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LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
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Abstract. This paper deals with an ontology-driven approach for
semantic annotation of documents from a corpus where each document
describes an entity of a same domain. The goal is to annotate each docu-
ment with concepts being too specific to be explicitly mentioned in texts.
The only thing we know about the concepts is their labels, i.e., we have no
semantic information about these concepts. Moreover, their characteris-
tics in the texts are incomplete. We propose an ontology-based approach,
named Saupodoc, aiming to perform this particular annotation process
by combining several approaches. Indeed, Saupodoc relies on a domain
ontology relative to the field under study, which has a pivotal role, on its
population with property assertions coming from documents and exter-
nal resources, and its enrichment with formal specific concept definitions.
Experiments have been carried out in two application domains, showing
the benefit of the approach compared to well-known classifiers.

Keywords: Ontology-driven approach · Ontology population · Ontol-
ogy enrichment with specific concepts

1 Introduction

Nowadays, many Semantic Web applications use ontologies as rich conceptual
schemas to give meanings to terms used as annotations of web contents. This
paper deals with such an ontology-based approach addressing semantic annota-
tion of documents when annotations are specific concepts. The only thing we
know about these concepts is their labels. They have no definitions. We face
three difficulties: (1) specific concepts are not explicitly mentioned in the doc-
uments under consideration, (2) specific concepts are not defined, even if the
designer of the system knows their meaning and what kind of information is
relevant to define them, (3) textual documents are incomplete, i.e., some charac-
teristics describing these specific concepts are missing. For example, the concept
“Destination where one can do Water sports during Winter” (DWW) is a very
specific concept. Advertising descriptions of holiday destinations do not mention
explicitly if a destination matches this concept. However, the designer is able
to say whether a given textual description of a destination has to be annotated
with this specific concept or not. Moreover, he knows DWW refers to a place
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with the possibility of doing water sports and warm enough in winter, so that
water sports are practicable. He also knows that terms referring to water sports
can be found in documents but with no mention of the values of the winter tem-
peratures. The missing information has to be searched in an external resource.
In this paper, we show that an ontology can be enriched and then be used to
annotate documents in such a constrained context.

The automation of this annotation process needs to formally define each
specific concept, when it may be hard to do it. For instance, what is a place
warm enough in winter? A solution is to automatically learn definitions provided
that the designer is able to manually annotate documents as positive or negative
examples for a given concept. Once a definition is learned, new descriptions of
the same domain can be automatically annotated. Definitions are crucial in our
work, which is currently used for a Business to Consumer application whose goal
is to provide users with entities matching their needs in a particular domain.
In that context, formal definitions can be used by reasoning to deliver partial
satisfactory proposals when totally satisfactory ones do not exist. For example,
if a user wants to go on vacation during winter and do water sports, entities
annotated with DWW have to be proposed. If the DWW definition has lots
of constraints, it is possible that no available destinations match this concept,
implying no proposals to the user. This must be avoided. Close destinations have
to be proposed, e.g., with a slightly lower temperature in winter.

This paper focuses on how an ontology can be populated and enriched in
order to annotate documents. We investigate how several approaches can be
combined in order to jointly contribute to address this annotation problem. Our
contribution is then the Saupodoc (Semantic Annotation Using Population of
Ontology and Definitions of Classes) approach, relying on a domain ontology
relative to the field under study, which has a pivotal role, on its population with
property assertions, and on automatic generation of formal concept definitions
from the populated ontology.

The remainder of the paper is organized as follows. Section 2 presents some
related work. Section 3 describes the general aspect of our approach while Sect. 4
presents the various tasks involved. Section 5 presents experiments to evaluate
the approach. Section 6 concludes and outlines future work.

2 Related Work

In this section, we review some existing literature about semantic annotation
and highlight the need, in our context, for an ontology-based approach. Seman-
tic annotation is a large area of the Semantic Web [20]. Annotating implies to
attach data to some other pieces of data. Methods of semantic annotation of
documents can be classified into two categories [23]: (1) pattern-based meth-
ods based on an initial set of entities and/or a set of patterns and (2) machine
learning-based methods based on probability or induction. The idea is to look,
in documents, for textual fragments that mention an entity. Named entity recog-
nition [19] is part of this kind of annotation. However, our goal is a bit different.
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We want to annotate a whole document, i.e., the entity described in it, not the
elements mentioned in it. A few similar works deal with this idea. Their goal is to
evaluate the proximity between a description of an entity and more specific ele-
ments (other documents, instances of concepts, concepts). [14] wants to match a
job offer with candidates (CV, cover letters). Both are textual documents. Docu-
ments from both side are represented as vectors and various similarity measures
are used to match them. [5] is to match hotel services. The hotel manager gives
a description of the services of his hotel to be matched with a pre-existing list of
services. The proximity is based on an n-gram calculation. Finally, [3] wants to
annotate product catalogs with very fine-grained concepts. As similarity mea-
sures are not possible in this context, a first manual annotation is performed by
an expert helped with an annotation tool. Then, machine learning techniques
apply. Like these works, we want to match a description with specific concepts,
i.e., to annotate descriptions with specific concepts. However, we face one more
stake. We want comprehensive annotations. This means the process of anno-
tation cannot be a black box. Indeed, when a concept asked by a user is not
associated with any descriptions, we would like to make some refinements, i.e.,
to generalize its definition to be able to have some answers. This is what makes
our work original.

Since the concepts used for annotation are not explicitly mentioned in the
descriptions to be analyzed, a (at least) two-time process needs to be done.
The first step is a classic extraction process while the second step is a reason-
ing one over the results of the first step. These two phases can be observed in
concept-based approaches [8], such as concept-level sentiment analysis [7], which
focuses also on text analysis relying on features considered as implicit because
not represented in the texts but reasoning is here very specific. To the best of
our knowledge, two works with a research purpose close to ours follow this idea.
Both use ontologies. In the BOEMIE system [21], concepts from an ontology are
divided into primitive and composite concepts. The first ones are populated via
classical information extraction techniques. For the composite concepts, it is not
that easy since they cannot be found in texts. However, their properties can be
found. In this way, they can be defined in terms of primitive concepts. Com-
posite concepts are populated via a reasoning performed on primitive instances.
[27] aims to extract facts from texts using an ontology and natural language
processing tools. New facts, which are not explicitly mentioned in texts, are
then learned from the extracted facts and ontology knowledge. This learning is
done via inference rules, written manually, relying on background knowledge.
Compared to [21,27], we do not have a manual definition of our concepts. These
definitions need to be learned. This is one of our contributions.

3 The Saupodoc Approach: An Ontology-Based
Approach

In this section, we present the general idea of the approach. The main point is
the use of a domain ontology progressively populated with information extracted
from documents under consideration and from external resources. Then, concept
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definitions are learned based on this enhanced ontology and on some documents
manually annotated. The last step is a reasoning one, where definitions apply in
order to generate annotations of new documents. The approach, with the tasks
as defined in the paper, is automatic and domain-independent. For example, it
has been used to annotate destination descriptions as well as film descriptions.

3.1 Inputs of the Approach

Each domain needs its own inputs: (1) a domain ontology; (2) the list of concepts
used to annotate, called target concepts; (3) a corpus of documents from which
some of them have to be manually annotated as positive or negative examples for
each target concept; (4) a specification of correspondences between the ontology
properties and properties of external resources.

The Ontology. It defines the domain. It is a guide to analyze documents, to
search for missing information in external resources and to reason with defini-
tions. It contains all elements defining entities in the application domain. It is
approach-independent. Indeed, the only constraints imposed by the approach
are described in this section. The ontology can therefore be largely reused, or
(semi-) automatically built, however, we do not focus on this point in this paper.
More formally, the ontology O is an OWL ontology defined as a tuple (C, P,
I, A) where C is a set of classes, P a set of (datatype, object and annota-
tion) properties characterizing the classes, I a set of individuals and property
assertions, and A a set of axioms including constraints on classes and proper-
ties: subsumption, equivalence, type, domain/range, characteristics (functional,
transitive, etc.), disjunction.

Figure 1 shows an excerpt of an ontology in the domain of holiday destina-
tions. The classes Activity, Environment and FamilyType are respectively the roots
of a hierarchy, e.g., Environment expresses the natural environment (Aquatic,
Desert, etc.) or its quality (Beauty, View). Some object properties represented
on the figure have subproperties, not represented here. Datatype properties are
represented under their domain class. Individuals are not represented.

Fig. 1. The structure of the destination ontology

C groups two types of classes. The main class corresponds to the general
type of entities described in the corpus, e.g., Destination. Descriptive classes
are all other classes, useful to define the main class, e.g., Activity.
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P is the set of properties characterizing the classes, datatype or object. A
property assertion is a triple <s, p, o> which links an individual s to an other
individual or a literal o via a property p of O. For example, if ”Destination has-

Activity Activity” is an axiom in A, if d and a are respectively instances of Des-

tination and Activity, then <d, hasActivity, a> may be a property assertion. No
object/datatype property assertions are initially expressed. Our aim is to collect
them.

I initially contains instances of descriptive classes, e.g., rainForest is an
instance of Forest (descendant of Environment) and dense forest is one of its labels.

The Target Concepts. They are simple names of concept like “Destinations
where one can do Water sports during Winter” (DWW ), listed by the designer.
Target concepts will be introduced in the ontology as specialized classes of the
main class. One target concept will be denoted by tc in the following.

The Corpus of Documents. These are XML documents describing a domain
entity, with very little structure. The structure of documents highlights the name
of the entity and its textual description (containing labels of instances of descrip-
tive classes). In our context, documents may be extracted from advertising cat-
alogs, praising the assets of the entity described. In any cases, they describe
the main features of entities and few negative expressions are present. However,
names of target concepts are not explicitly mentioned. In our approach, some
documents have to be manually annotated by the designer, for all the target
concepts, as positive or negative examples of target concepts, i.e., either by tc
or by not tc. It is not very time-consuming since the designer associates tar-
get concepts to a whole document. As an expert of the domain, he can provide
the annotations based on his own background knowledge. He is not obliged to
analyze precisely the document content or to seek information from external
resources.

The Correspondences Between the Ontology and External Resources.
We distinguish two types of properties, document properties and external prop-
erties. Documents from one corpus are supposed to be complete w.r.t. docu-
ment properties. For example, the documents describing destinations mention
the activities that one can do in this destination. When an activity is not men-
tioned, we suppose it cannot be practiced in this destination. Nevertheless, doc-
uments are incomplete w.r.t. external properties. This means these properties
are not mentioned at all in the documents, e.g., the weather in the destination
corpus.

Document properties can be asserted from each document. However, exter-
nal properties need to be asserted from external resources. In this paper, we
focus our completion with data from LOD (Linked Open Data). The designer
indicates the external properties and selects the most relevant LOD datasets
to populate them. This task can be performed manually because the number
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Fig. 2. The Saupodoc workflow

of external properties is not too large: these properties deal only with precise
information not included in the documents (like numerical data) or with misin-
terpretation of documents. However, the ontology and the LOD datasets differ
in regards to vocabulary terms and structure. Complex correspondences have to
be established. We propose a model in Sect. 4.2 to support their specification.

3.2 Functional Description

The Saupodoc approach is based on four tasks guided by the ontology. The
first two tasks aim to populate the ontology (step 1) with property assertions.
The next two tasks (step 2) are two alternative reasoning tasks. Step 2a discov-
ers formal definitions of target concepts while Step 2b populates the ontology
classes corresponding to those definitions. This population is equivalent to an
annotation of the documents. Indeed, if a document d is (respectively is not)
an instance of a class corresponding to a target concept tc, then d is annotated
with tc (respectively not tc). We call tc a positive annotation and not tc a nega-
tive annotation w.r.t. the target concept tc. The annotation process is executed
off-line.

Figure 2 describes the workflow of the approach. The initial ontology O is
progressively populated and enriched. First, each document entity is introduced
as an instance of the main class. Each textual description is used to populate the
ontology with property assertions expressing the features of each entity. These
assertions are then completed thanks to information found in external resources
(O+). Target concepts are inserted into the ontology as classes, called target
classes, which are specializations of the main class. Their definition is learned
based on manually annotated examples (O++). Finally, definitions apply in order
to populate target classes (O+++) and annotate the corpus with target concepts.

4 Tasks of the Approach

This section presents the various tasks exploiting data at different abstraction
levels (classes and individuals) and having to cooperate to reach the final goal.
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The pivotal role of the ontology is central in the approach. A preliminary task
creates, for each document, an instance of the main class representing the entity
described in the document. For example, in the destination domain, an individual
Dominican Republic is created from the document describing it. This individual is
created such as <Dominican Republic rdf:type Destination>. For each entity, the two
tasks of step 1 populate the ontology with information that will be used by the
two reasoning tasks of step 2. In what follows, we present how the ontology is a
guide for each of these tasks.

4.1 Data Extraction from Texts

The first task of step 1 extracts data from documents. Its goal is to enhance the
ontology with assertions of document properties. This extraction is guided by
the ontology, more particularly by its terms related to instances of descriptive
classes being ranges of the document properties. If there is a match between a
term and a document, then a property assertion is added in the ontology. For
example, the constraint <Destination, hasActivity, Activity> requires that the range
value of the property hasActivity belongs to the extension of the class Activity.
From this constraint, if the text describing an entity e contains a term of an
instance a of Activity, then the assertion <e, hasActivity, a> is built. Figure 3
represents an excerpt of a document describing the Dominican Republic. The
expressions scuba divers and diving are terms of the individual diving, which is an
instance of a class specializing WaterSport (subclass of Activity). So, the assertion
<Dominican Republic, hasActivity, diving> is added. Note that in the two study
cases of our experiments, we specialized property ranges to avoid having two
properties with the same range. The approach should be extended in a future
work to take into account cases where such a specialization is impossible.

Fig. 3. Excerpt of the document on the
Dominican Republic annotated by GATE

In our work, we use GATE [6,10],
an open source software performing
a lot of text processing tasks. The
GATE resource OntoRoot Gazetteer,
in combination with other generic
GATE resources, can produce label-
ing over textual documents, called lookups, w.r.t. an ontology given as input.
GATE was chosen for its ability of using an external ontology as input, unlike
other tools such as Open Calais [1] which annotates with named entities, facts
or events but cannot be used with an external ontology. GATE can be used with
a JAPE transducer, which applies JAPE (Java Annotation Patterns Engine)
rules. In our context, JAPE rules transform lookups into property assertions.
They are automatically created from one pattern, used whatever the ontology.
The pattern is instantiated for all document properties, creating as many JAPE
rules as document properties.

Note that we are in a context where documents describe the main features of
entities and do not include negative expressions that could disrupt the process.
Thus, a simple information extraction task like this one is appropriate.
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4.2 Data Completion with External Resources

Textual descriptions are often short and do not contain all the necessary informa-
tion. For instance, defining a DWW requires to know temperature and precipi-
tation during winter for every destination. This data is not mentioned in descrip-
tions. Data collection has to be enriched exploiting available on line resources.
This is the second task of step 1. Again, this task is guided by the ontology.
It involves to find a RDF resource dealing with entities of the corpus and to
identify in this resource what properties correspond to those required by the
ontology (external properties).

We chose to work with DBpedia [4] and we use DBpedia Spotlight [18], a
tool able to automatically annotate a text with references to DBpedia entities.
Applied on the entity name of each document, it gives a direct access to the
DBpedia resource corresponding to the entity, unlike other tools like Wikifier
[9,22] or AIDA [28], which return Wikipedia pages.

In this section, we present a model of data acquisition used by the designer
to express (i) correspondences and (ii) access paths. The model of acquisition is
currently used to extract information from DBpedia (but can be used for other
LOD datasets) and insert property assertions into the ontology.

Correspondences. Since the vocabulary from the ontology and from the
resource can differ, mechanisms have to be conceived to establish correspon-
dences between the required elements and those from the resource. A model,
briefly presented here, allows the designer to express these correspondences and
supports automatic generation of SPARQL queries. A correspondence consists
in associating an external property from the ontology with a property expression
from the target data source, called PEt. This PEt is not necessarily explic-
itly represented in the target data source, instead, it may result from complex
treatments.

A property expression in the target source (PEt) is a property p or its inverse
p−1, or an expression (f) using one or several property expressions in the target
source. A PEt may include constraints (Constr).

PEt = p | p−1 | f(PEt) | f(PEt, PEt) | PEt.Constr

By recursion, a PEt can be a function of n PEt. The function f is specified by
the designer. He has to indicate whether it is a function of aggregation (minimum,
average, etc.), of transformation (mathematical calculation, concatenation, etc.),
or a set-theoretic operation (union, difference), and to clarify its nature. Constr
represents any domain or range constraints.

For example, the external property precipitation in January is expressed by six
different properties in DBpedia (janPrecipitationMm, janRainMm, janPrecipitation-

Inch, janRainInch, janPrecipitationIn and janRainIn). So, the correspondence of pre-

cipitation in January can be expressed as the union of the values of these six prop-
erties, or even the average value of their union.
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Access Paths. Since external resources are incomplete (like DBpedia), some
properties from a PEt may be missing. In our settings, having complete infor-
mation is essential in order to achieve the best results as output of the entire
process. Consequently, we propose an alternative way to get missing data, by
browsing close resources. The idea is to have an approximation of the data, which
is better than nothing.

Fig. 4. Access paths in DBpedia

This mechanism is based on the composition of properties and allows the
designer to establish access paths, to reach resources containing the required
information. For example, Fig. 4 shows two examples (Alaska and Cephalonia)
where the values for January precipitation are not available for the destination
but where an approximation can be found for a close entity (the capital here).

These complex correspondences with their access paths are specified by the
designer. CONSTRUCT SPARQL queries are automatically built based on these
specifications, allowing to collect data via SPARQL endpoints in a transparent
way and to insert ontology assertions in the source ontology. This process is not
the focus of the paper. It will not be discussed here.

4.3 Learning the Definitions of Target Concepts

The first task of step 2 is a reasoning task, which is executed only once. It aims
to learn the definitions of target concepts, based on the manual annotations of
documents provided by the designer and the data collected in step 1.

Most machine learning tools do not take into account explicit specifications
of relations (subsumption, object/datatype properties) between features as it
is expressed in an ontology. Three tools, YinYang [11], DL-FOIL [12] and DL-
Learner [15], use inductive logic programming (ILP) on Description Logics (DL)
to perform concept learning. We chose to use DL-Learner, an open-source soft-
ware capable of learning definitions of classes expressed in DL, from expert-
provided examples, using an ontology as input. It allows us to get an explicit
definition for all target concepts, an important point in concrete applications.
The DL-Learner definitions are conjunctions and disjunctions of elements. An
element can be a class (Destination) or an expression using object properties
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(hasActivity some Nightlife), numerical datatype properties (avgTemperatureC some

double[>= 23.0]), or cardinality constraints (hasCulture min 3 Culture). Ranges are
conjunctions and disjunctions of elements. For example, the definition of DWW
that can be learned by DL-Learner, could be something like this:

(Destination and (hasActivity some Watersport)

and (hasWeather min 2 ((concernMonth some (hasSeason some MidWinter))

and (avgTemperatureC some double[>= 23.0])

and (precipitationMm some double[<= 70.0])))).

DL-Learner parameters were chosen based on the user manual and discus-
sions with the software developers. We use the CELOE algorithm [16] announced
as the best class learning algorithm currently available within DL-Learner,
and the default reasoner, called fast instance checker, making the closed-world
assumption (CWA). However, learned definitions have to be incorporated in an
OWL ontology where reasoning is based on the open world assumption (OWA).
To be able to learn and exploit minimum cardinality constraints, e.g., (hasAc-

tivity min 3 Activity), instances are automatically expressed as disjoint (Unique
Name Assumption) to avoid being linked by owl:sameAs. Moreover, we disable
the negation operator (NOT), the operator of universal restriction (ONLY), and
operator of the maximum cardinality restriction (MAX), so that the obtained
definitions are applicable under OWA.

Some DL-Learner parameters have been set making a compromise between
the expressiveness of the definition and the execution time. Hence, we allow
statements with a cardinality value set maximum at 10 instead of 5 (default
value) such as definitions like hasObjectProperty min 10 class name can be
learned and the maximum execution time is set at 200 s. These parameters will
be used whatever the application. An other important parameter is the noise
percentage, i.e., the percentage of positive examples not covered by a defini-
tion. We have proceeded by trial and error to set it. Hence, we have developed
a methodology from the conducted experiments, where 5 different values for
the noise percentage (5–15–25–35–45 %) are tested, and tuned using test experi-
ments. Moreover, in case of really complex and far from easy to learn definitions,
we set up parameters to apply a search heuristic to get longer definitions. When
these latter parameters are activated, we call it the complex configuration, when
they are not, the basic one. This means 10 configurations are tested: the basic
and complex configurations both with 5 different values for the noise percent-
age. For each test, the highest ranked solution which is the best one in terms
of accuracy and length is automatically kept. For each target concept, the best
definition from the 10 tests is chosen.

4.4 Reasoning to Populate Target Classes and Annotate Documents

The second task of step 2 consists in applying the learned definitions to populate
the target classes in the ontology. This task is done any time new descriptions
have to be annotated. We chose to use FaCT++ [26], an OWL-DL reasoner,
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which scales well with a large number of instances, unlike HermiT [24] and
Pellet [25] according to our experiments. Indeed, these two reasoners have never
terminated the process when used on 10,000 documents. FaCT++ relies on
the definitions of target concepts to identify the document entities that should
be annotated with a target concept. For each target concept tc, if the entity
described in a document d fits the definition of tc, then this entity becomes an
instance of the class representing tc. In that way, the document d is annotated by
tc. On the opposite, if the entity does not fit the definition of tc, then this entity
does not become an instance of the tc class and d is annotated by not tc. Doing
this sort of annotation relies on a closed world assumption (CWA), whereas the
reasoning with OWL is generally based on an open world assumption (OWA).
Nevertheless, our context is particular and allows us to simulate the CWA in
each step. In step 1, for each entity, if a property assertion is not created, then
we consider it does not exist. Indeed, the extraction of property assertions from
documents operates under CWA since documents are supposed to be complete
for all document properties. Moreover, the extraction of property assertions from
external resources nearly operates under CWA too thanks to the model of acqui-
sition presented in Sect. 4.2. Indeed, access paths providing approximate values
are good ways to overcome incompleteness. For step 2a, as stated in Sect. 4.3,
definitions respect the CWA.

5 Experimental Evaluation

5.1 Procedure

To evaluate the annotation process, we compare our approach with classifica-
tion approaches. Classification approaches are able to annotate documents in the
same way as Saupodoc, i.e., with a positive annotation (tc) or negative anno-
tation (not tc) for each target concept tc. In this section, we assess the quality
of the annotation. To do that, a set of annotated documents is used. This set
is split. The training set (2/3) provides positive and negative examples given in
inputs to learn definitions. The testing set (1/3) is used to compare the annota-
tions obtained by each process with the correct annotations. The comparison is
based on several metrics: precision, recall, accuracy and F-measure.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Acc. =
TP + TN

TP + FP + TN + FN
F-measure =

2 × Precision×Recall

Precision + Recall

To make a fair assessment between Saupodoc and classification approaches,
we consider the same domain terminology. Indeed, Saupodoc is based on an
ontology but classifiers are not. The input of classifiers consists of documents
represented with a list of features and a label. The label is binary w.r.t. a target
concept (the annotation of the document with this target concept is true or
false). To make the list of features, we consider the domain terminology of the
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ontology, i.e., the set of labels and key-expressions associated to each individual,
as a domain dictionary. We call a word of the dictionary, a keyword or keyphrases
from the domain dictionary. Two expressions referring to a same idea (same
individual) are put into a same word of the dictionary, e.g., scuba divers and diving.
All the words of the dictionary are lemmatized. Each document corresponds to
a vector of features (Vector Space Model). A bag-of-words method is used. This
means that each element of the vector (each feature) corresponds to a word of the
dictionary. Documents are lemmatized. If a word of the dictionary is found, the
value in its vector for its element is the TF-IDF value, otherwise 0. In summary,
for a corpus, a list of vectors is made, one vector for each document representing
its content w.r.t. the list of features, and a label w.r.t. a target concept. For each
target concept, we launch the classifier with the same features but we change
the binary label, depending on whether the annotation is true or false.

Two classifiers are tested: an SVM classifier and a decision tree classifier. We
use several parameters. Indeed, several values are tested for kernel (PolyKernel
with several exponents, RBF with several gammas) and complexity for SVM;
and several confidence factors for decision trees. We only keep the best results,
i.e., the results with the best accuracy on the test set.

5.2 Versions Used in the Evaluation

The experimental evaluation has been performed using the following versions
of the Saupodoc components: GATE 8.0, DBpedia 2014, DL-Learner 1.0,
FaCT++ 1.6.2.

For classifiers, we used Stanford NLP 3.4.1 [17] to lemmatize and
Weka 3.6.6 [13] to execute the classifiers.

5.3 The Two Tested Corpora

Experiments were conducted in two application domains, each one having dif-
ferent characteristics. The objective is to see whether the size of the corpus and
the ontology richness affect the quality of results.

The Destination Corpus. The corpus of destinations contains 80 documents,
which have been automatically extracted from the Thomas Cook catalog [2].
Each document describes a specific place (country, region, island or city). The
documents are promotional, i.e., they express the qualities of destinations and
have hardly any negative expressions. Geolocation and meteorological data are
missing. This information will be extracted from DBpedia thanks to the model
of acquisition (Sect. 4.2).

The main class of the ontology is Destination. There are 161 descriptive classes,
which express the nature of the environment (46 classes), the activities that
can be done (102 classes), the kind of family that should go there, e.g., people
with kids, couples, etc. (6 classes) and the weather information (7 classes), e.g.,
the seasons. The individuals, which are instances of these descriptive classes,
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have terminological forms via annotation properties (label, isDefinedBy). For
example, the terms archaeology, archaeological, acropolis, roman villa, excavation site,

mosaic are terminological forms of the individual archaeology.
In all, 39 target concepts are under study. Every destination of the corpus

is annotated by the designer as a positive or negative example for each target
concept.

The Film Corpus. The film corpus contains 10,000 documents. These doc-
uments have been created via an automatic extraction from DBpedia. Each
document corresponds to a film described in a DBpedia resource. The document
contains the DBpedia URI from which it was extracted and the abstract of the
film. The abstract of film fits our context, i.e., there are hardly any negative
expressions. Since the DBpedia URI is provided, we do not need to use DBpedia
Spotlight to get it. Duration of the film as well as languages and countries are
extracted from DBpedia. Indeed, duration is missing in the description. Lan-
guages and countries might be mentioned but a misinterpretation is possible,
this is the reason why we prefer to trust DBpedia than documents for these
properties. For instance, the presence of the term “French” may have different
meanings. The film may be in French (language), or it may be a French film
(country), or it can tell the story of a French person.

The film ontology is basic. It contains the main class Film and five descriptive
classes expressing characteristics about films. The ontology only contains the
classes needed for defining the target concepts in our experiments. It should be
completed in case of new target concepts.

In total, 12 target concepts are taken into consideration. They correspond
to some DBpedia categories. Annotated examples are automatically generated
for films: a film f is a positive example for a target concept corresponding to
a category c if <f dcterms:subject c> according to DBpedia, otherwise it is a
negative example.

Let us note that, for our approach, the domain terminology may be partial,
for which external resources are used. For example, there are no terms about
either languages or countries in our film ontology but the DBpedia step can add
instances of them. To be fair for classifiers, terms from these external resources
are also added into the domain dictionary of classifiers.

5.4 Validation of the Approach

Table 1 shows the results for the testing set, i.e., the part not used in the process
of construction of annotations. We can see that all the three approaches give
good results in terms of accuracy, even if Saupodoc has slightly better ones.
However, accuracy is not the only metric to take into account. Most of the target
concepts have many negative examples and few positive examples. Hence, if a
classifier predicts negative for each document given in input, then the accuracy
is high, e.g., 91.76 % on average for target concepts of the film corpus. Moreover,
no instances of each target classes is found, which means all documents are anno-
tated with negative annotations. As already said, our approach is currently used
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for a Business to Consumer application whose goal is to provide users with enti-
ties matching their needs in a particular domain. This means it is important to
obtain positive annotations. This is why alternative metrics like precision, recall
and f-measure are needed. They allow us to evaluate the positive annotations,
which are central in this settings. From Table 1, we can observe that Saupodoc
significantly outperforms classifiers for these three metrics.

Table 1. Average results for target concepts

Moreover, for all the target concepts (39 + 12 = 51) from the two corpora,
Saupodoc generates 8 target concept definitions that assign every input of the
test set as a negative example. To avoid this, as definitions are intelligible, the
designer can easily refine them in order to have some positive examples. This
refinement is mandatory in contexts such as Business to Consumer applications,
for which positive examples are needed for all target concepts.

Fig. 5. The decision tree for
coastal destinations

Classifiers encounter the same problem. How-
ever, a refinement is impossible, since there is no
explicit definitions. Indeed, SVM classifiers create
a model, which is not comprehensive for human.
Decision tree classifiers are more comprehensive
since trees can be seen as sets of rules. But here,
these rules deal with the TF-IDF number asso-
ciated with a dictionary word, which is hard to
be interpreted by humans. For example, the deci-
sion tree for the target concept coastal destinations is given in Fig. 5 (accuracy of
96.30 %). It means positive annotations are made when the TF-IDF value of the
dictionary word urban is less than 0.18893 and beach is less than 0 and sea is more
than 0.005502, or if urban is less than 0.18893 and beach is more than 0. Such a
tree is difficult to be adjusted by the designer in case a refinement is needed.

6 Conclusion and Future Work

We proposed an ontology-driven approach dealing with semantic annotations of
documents describing entities of a same domain. Annotation is performed with
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a list of concepts, which are not explicitly mentioned into the documents. The
approach, called Saupodoc, is based on an ontology, and combines population
and enrichment steps. It makes tasks cooperate both at individual level and
at concept level. Innovative mechanisms have been implemented to exploit the
LOD. Property complex correspondences between the ontology and a data set
can be defined and alternatives to missing data are provided. Results clearly
show the benefit over well-known classifiers and the relevance of an ontology-
based approach relying on a particular combination of various techniques to
semantically annotate documents.

This work has been validated by the Wepingo company. It is a part of a
wider approach to answer user’s queries whose keywords are specific concepts
by delivering documents related to instances of these concepts. Future work
will be devoted to the integration of this semantic annotation process, extended
with automatic generation of SPARQL queries to easily access LOD data, into
a framework supporting the overall approach.
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