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Abstract. In this paper, we investigate the Normalized Semantic Web
Distance (NSWD), a semantics-aware distance measure between two con-
cepts in a knowledge graph. Our measure advances the Normalized Web
Distance, a recently established distance between two textual terms, to
be more semantically aware. In addition to the theoretic fundamentals
of the NSWD, we investigate its properties and qualities with respect to
computation and implementation. We investigate three variants of the
NSWD that make use of all semantic properties of nodes in a knowledge
graph. Our performance evaluation based on the Miller-Charles bench-
mark shows that the NSWD is able to correlate with human similar-
ity assessments on both Freebase and DBpedia knowledge graphs with
values up to 0.69. Moreover, we verified the semantic awareness of the
NSWD on a set of 20 unambiguous concept-pairs. We conclude that the
NSWD is a promising measure with (1) a reusable implementation across
knowledge graphs, (2) sufficient correlation with human assessments, and
(3) awareness of semantic differences between ambiguous concepts.

1 Introduction

The goal of semantic distance and/or similarity measures is to mimic the human
assessment of distance between two concepts. However, humans usually do not
explicitly quantify the distance between concepts – at least not consciously –
which makes the development and evaluation of semantic distances a challenging
task. These measures play an important role on the Web, particularly when it
comes to indexing, semantic search, and information retrieval. Despite being
an intensely researched field for the past decades, traditional, plain-text-based
similarity measures are still the dominant norm in practical scenarios [9]. This
is unfortunate because most of these have little to no semantic awareness since
they work with syntactic information instead of machine-interpretable data.

We argue that increasing the semantic awareness of similarity measures is
possible by making use of machine-interpretable concepts that are unambigu-
ously linked to a resource on the Web [6]. Determining the distance between
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individual concepts facilitates the application of more complex similarity mea-
sures such as Earth Mover’s Distance or Signature Quadratic Form Distance [1]
on Web documents that are modeled by the concepts they contain. To this
end, we investigate the properties of the Normalized Semantic Web Distance
(NSWD), an inter-concept distance we introduced [7] based on the statistics of
the context of the entities in the knowledge graph where they are represented. In
this paper, we provide additional theoretical fundamentals of the NSWD, as well
as insights into its computation and implementation. Additionally, we further
evaluate our approach on the DBpedia knowledge graph as well as Freebase, and
verify its semantic awareness on a set of 20 unambiguous concept pairs.

2 Background Knowledge and Motivation

The distance measure we introduce in this paper is based on the Normalized Infor-
mation Distance (NID), introduced in [15]. The NID is defined using the so called
Kolmogorov Complexity. Formally, the Kolmogorov Complexity of a binary string
x is defined as the length of the shortest program p with U (p) = x for a fixed uni-
versal prefix Turing machine U [14]. Informally, it can be seen as the length of the
maximally compressed version of x and in a sense reflects the amount of informa-
tion encoded in x. Unfortunately, the Kolmogorov Complexity is non-computable,
and thus needs to be approximated. This approximation is strongly affected by the
representation of objects, either in literal or non-literal form. The literal form con-
tains the object itself. A song or a novel, for example, can be provided as a binary
file containing the actual song or novel. The non-literal form consists of a (possi-
bly ambiguous) name referencing the actual object. Abstract concepts like “love”
or “beauty” can only be provided by their non-literal name. This corresponds to
the vision of information and non-information resources described in the original
World Wide Web architecture [12].

If the input for the NID is given in literal form, we can approximate the
Kolmogorov Complexity by the size of the output of a state of the art compres-
sion algorithm. This principle was introduced as the Normalized Compression
Distance (NCD) [3]. However, in this paper we focus on non-literal objects,
and we need a different approximation. In [4], it was shown that for a frequency
function f , the NID can be approximated as in Definition 1.

Definition 1. For two binary strings x and y, let f(x, y) ∈ N0 be a frequency
function for which N :=

∑
x,y f (x, y) < ∞ and f(x) := f(x, x) holds. f resem-

bles how common x and y occur together in a certain context. The NID can now
be approximated as:

NIDf (x, y) =
max {log f (x) , log f (y)} − log f (x, y)

log N − min {log f (x) , log f (y)}
The challenge is to define a reasonable frequency function f . A well known
instance is the so called Normalized Web Distance (NWD) [4]. It employs the
statistics returned by an arbitrary Web search engine to calculate f , where the
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frequency f(x) of a term x is the number of indexed pages mentioning x. The
basic principle of the NWD is: if two terms occur together almost as often as
they do separately, their semantic distance is likely to be low. More formally:

Definition 2. Let W be the set of pages indexed by an arbitrary search engine
able to return the (approximate) number of indexed pages containing a certain
search term. For each search term x, let X ⊆ W denote the set of pages contain-
ing x. For two search terms x and y, the Normalized Web Distance corresponds
to the NIDf from Definition 1 and the following frequency function f [4]:

f (x) := |X|
f (x, y) := |X ∩ Y|

Note that search engines usually only estimate f(x) and do not explicitly exclude
duplicate pages from the search result. Furthermore, due to the volume of stored
and indexed Web pages, a search engine cannot compute N as exactly as in
Definition 1. However, since it merely serves as a scaling factor in the NIDf

equation, it can be set to an arbitrary value ≥ |W | (this constraint ensures that
the NWD is always non-negative).

Any search engine can be used for the NWD and different engines usually
return different results. This approach is semantically unaware of the meaning of
the input terms, as well as of the (human-understandable) Web pages returned
by the search engine. The word “Java”, for example, can either refer to the
Indonesian island, or to the programming language. This means that calculating
the NWD from the word “Java” to “Indonesia” leads to the same distance for
either meaning, regardless of which the user intended. This is exactly the prob-
lem we are tackling in this paper: comparing unambiguous concepts instead of
ambiguous lexical terms. While other approaches exist to achieve this (as seen in
Sect. 3), none are based on the NID, which makes them less related to the way
we represent knowledge. Since the essential foundations of the Semantic Web
include an accurate representation of knowledge, it also makes sense to create a
semantic distance that has roots in the same foundations. In Sect. 3, we high-
light a number of known implementations of the NWD, as well as various other
semantic distance or similarity measures relevant to our approach.

3 Related Work

The first instance of the NWD was the Normalized Google Distance (NGD),
which made use of the Google search engine, and achieved up to 87 % agreement
with human assessments [5]. However, due to changes to the functionality of
the AND operator in the Google search engine [24], the returned page counts
are no longer trustworthy. In our evaluation, we use the Bing search engine as
an alternative, resulting in the Normalized Bing Distance (NBD) [10]. In fact,
the NGD paper clearly states that other data sources than the World Wide
Web, such as a dictionary, could be used to calculate the NGD [5]. This further
reinforces our intuition of adapting the NWD to a graph-structured database.
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The NGD has been used as an inspiration for a link-based similarity measure
before, namely the Wikipedia Link-based Measure (WLM) [18]. WLM adapts
the traditional TF-IDF-vector-based approach as well as the NGD approach to
exploit the link structure of Wikipedia. When only considering the incoming-
links-part of WLM, the principle is comparable to that of the NSWD, with the
exception of WLM being specific to Wikipedia, whereas the NSWD is more
generally applicable.

In previous work, we conducted a preliminary experiment with an approach
we named the Normalized Freebase Distance (NFD) [10]. The NFD served as
a first specific implementation of the concept of the NSWD. The promising
results inspired us to generalize the concept to all knowledge graphs on the
Semantic Web in [7]. We expand significantly upon the evaluation provided in
these previous papers, as well as on the theoretical foundations for the NSWD.

The Jaccard similarity is one of the most efficient measures for semantic
relatedness [2,13]. Unlike the Jaccard similarity, the Jaccard distance (inverse
similarity) is a valid heuristic for e.g., a pathfinding algorithm. For example, the
“Everything is Connected Engine” (EiCE) [8] uses a distance metric based on
the Jaccard similarity for pathfinding. It applies the measure to estimate the
similarity between two nodes and to assign a random-walk based weight, which
ranks less popular resources higher, thereby guaranteeing that paths between
resources prefer specific relations over general ones [19].

The Linked Data Semantic Distance (LDSD) [22] also partially relies on
shared links. Similar to our proposed approach, the LDSD is extensible for spe-
cific domains, as shown in [25], where it is extended to model the similarity of
human behavior processes.

An important category of semantic relatedness measures contains those that
measure the distance between two concepts in the context of their concept hier-
archy or ontology. Hliaoutakis et al. [11] provide a comparison of 11 such seman-
tic relatedness measures, tested using WordNet1 and MeSH2. More recently,
Sanchez et al. [23] provide an overview over ontology-based semantic similarity
measures, including a newly proposed one of their own. The correlation of these
measures with popular benchmarks for word relatedness ranges between 0.7 and
0.86. For more details, we refer to the aforementioned surveys.

The Semantic Connectivity Score [21] is a measure to quantify the connec-
tivity between two concepts. It considers the total number of paths between two
concepts up to a user-specified maximum length. Authors from the same groups
also introduced a co-occurence-based measure (CBM) [20], based on the same
page counts as the NGD. Their measure does not require an estimation of the
total number of Web pages. Note that this also means that the CBM of disjoint
pairs of concepts are non-comparable. They argue for a combined connectivity/co-
occurrence measure, since this would allow to find semantic relations between
concepts that do not necessarily co-occur (with the connectivity-based measure),

1 http://wordnet.princeton.edu/.
2 http://www.nlm.nih.gov/mesh/.

http://wordnet.princeton.edu/
http://www.nlm.nih.gov/mesh/
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while still emphasizing concept relations without the necessity of a strong connec-
tion in the semantic graph (with the CBM) [20].

A hybrid similarity metric for Linked Data was proposed in [16]. It consid-
ers the information content or informativeness of the features shared by two
resources. The features of a resource are composed of the resources it links to,
and the links themselves. In order for a feature to be shared, both the linked
resource and the link type must be the same. Like the NSWD, the proposed
metric requires an estimation of the number of concepts in the entire graph.
It was specifically developed for a resource recommendation scenario and was
preliminarily evaluated in such a scenario.

To sum up, most of the aforementioned instances of the NID are focused on
comparison of purely textual, possibly ambiguous terms. Of those approaches
mentioned above that do provide means to measure the distance between unam-
biguous concepts in a knowledge graph, none are based on the NID. Therefore,
to the best of our knowledge, we provide the first NID-based (dis)similarity
measure within the context of a knowledge graph.

4 Normalized Semantic Web Distance

The basic principle of the NSWD is to use the degree of co-occurrence of edges
from and to two concepts in a knowledge graph to reflect their semantic dissimi-
larity. Instead of considering the human-understandable Web (accessed through
a search engine), we consider a machine-understandable knowledge graph on the
Semantic Web (accessed through a query client, e.g., a SPARQL endpoint).

The NSWD advances from possibly ambiguous natural language terms to
unambiguous concepts, which are identified by URIs, as input. For example,
when using the semantic dataset DBpedia.org, the island “Java” is uniquely iden-
tified by the URI dbpedia:Java3, whereas the programming language “Java” is
identified by dbpedia:Java (programming language). We design the NSWD to
result in a lower distance between dbpedia:Java and dbpedia:Indonesia than
between dbpedia:Java (programming language) and dbpedia:Indonesia.

A knowledge graph consists of a set of nodes V and a set T of directed
triples t ∈ V ×P ×V , where P is a set of predicates. A node represents a certain
real-world object or concept and is identified via an URI. A triple (u, p, v) ∈ T
indicates a subject-predicate-object relation. The starting node u is the subject,
v is the object and the predicate p carries some additional information regarding
the exact nature of the relation between those nodes. For example, the triple
“dbpedia:Statue of Liberty dbpedia-owl:location dbpedia:New York” signifies the
semantic relationship that the Statue of Liberty is located in New York.

To model the semantic relationship between two nodes in a knowledge graph,
we make use of these triples. We consider the semantic relationship between two
subjects to be stronger the more concepts they share a triple with. Additionally,
the semantic relationship between two objects is considered stronger the more
3 We choose the prefix dbpedia: for convenience, which resolves to http://dbpedia.

org/resource/.

http://dbpedia.org/resource/
http://dbpedia.org/resource/
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often they occur in a triple with the same subject, similar to a term occurring
on a Web page. Nodes for which both of this is true, will have an even stronger
relationship. We formalize these sets of linked nodes in Definition 3.

Definition 3. We define the following sets of nodes Vλ ⊆ V for λ ∈
{in, out, all} in a knowledge graph (V, T ) with respect to a node x ∈ V :

Vin (x) := {v ∈ V | (v, p, x) ∈ T}
Vout (x) := {v ∈ V | (x, p, v) ∈ T}
Vall (x) := Vin (x) ∪ Vout (x)

In other words, the set Vin(x) comprises distinct nodes with at least one link
– i.e., predicate – pointing to node x, whereas the set Vout(x) contains all distinct
nodes where node x points to. The set Vall(x) is the union of all nodes that link
to, or are linked to from node x (not necessarily with the same predicate). Based
on these sets, we can now define three variations of frequency functions fλ with
respect to parameter λ ∈ {in, out, all}, to be used to calculate three variations
of our proposed distance.

Definition 4. For two nodes x and y in V , we define fλ as:

fλ (x) := |Vλ (x)|
fλ (x, y) := |Vλ (x) ∩ Vλ (y)|

We then define the Normalized Semantic Web Distance between two nodes x, y ∈
V from a knowledge graph (V, T ) as follows:

NSWDλ (x, y) :=
max {log fλ (x) , log fλ (y)} − log fλ (x, y)

log N − min {log fλ (x) , log fλ (y)}
As can be seen in the definition of the sets Vλ, the NSWDλ makes use of

all information available within the direct semantic context of the nodes in the
corresponding knowledge graph. The parameter λ ∈ {in, out, all} models the
semantic context that is taken into account when determining the dissimilarity
of two nodes. We investigate the question of which parameter λ performs best
in practice in Sect. 8 and continue with and example of the NSWDin.

Example 1. Consider the sub-graph of a graph with |V | = 1000, as depicted in
Fig. 1. We want to calculate NSWDin(x, y). Here, Vin(x) = {a, d, e, f, y} is the
set of concepts containing a link to x. Similarly, Vin(y) = {a, b, c, f} is the set
of concepts containing a link to y. Finally, the set of concepts with a link to
both x and y is Vin(x) ∩ Vin(y) = {a, f}. This means that f(x) = |Vin(x)| = 5,
f(y) = |Vin(y)| = 4, and f(x, y) = |Vin(x) ∩ Vin(y)| = 2. We therefore have
NSWDin(x, y) = log5−log2

log1000−log4 ≈ 0.16595.

Note that the NSWDin corresponds most closely to the original definition
of the NWD (if we consider Web pages to be subjects and the search terms
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Fig. 1. Illustration of the values for the functions f(x), f(y), and f(x, y) needed to
calculate the NSWDin in Example 1.

as part of its description). On the other hand, the NSWDout corresponds more
to the principles of the Jaccard Distance, since it relies on the shared outgoing
links. Finally, the NSWDall corresponds more closely to the principles used in
the Wikipedia Link-based Measure [18], as it combines outgoing and incoming
links, albeit using a different formula. Which of these definitions performs best
in a real-world scenario can only be determined through empirical evaluation,
which we describe in Sect. 8. First, however, we discuss some of the properties
of the NSWD in Sect. 5, and how to implement it in Sect. 6.

5 Properties

In order to fully understand its potential, applicability, and implementation, we
discuss a number of important properties of the NSWD, such as its mathematical
properties, a number of special cases, and its minimum and maximum values.

Mathematical Properties. Although the NSWD is based on the NID, it is not a
metric. For two arbitrary non-equal concepts x and y, NSWD (x, x) = 0 and
NSWD (x, y) ≥ 0 always hold, but not necessarily NSWD (x, y) > 0, since
both concepts could be connected to exactly the same nodes. The NSWD also
does not fulfill the triangle inequality. Two concepts can have very few links in
common, making their NSWD high, while there could be a third term having
many links in common with both concepts, making the NSWD between this
third concept and each of the other two low. As highlighted by the authors of
the NWD, which is also not a metric [4], this is not necessarily a drawback since
human knowledge consists of many concepts which, intuitively, do not fulfill a
triangle inequality. For example, while “Paris” and “White House” intuitively
have a low semantic similarity, both have a high semantic similarity to “Capital”.

Special Cases. A first special case occurs when fλ(x) = |V | = fλ(y). In this case,
fλ(x, y) = |V |, so the numerator and denominator of NSWDλ(x, y) both become
0, and NSWD(x, y) does not exist. Note that in reality, this situation will never
occur, since this would mean that both x and y are linked to by every element
in the dataset, and thus do not contribute any useful information. However, for
the sake of completeness, we define the NSWD to be 0 in this case.
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A second special case occurs when fλ(x, y) = 0. In case of λ = in, this
means there are no concepts in the dataset that link to both x and y. In case
of λ = out, it means that x and y do not link to any common concept. In these
cases, logfλ(x, y) does not exist, and thus a value for the NSWD must be defined.
For the Normalized Google Distance, the authors chose NGD(x, y) = 1 in case
there were no search results that contained both x and y [5]. However, that
leads to a – in our view – very counter-intuitive situation where it is possible
for two terms that have a low, but strictly positive number of search results
for both terms, to have a higher NGD than two terms that do not. In fact, the
first special case adds to this argument, since the distance is 1, whereas there is
clearly some relationship between x and y (however abstract it may be). A much
more elegant solution is to determine the upper bound NSWDmax for NSWDλ,
and define NSWDλ(x, y) = NSWDmax in the case that fλ(x, y) = 0.

A final special case occurs if fλ(x) = 0 (or fλ(y) = 0), in which case the
logfλ(x) (or logfλ(y)) does not exist. In this case, fλ(x, y) will automatically
equal 0 as well, bringing us back to the second special case. Therefore, we will
define NSWDλ(x, y) = NSWDmax in this case as well.

Maximum Value. With the values for the special cases as defined above in mind,
we can rely on our knowledge of the behavior of fλ(x, y) with respect to fλ(x)
and fλ(y) to calculate NSWDmax. It can be shown that

∀x, y ∈ V : fλ(x) + fλ(y) − |V | ≤ fλ(x, y) ≤ |V | − 1

Keeping these constraints in mind, we can iterate over all possible values of
NSWDλ(x, y) for a given cardinality of V . This way, we determined that:

∀x, y ∈ V : NSWDmax =
log(� |V |

2 � + 1)

log |V | − log |V |
2 �

For example, considering the same dataset V as in Example 1, the upper
bound for NSWDλ(x, y) for any concepts x and y in V is NSWDmax =

log501
log1000−log500 ≈ 8.9686. We can now use this value to determine the NSWD
in the special case where fλ(x, y) = 0, as well as to calculate a similarity score
normalized between 0 and 1, as further explained in Sect. 7.

6 Implementation

The NSWD is not bound to one specific technology for its implementation. Any
method that can calculate the frequency functions as described in Definition 4,
as well as a count of the number of nodes in a knowledge graph is suitable.
This makes the NSWD a very flexible measure, allowing it to be implemented
using the most suitable technology for any specific use case. Additionally, it can
be tailored to any knowledge domain by using a specialized dataset. However,
typically, a knowledge graph on the Semantic Web is modeled in RDF, and it
is made accessible through SPARQL. For any knowledge graph with a SPARQL
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endpoint, the following query can be used to calculate fλ(x) and fλ(x, y): SELECT
(COUNT(DISTINCT ?a) AS ?f) WHERE, with the matching WHERE-clause from
Table 1, and x and y the URIs of two concepts in the knowledge graph.

Table 1. WHERE-clauses for SPARQL queries to calculate the NSWD.

Frequency

function

WHERE-clause

fin(x) { ?a ?p <x> }
fin(x, y) { ?a ?p1 <x> . ?a ?p2 <y> }
fout(x) { <x> ?p ?a }
fout(x, y) { <x> ?p1 ?a . <y> ?p2 ?a }
fall(x) {{ ?a ?p1 <x> } UNION { <x> ?p2 ?a }}
fall(x, y) {{?a ?p1 <x>} UNION {<x> ?p2 ?a} . {?a ?p3 <y>} UNION {<y> ?p4 ?a}}

To calculate the total number of distinct concepts in the knowledge graph, a
COUNT DISTINCT query could be used. However, due to the DISTINCT constraint,
such a query – while conceptually straightforward – does pose a problem for
larger knowledge graphs, as most SPARQL endpoints are not optimized for this
kind of count. In these cases, it is advised to store a cached result for an earlier
execution of this query, a value from the dataset’s metadata (if available), or an
estimate of the number of nodes in the knowledge graph, and use this for the
calculations. Optimizing for these types of queries would be a must to guarantee
the usability of the NSWD on a large scale.

7 Calculating Similarity

The NSWD is a distance, meaning that the more semantically related two con-
cepts are, the smaller their distance is. However, in many cases the opposite
is desired, i.e. when similarity must be measured – e.g., in the Miller-Charles
benchmark [17], which we use for our evaluation. If the NSWD were normally
distributed in the range [0,NSWDmax], we could just scale it linearly using
NSWDmax and substract it from 1. However, the values that occur most fre-
quently are in the [0, 1] range. These are also the distance values that are most
interesting in practical scenarios, such as recommendation systems. Scaling these
values linearly using the NSWDmax would lead to a situation where the major-
ity of distances would be in the range of [0, 1

NSWDmax
], which is not very useful.

Keeping this in mind, we define the NSWD-based similarity SimNSWD as follows:

Definition 5.

SimNSWDλ
(x, y) :=

{
1 − d(x, y) × (1 − c), if d(x, y) ∈ [0, 1]
(1 − d(x,y)

NSWDmax
) × c, if d(x, y) ∈]1,NSWDmax]

with d(x, y) = NSWDλ(x, y) and c = 1
NSWDmax
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This way, the most semantically significant distances – those between 0 and 1 –
get mapped to the similarity range [c, 1] with minimal scaling, and the distances
higher than 1 get mapped to the similarity range [0, c[ with significant scaling.
Note that if NSWDmax is accurately calculated, SimNSWDλ

(x, y) is normalized
between 0 and 1.

8 Evaluation

In this section, we first compare the NSWD-based similarity measures defined
in Sect. 7 to human judgment of similarity, using a standard set of term-pairs.
Next, we verify whether the NSWD and its variants accomplish what they were
designed to do: increase semantic awareness w.r.t traditional distance measures.

To evaluate our approach, we chose to use the Miller-Charles dataset [17],
which consists of 30 term-pairs that were judged for similarity by 38 people.
While using lexical terms for evaluation of a distance in knowledge graphs is not
ideal, and this is a relatively small dataset, it offers an insight to how humans
judge the similarity between these terms, and more importantly, it gives us a
number of related approaches for direct comparison, as it is very commonly used
in this field. Therefore, the Miller-Charles benchmark provides the best start-
ing point for external validation compared to established approaches. However,
before we can use it, a disambiguation strategy has to be decided upon, as many
of the terms are highly ambiguous, in the sense that they can correspond to
more than one resource URI in the knowledge graph. To choose one to use for
the NSWD calculation, we used three disambiguation strategies:

Manual: manually pick a disambiguated resource URI, or suggest an alternative
URI (human judgment);

Count-Based: use the resource URI with the highest Vin, Vout or Vall (depend-
ing on whether the NSWD, NSWDout or NSWDall is calculated, respectively);

Similarity-Based: use the resource URI leading to the smallest distance (only
possible in the context of a pairwise comparison);

Note that it is possible that the correct disambiguation cannot be determined
due to the non-completeness of the dataset. In our evaluation, we calculated the
distances using all aforementioned disambiguation strategies, to see which leads
to the best results. For each of the 30 term-pairs, our evaluation process consists
of the steps below.

1. Both terms are disambiguated, using the manual and automatic approaches.
This results in 3 URI disambiguation options for each term: (a) manually
selected, (b) based on the highest link-count, and (c) based on the highest
similarity with the other term.

2. For each of the three URI disambiguation options, the NSWDin, NSWDout,
and NSWDall are calculated.

3. The above results in 9 distances (three for each variant of the NSWD), which
are converted NSWD-based similarities, as defined in Definition 5.
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These steps result in 9 similarity assessments for each of the 30 term-pairs,
each value calculated with a different combination of disambiguation option and
NSWD variant. These values are compared to the human-assessed scores from
the Milled-Charles dataset by calculating the Pearson correlation coefficient.

As a baseline, we added a similarity score based on the Normalized Bing
Distance [10] to the evaluation results. This NBD-based similarity was calculated
as 1−NWD(x, y), with NWD(x, y) calculated as specified in Definition 2, using
the Microsoft Bing Search API4 as a search engine.

We calculated the Pearson correlation coefficient between the Miller-Charles
scores and the NBD baseline, as well as the three NSWD variants. Each NSWD-
based similarity measure was tested with three disambiguation strategies:
manual (M), count-based (C), or similarity-based (S), using two widely used
knowledge graphs: Freebase and DBpedia. The results are shown in Table 2,
along with the reported correlations on the same benchmark for the Wikipedia
Link-based Measure* [18], and Jaccard similarity as calculated in [13]. Higher
correlation indicates a stronger positive relationship between the human-assessed
scores and calculated similarities. To enable reproducibility of the results, we pro-
vide online access to the JSON files generated by our evaluation software, includ-
ing all disambiguated URIs, Miller-Charles scores, and similarity scores. The
file for Freebase can be accessed at http://semweb.mmlab.be/nswd/evaluation/
mc30 results freebase.json, the file for DBpedia at http://semweb.mmlab.be/
nswd/evaluation/mc30 results dbpedia.json, and the file for Bing at http://
semweb.mmlab.be/nswd/evaluation/mc30 results bing.json.

Table 2. Pearson correlation coefficient on the Miller-Charles benchmark for the
NSWD similarity variants on the Freebase and DBpedia knowledge graphs, as well
as the Normalized Bing Distance, Wikipedia Link-based Measure, and Jaccard simi-
larity.

NBD 0.23

SimNSWDin SimNSWDout SimNSWDall

M C S M C S M C S

Freebase 0.42 0.25 0.29 0.57 0.43 0.57 0.55 0.24 0.58

DBPedia 0.60 0.44 0.55 0.56 0.69 0.62 0.66 0.58 0.68

WLMa 0.70

Jaccarda 0.882
aUsing a different disambiguation strategy

Note that for all distance and disambiguation options, the NSWD-based sim-
ilarities achieved a higher correlation than the NBD-based similarity at the time
of writing, with a maximum of 0.58 for Freebase and 0.69 for DBpedia. There is
no consistent trend in which disambiguation strategy performed best. Overall,

4 https://datamarket.azure.com/dataset/bing/search.

http://semweb.mmlab.be/nswd/evaluation/mc30_results_freebase.json
http://semweb.mmlab.be/nswd/evaluation/mc30_results_freebase.json
http://semweb.mmlab.be/nswd/evaluation/mc30_results_dbpedia.json
http://semweb.mmlab.be/nswd/evaluation/mc30_results_dbpedia.json
http://semweb.mmlab.be/nswd/evaluation/mc30_results_bing.json
http://semweb.mmlab.be/nswd/evaluation/mc30_results_bing.json
https://datamarket.azure.com/dataset/bing/search
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the NSWDall seemed to perform best, taking most of the semantic context of a
node into account. None of the NSWD variants was able to perform better than
the reported results of the WLM and Jaccard similarity. However, note that
for these reported results, a different disambiguation strategy was applied. For
the WLM as reported in [18], the disambiguation of the Miller-Charles terms
was performed using a weighted combination of commonness, relatedness, and
occurrence together in a sentence. However, the authors of [18] did not disclose
the exact weighting scheme they used, nor the disambiguated terms. Do note
that commonness and relatedness of the terms in a term-pair are factors that we
also consider, by applying the disambiguation strategies using the highest link-
count and highest similarity, respectively. Therefore, we can safely assume that
the reported correlation of 0.70 is useful to compare with our results. In case of
the Jaccard similarity as calculated in [13], disambiguation was left ad-hoc to a
search engine, which makes it impossible for us to reproduce.

While the aforementioned results show the external validity of our approach,
they do not highlight semantic awareness – the primary aspect it was designed
for. To highlight this aspect of the NSWD, we created a small additional evalu-
ation set of our own, consisting of 10 pairs of concept-pairs with the same plain-
text representation, yet with the first concept in both concept-pairs remaining
the same, and the second concept disambiguated to a more divergent meaning.
While this is a limited set of concepts, the results clearly illustrate that the
NSWD and its variants are capable of recognizing these differences in seman-
tics, and assign smaller distances to concepts that are close in semantics than to
concepts whose semantics diverge.

The evaluation set for the DBpedia knowledge graph is shown in Table 3,
along with the results. We observe that in all 10 cases, all three variants of the
NSWD maintain a semantically correct ordering w.r.t. the distance. Note that
the impact of the lower link-density of DBpedia is seen here as well, with many
distances being equal to 21.2, which is the NSWDmax for DBpedia. This means
that in all these cases there were no common links, and thus f(x, y) was zero.

To use the same evaluation set for the Freebase graph, we mapped every
DBpedia resource from Table 3 to a Freebase resource using the owl:sameAs link
to Freebase included in the description of the resource5. As shown in Table 4, the
NSWD and its variants also maintain a semantically correct ordering w.r.t. the
distance when applied to Freebase. We observed one small discrepancy for the
resource-pairs :Automobile-:Bus and :Automobile-:Bus (computing), where
the ordering is (very slightly) reversed for the NSWD.

The quality of the knowledge graph greatly affects the performance and
applicability of the NSWD. For example, during the disambiguation of the
Miller-Charles dataset, we found that DBpedia often lacks a simple descrip-
tion of various concepts. For example, the concepts “journey” and “voyage” –
resulting in the resources dbpedia:Journey and dbpedia:Voyage, repectively –
both link to many disambiguation options, but none of these options cap-
ture the most straightforward meaning of the concepts. When inspecting the

5 The full mapping is available at http://semweb.mmlab.be/nswd/evaluation/
resourcemapping dbpedia freebase.ttl.

http://semweb.mmlab.be/nswd/evaluation/resourcemapping_dbpedia_freebase.ttl
http://semweb.mmlab.be/nswd/evaluation/resourcemapping_dbpedia_freebase.ttl
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Table 3. Results illustrating the semantic awareness of the NSWD variants using the
DBpedia graph. The prefix : resolves to http://dbpedia.org/resource/. The ‘order’-
column indicates whether d(c1, c2) < d(c1, c3), which is desired in these cases.

Table 4. Results illustrating the semantic awareness of the NSWD variants using
the Freebase graph. For clarity, the DBpedia concept names are shown instead of the
Freebase hash codes. For each DBpedia resource, the actual Freebase URI used in the
calculations is the object of the owl:sameAs relation to the corresponding Freebase
resource.

corresponding human-understandable Wikipedia pages, it becomes clear that
both “journey” and “voyage” are supposed to be disambiguated to the concept
“travel”, with resource URI dbpedia:Travel. Unfortunately, these links are not
currently included in DBpedia. As a result, automatic disambiguation methods
(such as the count-based and similarity-based disambiguation) that only follow
links included in the knowledge graph will never find the correct result, leaving
manual disambiguation by a human as the only correct option in these cases. In a
number of other cases, no resource exists to represent a concept, as was the case
with the terms “lad” and “madhouse”. The lower connectivity between concepts
in DBpedia also resulted in many of the distances defaulting to NSWDmax dur-
ing the evaluation. Freebase was found to be richer in this regard, as we found
less zero-scores, and smaller variances in the similarities than in the DBpedia
results. Concepts in Freebase were missing for fewer terms than in DBpedia, and
there were less cases where two terms in a term-pair corresponded to the same
URI. Still, terms such as “lad” and “madhouse” have no direct equivalent on
Freebase.

http://dbpedia.org/resource/
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9 Conclusion and Future Work

In this paper, we investigated the Normalized Semantic Web Distance: a seman-
tically aware adaptation of the Normalized Information Distance, relying on
links in a knowledge graph. We described three variations, taking into account
incoming links, outgoing links, or both. We discussed the properties and special
cases, and we proposed a conversion of the NSWD to measure similarity, using a
customized normalization scheme. We extensively evaluated our approach, ensur-
ing external validity by choosing an established benchmark: the Miller-Charles
dataset of 30 human-assessed term-pairs. When applied to the Freebase knowl-
edge graph, the NSWD and its variants exhibit a correlation of up to 0.58 with
human similarity assessments, and when applied to DBpedia, the correlation was
even higher at 0.69, albeit with less fine-grained similarity scores due to DBpe-
dia’s smaller size. We also verified that the NSWD maintains semantic awareness
when confronted with ambiguous concept-pairs.

In future work, we will further illustrate the merit of the NSWD variants by
applying them on more domain-specific knowledge graphs. We suspect that if
the domain knowledge of the graph is high, the NSWD variants should be aware
of these semantics and perform better than traditional approaches. Additionally,
we aim to gather a larger set of concepts with an ambiguous plain-text represen-
tation as used to illustrate the semantic awareness of the NSWD variants, using
a more systematic approach, supported by human assessments.
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