the Collins head word detection technique [2] to identify the focus
terms. The Stanford CoreNLP4 API offers an implementation of this technique
using parse trees. We use the UMBC semantic similarity service [9] to compare
the suggested class and the set of given classes. It facilitates the computation
of phrase similarity, which generalizes and improves upon WordNet-based simi-
larity. The algorithm for generating a type set (TS(v)) for a datatype property
value v is presented in Algorithm 1.

Algorithm 1 shows details of the method getTypesForText, which generates
types for the input text (datatype property value). We avoid processing if the
4 http://nlp.stanford.edu/software/corenlp.shtml.

http://nlp.stanford.edu/software/corenlp.shtml
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Algorithm 1. getTypesForText(Text v)
1: initialize Set types to {} and pre-determined Integer n
2: Set X ← getPhrases(v)
3: for each Phrase x ∈ X do
4: if isNumeric(x) then
5: Set cls ← predefined date/numeric type
6: else
7: Set ngrams ← getNGrams(x, n)
8: Text focusTerm ← parseHeadWord(x) {head word identifier}
9: Set cls ← getTypeFromLabel(focusTerm)

10: if isEmpty(cls) then
11: cls ← getTypesFromNGrams(focusTerm, ngrams)
12: end if
13: if isEmpty(cls) then
14: cls ← getMatchedType(focusTerm) {semantic matching}
15: end if
16: end if
17: types ← cls
18: end for
19: return types

input text is more than one sentence long (segmented by “period”). If the iden-
tified sentence has phrases delimited by comma, we segment them (lines 2–
3) and generate types for them. This is because these phrases normally align
for the same abstract meaning (e.g., “Austrian-American bodybuilder, actor”,
“Denison, Texas”). We identify numeric or date values using simple regular
expressions (lines 4–5). If the value is not numeric, we start the type compu-
tation process for the phrase by identifying n-grams associated with the phrase
up to the maximum token length of n (line 7). Then, we retrieve the focus term
by parsing the phrase using the head word identifier (line 8). Next, we check
whether there is an exact match of the focus term and any of the types (via
rdfs:label of classes) in the dataset. If a match is found, we take the class as
the type of the phrase (line 9). Otherwise, we further analyze all the generated
n-grams with the focus term to infer a type in the getTypesFromNGrams method
(line 11). If there is still no match, we compute the similarity scores of the focus
term against all the types in the dataset (via rdfs:label of classes) and get the
highest match (>0) as the type of the phrase (line 14). Finally, we aggregate
types generated for each phrase to obtain the set of types for the input text.

The method getTypesFromNGrams processes the n-grams set to allow for a
maximal match of entity labels. It processes n-grams to extract types only if they
contain the focus term. For each of those n-grams that contain the focus term, we
check to see whether there is an exact match of the n-gram to a type. If no match
is found, we spot entities for the n-gram and then get the types of those entities.
We spot entities by exact matching of their labels (rdf:label) to n-grams. Look-
ing for n-grams that contain the focus term (in descending order of n-gram token
lengths from n to 1) can improve the quality of the identified types. For example,
consider “Harvard Law School” as a datatype property value in DBpedia. The
identified focus term for this phrase is “School.” When we start processing n-
grams in descending order of n, we encounter “Harvard Law School” as the first
candidate for typing. This matches the entity dbr:Harvard Law School whose
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type dbo:Educational Institution is then taken as the type of the phrase.
We do not generate types for long text5 (e.g., paragraphs) because they can-
not be unambiguously typed as they can represent many different entities (with
contrasting descriptions) and need further analysis to pick the correct type.

4.2 Grouping and Ranking Datatype Property Features
for Summaries

The approach to rank and group object properties to create faceted entity sum-
maries is presented in [6]. The idea of generating faceted summaries focuses on
grouping related features (i.e., property-value pairs) and then picking the high-
est ranked ones from each group. Next, we discuss how to group and then rank
datatype property based features.

Fig. 2. Grouping both property features.

Grouping Datatype Property
Features: Grouping of features
can be done at two levels: exact/
syntactic similarity and seman-
tic/abstract similarity. Exact/ syn-
tactic similarities can result in very
fine-grained groups, while we are
interested in groups based on their
abstractions in FACES [6]. For
example, triples (2) and (3) in Fig. 1 present two literal values that do not share
any common token (no/less syntactic similarity). However, when we compute
a type for each, they are sub-types of the class dbo:Politician. The cluster-
ing algorithm that uses such type information of the values as in FACES can
group them together. Further, it can also group features of both object and
datatype properties which was hitherto not possible. For example, It can group
features represented by triples (1) and (2) in Fig. 1 because the values are indirect
instances of the type dbo:Politician. Figure 2 illustrates grouping of similar
features with same color using the clustering algorithm presented in [6].

Ranking Datatype Property Features: We discuss ranking measures for
datatype properties usable in the context of entity summarization. Recall that
Eqs. 1 to 3 can be used only to rank object properties [6]. If we compute Inf(f)
as in Eq. 1 for datatype properties, it will have an artificially high value because
the exact literal denoting an entity appears infrequently compared to URI ref-
erences of the entities for object properties. As a consequence, every datatype
property will have a high ranking score. To fix this discrepancy, we spot entities
in datatype property values and get the frequency of entity URIs as a measure of
informativeness and popularity. We first spot entities in the datatype property
values by analyzing the n-grams generated in Algorithm 1. Let ES(v) be the

5 Note that we can still run the algorithm for each sentence to generate types.
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set of all entities that can be spotted for value v = val(f). We process all the
n-grams generated for v (for a pre-defined n-gram token length n) and match
them against the entity labels (rdfs:label) in the dataset to obtain ES(v).
Then, we choose the most popular (frequent) entity in the dataset from this set
as the representative entity for v. The intuition is that humans spot and iden-
tify popular entities in text phrases and, hence, they can provide identifiable
facts in the summary for datatype properties. Let max(ES(v)) be a function
that returns the most popular entity emax from the set ES(v) based on the fre-
quency of appearance of each entity (using Eq. 2). For example, for triple (2) in
Fig. 1, function max identifies dbr:President and dbr:United States as the
entities and picks the latter to be the most popular entity. Hence, it is used to
calculate the informativeness of the feature and popularity of the phrase.

We compute the informativeness of a feature f of a datatype property,
Inf(f)′, using Eq. 4. We check for occurrences of features in entities “similar” to
f (as opposed to checking the same feature as in object properties) by matching
datatype property names and values that contain the most popular entity emax.
Then, we count those entities to compute informativeness of the feature. That
is, informativeness is inversely proportional to the number of entities that are
associated with overlapping values containing emax. N is the total number of
entities.

Inf(f)′ = log
( N

|{e ∈ E|∃ f ′ ∈ FS(e) : prop(f) = prop(f ′) and
max(ES(val(f))) ∈ ES(val(f ′))}|

)
(4)

Similarly, for measuring the popularity Po(v)′ of a datatype property value
v, we take the frequency of the most popular entity emax = max(ES(v)) in v, as
specified in Eq. 5. Then, the ranking score of feature f that belongs to datatype
properties, Rank(f)′, is calculated using Eq. 6. When ES(v) = ∅, we take the
denominator as the number of property instances in Eq. 4 and Po(v)′ = 1 in
Eq. 5, effectively ranking them low.

Po(v)′ = log|{ triple t ∈ D|∃ e, f : t ≡ (e prop(f) emax)and
emax = max(ES(v))}| (5)

Rank(f)′ = Inf(f)′ ∗ Po(val(f))′ (6)

Faceted Entity Summaries Using Object and Datatype Properties:
Eqs. 1–6 are used to rank features within each facet (cluster partition). We fur-
ther extend the FACES approach by ranking facets using the average of feature
ranking scores (FacetRank(F (e))) generated by Eqs. 3 and 6, as shown in Eq. 7
for a facet F (e). R(f) is a function that selects the proper ranking method
depending on whether prop(f) is an object or datatype property. Then, facets
are ordered from the highest to the lowest FacetRank score and we iterate over
them in that order to pick individual features for the summary.

R(f) =

{
Rank(f), if prop(f) is an object property
Rank(f)′, otherwise
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FacetRank(F (e)) =

∑
f∈F (e) R(f)

n
, where n = |F (e)| (7)

Given the feature set FS(e) of an entity e and a positive integer k < |FS(e)|,
the adapted process for the faceted entity summary creation is as follows. (1) The
feature set FS(e) is partitioned into facets. The algorithm yields a dendrogram
(hierarchical tree) for FS(e) and it is cut at an empirically determined level
to get the facet set F (e) of FS(e). (2) Features in each facet are ranked using
the ranking algorithms (Eqs. 3 and 6). (3) Then the feature ranking scores of
features in each facet are aggregated and averaged to get the facet ranking score
(Eq. 7). (4) The top ranked features, from highest to lowest ranked facet, are
picked (Definition 2) to form the faceted entity summary of length k.

5 Evaluation and Results Discussion

We evaluate our contributions in two steps: (1) evaluation of types generated for
literal values of datatype properties and (2) evaluation of faceted entity summa-
rization using features belonging to both types of properties. We empirically set
n = 3 (n-grams) for both evaluations. More details on approach, evaluation, and
examples are available at http://wiki.knoesis.org/index.php/FACES.

5.1 Evaluating Datatype Property Types

Generating types for all the available datatype property values is not meaning-
ful because there are labeling properties that simply represent human readable
names for entities. The RDFS (RDF Schema) standard defines the rdfs:label
property to provide such information, but in practice, there exist many such
labeling properties (e.g., foaf:name). Ell et al. [3] studied the characteristics of
these properties by manually inspecting the properties and their instance data.
Similarly, we created a list of labeling properties for our data sample and fil-
tered them out. We extracted a sample of unique datatype property-value pairs
from DBpedia (version 3.9 and 2015-04). Precision for the identified types of a
property value v is defined in terms of TS(v) in Eq. 8. Then, we define the Mean
Precision (MP) of property values as in Eq. 9, where n is the number of property
values in the sample that have |TS(v)| > 0.

Precision(TS(v)) =
#correct types in TS(v)

|TS(v)| (8)

MeanPrecision =
∑n

i=1 Precision(TS(val(fi)))
n

(9)

Mean Precision is the average of precision over the property values in the
feature sample. When the MP value is higher, the algorithm generates many
correct types over different property values. It is important to know how often
the algorithm can generate at least one correct type. Therefore, we define Any
Mean Precision (AMP) as in Eq. 10, where n is the number of property values

http://wiki.knoesis.org/index.php/FACES
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Table 1. Type generation evaluation.

Mean precision (MP) Any mean precision (AMP) Coverage

Our approach 0.8290 0.8829 0.8529

Baseline 0.4867 0.5825 0.5533

in the sample that have |TS(v)| > 0. It computes the average of all the ceiling
values of Precision(TS(v)). If the algorithm generates at least one correct type
for a value, it counts the precision as 1 in averaging. When AMP is higher, the
algorithm generates at least one correct type often. When both the MP and
AMP values are higher, the algorithm can be considered reliable.

AnyMeanPrecision =
∑n

i=1 �Precision(TS(val(fi)))�
n

(10)

Table 1 shows the evaluation results performed by one evaluator. We con-
structed a baseline using a state-of-the-art tool to identify entities in the values
and retrieved their types and super types (except owl:Thing). Specifically, we
used DBpedia Spotlight [11] for this purpose and configured it with default
parameters including the confidence of 0.5. We had a total of 1,117 unique
property-value pairs after filtering out 118 labeling and noisy pairs. Coverage
is the fraction of features that had a type generated. Our approach performed
better compared to the baseline because we identify types using a combination of
focus terms and matching entities and types. We did not measure recall because
it is hard to produce an exhaustive list of all correct types for each value.

5.2 Evaluating Faceted Entity Summarization Use Case

We evaluated the proposed extended faceted entity summarization approach
FACES-E against another state-of-the-art algorithm called RELIN [1]. It has
been shown before that FACES outperformed RELIN for object properties [6].
RELIN has been the only tool to generate entity summaries for both datatype
and object properties. We evaluate FACES-E against RELIN for the full range
of features and show the benefits of the datatype property typing which enabled
FACES-E to group features belonging to object and datatype properties in the
partition algorithm. We randomly selected 20 entities from the FACES evalua-
tion (DBpedia 3.9) [6] and another random sample of 60 entities from DBpedia
version 2015-04 for a total of 80 unique entities. We retrieved object proper-
ties as earlier [6] and added datatype properties to each entity, filtering labeling
properties (including date and numeric as in Sect. 5.1). We created a new gold
standard for the entity samples by asking 17 human users to create summaries
of length 5 and 10 for each of the 80 entities as the “ideal summaries” (total
of 900 user-generated ideal summaries for both summary lengths). Each entity
received at least 4 different ideal summaries and this comprises the gold stan-
dard. We use the same evaluation metrics as in [1,6]. When there are n ideal
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Table 2. Evaluation of the summary quality (average for 80 entities) and % ↑ = 100 *
(FACES-E avg. quality - Other system avg. quality) / (Other system avg. quality) for
k = 5 and k = 10, where k is the summary length.

System k = 5 k = 10

Avg. Quality %↑ Avg. Quality %↑
FACES-E 1.5308 – 4.5320 –

RELIN 0.9611 59 % 3.0988 46 %

RELINM 1.0251 49 % 3.6514 24 %

Avg. Agreement 2.1168 5.4363

summaries denoted by SummI
i (e) for i = 1, .., n and an automatically generated

summary denoted by Summ(e) for entity e, the agreement on ideal summaries
is measured by Eq. 11 and the quality of the automatically generated summary
is measured by Eq. 12. In other words, the quality of an entity summary is its
average overlap with the ideal summaries for the entity in the gold standard.

Agreement =
2

n(n − 1)

n∑

i=1

n∑

j=i+1

|SummI
i (e) ∩ SummI

j (e)| (11)

Quality(Summ(e)) =
1
n

n∑

i=1

|Summ(e) ∩ SummI
i (e)| (12)

We used previously determined thresholds for both FACES-E and RELIN.
RELINM is the modified version of RELIN where it discards duplicate properties
in the summary [6]. For FACES-E, we cut cluster hierarchies at level 3 and set
the cut-off threshold of the clustering algorithm (Cobweb) to 5. For RELIN and
RELINM, we set the jump probability to 0.85 and the number of iterations to 10.
The evaluation results of entity summarization are presented in Table 2. Note
that the summary quality is better when it is closer to the agreement value.
Agreement is low for this evaluation, as was the case with previous evaluations
[6], because the number of features per entity was relatively high (on average
44 features per entity). Our intuition for ranking datatype property features by
giving precedence to popular entity mentions in the value, grouping features
based on types, including the generated semantic types for datatype property
values, and ranking facets to select faceted summaries, have been validated by
the high summary quality in this evaluation. We conducted a paired t-test to
confirm the significance of the FACES-E’s mean summary quality improvements
over RELINM. For k = 5 and k = 10, p values for FACES against RELINM
are 8.24E-11 and 9.42E-12. When p values are less than 0.05, the results are
statistically significant. According to results shown in Table 2 and the paired t-
test, FACES-E performed better and benefited from datatype property typing.
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6 General Discussion and Future Directions

Our typing algorithm enabled FACES-E to process both types of properties, a
limitation of FACES, improving coverage. Likewise, typing for datatype proper-
ties can facilitate a wide range of data processing applications. Property align-
ment [7] can be one such instance where similarly typed property values can be
used to limit the properties analyzed for equivalence and relatedness.

In the first evaluation, our algorithm showed MP and AMP values of 0.82
and 0.88 compared to 0.48 and 0.58, respectively of the baseline. This aligns with
our claim that typing for values needs to identify the correct and appropriate
focus. Furthermore, our algorithm showed good coverage. Getting both MP and
AMP values to a relatively high level is desirable for faceted entity summaries.
This is because when the algorithm can generate a correct type most of the
time, also with high precision, it helps to group semantically similar features
together. This, in turn, facilitates the creation of high quality, “diversified” entity
summaries evidenced by the second evaluation in Sect. 5.2. However, we also note
that datatype properties in our entity sample have labeling and noisy properties
(due to incorrect or missing details) which is normal for real-world datasets on
the Web. We manually filtered such labeling properties; however, this can be a
challenging and important problem to solve in the future.

It is possible to use the meaning of the property names and word sequence
relationships of values for type generation. For this, a machine learning model
similar to Conditional Random Fields (CRF) could be utilized whereas now,
focus term detection drives the type computation. This can facilitate predicting
whether a value can be typed or not and filtering out noisy and labeling property
values. The absence of matching entities in DBpedia can stymie the generation
of type information. These are common dataset quality and completeness issues
orthogonal to our problem. For missing information, we can: (1) use type infer-
encing approaches [13] to generate missing types and (2) use a comprehensive
set of ontology classes and entities (e.g., from LOD) in our approach.

Our approach does not generate “semantic types” for numeric and date
value properties, and challenges exist for measuring their popularity in the
dataset for ranking. These properties will be investigated in the future for group-
ing and ranking in faceted entity summary generation. Furthermore, a formal
model/approach needs to be adapted for RDF semantics to encapsulate type gen-
erations for datatype properties and then they can be encoded in the datasets
similar to object properties whereas now, we keep computed values separate.

7 Related Work

Type assignment to text fragments is known as Named Entity Recognition
(NER) [12]. NER consists of two subtasks: segmenting and classifying segmented
text blocks into pre-defined categories (types). Entity Linking (EL) [8] maps
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entity mentions in text to their corresponding entities in knowledge bases. NER
produces types for segments of the input text whereas EL identifies entities from
which types can be inferred. NER and EL, however, differ from our problem in
that they do not try to suggest a type based on the focus of the text but rather
try to determine the types of all the entities present, causing ambiguity from the
perspective of our problem (e.g., our evaluation with DBpedia Spotlight [11]).

Finding missing types for entities [13,14] is important for the reliability
of datasets and reasoning. Paulheim and Bizer [13] infer types for entities in
DBpedia and Sleeman and Finin [14] predict types of entities for efficient co-
reference resolution. TRank [17] ranks entity types based on the context in which
they appear (disambiguation). Fang et al. [4] use type information for search,
and Tylenda et al. [18] generate summaries by analyzing type graphs. These
approaches work on entities and/or object properties or infer types for entities,
whereas we focus on typing datatype properties where no semantic types are
available.

FACES [6] proposed a concise, comprehensive, and diversified approach for
entity summarization for object properties and showed superior results over the
state-of-the-art techniques and methods [1,15,16]. SUMMARUM [16] employs
a PageRank based algorithm to rank and compute summaries for only object
properties whereas RELIN [1] utilizes PageRank to compute summaries for both
object and datatype properties. We developed FACES-E to utilize both object
and datatype properties and showed superior results compared to RELIN.

8 Conclusion

We have investigated the problem of computing types for datatype property val-
ues. We generate types for a property value by: (1) exact and semantic matching
of the focus term to class labels, and (2) spotting entities related to the focus
term and retrieving their types. Our contributions in this work span over two sig-
nificant problems: (1) enhancing datatype property values with type metadata,
and (2) proposing FACES-E, which extends FACES to generate more compre-
hensive entity summaries using both types of properties. We evaluated both type
generation and the extended entity summarization approach using the DBpedia
encyclopedic dataset on the Web and showed improvement over the state-of-the-
art. Our novel typing algorithm for datatype property values enhances data with
additional semantics and, hence, is useful in applications beyond entity summa-
rization, such as property alignment, data integration, and dataset profiling.
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