Learning to Classify Spatiotextual
Entities in Maps

Giorgos Giannopoulos®) | Nikos Karagiannakis, Dimitrios Skoutas,
and Spiros Athanasiou

IMIS Institute, “Athena” Research Center, Athens, Greece
giann@imis.athena-innovation.gr

Abstract. In this paper, we present an approach for automatically rec-
ommending categories for spatiotextual entities, based on already exist-
ing annotated entities. Our goal is to facilitate the annotation process
in crowdsourcing map initiatives such as OpenStreetMap, so that more
accurate annotations are produced for the newly created spatial enti-
ties, while at the same time increasing the reuse of already existing
tags. We define and construct a set of training features to represent the
attributes of the spatiotextual entities and to capture their relation with
the categories they are annotated with. These features include spatial,
textual and semantic properties of the entities. We evaluate four different
approaches, namely SVM, kNN, clustering+SVM and clustering+kNN,
on several combinations of the defined training features and we examine
which configurations of the algorithms achieve the best results. The pre-
sented work is deployed in OSMRec, a plugin for the JOSM tool that is
commonly used for editing content in OpenStreetMap.

1 Introduction

The Semantic Web and Linked Data practices have been gaining increasing inter-
est the last years and are being adopted by crowdsourcing and mapping initia-
tives. In conjunction with the widespread use of smartphones and GPS enabled
devices, this has resulted in a large number of RDF datasets containing geospa-
tial information, which is of high importance in several application scenarios,
such as navigation, tourism, and location-based social media.

In particular, OpenStreetMap (OSM) is an initiative for crowdsourcing map
information from users. It is based on a large and active community contributing
both data and tools that facilitate the constant enrichment and enhancement of
OSM maps. An important feature of OSM is a large hierarchy of categories!
for annotating spatial entities on the map. Its Linked Data counterpart, Linked-
GeoData, serves the whole OSM dataset as RDF data adhering to a respective
ontology? which maps OSM categories into equivalent OWL classes.

! http://wiki.openstreetmap.org/wiki/Map_features.
2 http://linkedgeodata.org/ontology.
© Springer International Publishing Switzerland 2016

H. Sack et al. (Eds.): ESWC 2016, LNCS 9678, pp. 539-555, 2016.
DOI: 10.1007/978-3-319-34129-3_33

http://wiki.openstreetmap.org/wiki/Map_features
http://linkedgeodata.org/ontology

540 G. Giannopoulos et al.

One of the most prominent tools for editing OSM data is JOSM?, a graphical
tool that allows users to create and edit spatial entities in OSM. Through its
graphical user interface, the user can draw the geometry of a spatial entity.
Then, she can annotate the entity with categories (alt. classes, tags), which are
represented in the form of key-value pairs and assign semantics to the entity.
Each entity may belong to multiple categories; for example, a “building” can be
further characterized as “school” or “house”.

The categories used to semantically annotate spatial entities on the map can
either be selected from the already existing hierarchy of categories mentioned
above or be defined for the first time by the user. Although this provides a lot
of flexibility, which is an important requirement when relying on crowdsourcing,
it also increases the complexity of maintaining the taxonomy of classes. Ideally,
already existing categories should be reused as much as possible when creating
new entities, while new categories should only be introduced when a new entity
appears that cannot be appropriately classified and characterized by the exist-
ing ones. However, manually browsing through the class hierarchy to determine
which category(-ies) is the appropriate one for an entity is a time consuming
task, especially for a non-expert user who is not already familiar with the OSM
taxonomy. Thus, it may often result in choosing a category poorly (e.g., selecting
a more general one, although a more specific one exists) or introducing a new
category while in fact an appropriate one (e.g., a synonym) already exists.

To deal with these shortcomings, in this work we propose a process that
trains recommendation models on existing, annotated spatiotextual datasets in
order to subsequently recommend categories automatically for newly created
entities. The main contribution of our work lies on defining and implementing
specific training features in order to capture the relations between the spatial and
textual properties of each spatial entity with the categories/classes that charac-
terize it. Essentially, this way, the proposed framework takes into account the
similarity of the new spatial entities to existing ones that are already annotated
with categories. This similarity is specified at several levels: spatial similarity,
e.g. the number of nodes of the feature’s geometry; textual similarity, e.g. com-
mon important keywords in the names of the features; and semantic similarity,
i.e. common or related categories that characterize already annotated entities.

To evaluate the proposed methodology, we perform an extensive experimen-
tal evaluation that assesses the effectiveness of several feature subsets deployed
in the frame of two classification algorithms: (i) Support Vector Machines (SVM)
and (ii) k-Nearest Neighbors (kNN). In addition, we assess two hybrid solutions:
(iii) clustering+SVM and (iv) clustering+kNN. The experimental results show
that a proper combination of classification algorithm and training features can
achieve recommendation precision of more than 90 %, rendering the proposed
approach suitable for deployment on real-world use cases. Indeed, to further val-
idate it in real-world scenarios, the proposed method is implemented and made

3 https://josm.openstreetmap.de/.

https://josm.openstreetmap.de/

Learning to Classify Spatiotextual Entities in Maps 541

available as a JOSM plugin? [9], allowing the real-time and effective annotation
of newly created spatial entities into OSM.

The rest of the paper is organized as follows. In the next section, we briefly
review related work. Then, Sect.3 describes our proposed method, including
the defined training features and the assessed algorithms. Section 4 presents the
evaluation of training features and algorithms in terms of recommendation per-
formance, while Sect. 5 concludes the paper.

2 Related Work

During the past years, the amount of Volunteered Geographic Information is
constantly increasing, while its value and importance in numerous applications
and services is constantly becoming more recognized and prominent. Hence, the
quality of this content is becoming a crucial factor. Nevertheless, so far few works
address the problem of semantically enriching crowdsourced spatiotextual data.

A recent work for addressing the semantic heterogeneity of OSM data propos-
ing a tag recommendation plugin for JOSM is presented in [1]. The main idea of
this approach is to recommend additional similar categories for a spatial entity
in OSM, when the user has already inserted a category. The recommendation
process is held by constructing a semantic network for OSM. This network holds
the scores for semantic similarities between pairs of OSM tags and the recommen-
dation process is based upon these scores. The authors also focus on evaluating
the effectiveness of the tool and user satisfaction by performing a thorough user
study. Thus, they solve a very similar problem to ours, but from another perspec-
tive. Given that, the two approaches could complement each other in order to
further increase the recommendation effectiveness of the two individual systems.

The work presented in [2] proposes a machine learning based solution for
assessing the semantic quality of OSM data. This work focuses on classifying road
segments in OSM, thus it specializes only on geometrical and topological features
of the specific entities and reduces the space of recommendation categories from
more than 1000 to only 21.

In a broader context, relating to recommendations of geospatial data, a
Semantic Web Knowledge System is described in [3] that is able to recommend
Points of Interest (POIs) to drivers using a content-based recommendation app-
roach. Specifically, they utilize a kNN classifier that takes into account historical
POIs the driver has visited to recommend new POIs. In [4], a method is pre-
sented for recommending tags for photos, exploiting geospatial proximity, image
similarity and several other estimators between photos. The authors feed these
estimators into several machine learning algorithms, training this way classifiers
that recommend tags for new photos. In [5], the authors utilize Gaussian mix-
ture models to represent the geospatial profile of a user, extracted by microblog
posts on music listening events. Considering either user geographic positions or
geographic neighbourhoods of the user, they exploit these models into a collab-
orative filtering approach for identifying similar users and recommending music.

* http://wiki.openstreetmap.org/wiki/JOSM/Plugins/OSMRec.

http://wiki.openstreetmap.org/wiki/JOSM/Plugins/OSMRec

542 G. Giannopoulos et al.

The works in [6,7] perform analyses on OSM annotation statistics and on
semantic relations between point geometries in OSM respectively. For the latter,
the results of their analysis can be exploited from systems that perform cat-
egory recommendations or quality assessment of the annotation of the spatial
entities. Finally, [8] presents a thorough overview of recommendation concepts
and methods on location based social networks.

3 Recommendation Models

3.1 Problem Definition and Method Outline

We cast the problem as a multilabel classification task. Given a set £ of spatial
entities e; € £ and a set T of categories t, € 7: (i) properly represent each
entity as a feature vector v., = <g;,w;,c;>, where g;, w; and ¢; are sets of
geospatial, textual and semantic attributes of the entity; (ii) learn a function
F(ve,,tn) => {true, false} that maps entities to categories.

We further break down this task into three distinct sub-tasks: (a) analyse
spatial entities into meaningful attributes (training features) that properly
describe the entities and capture their latent relation to the categories that
annotate them; (b) train a machine learning algorithm to “learn” relations
between attributes of the spatiotextual entities and the respective categories and
(c) input the new (test) entities into the trained algorithm to produce category
recommendations for them.

In Sect. 3.2 we describe the defined features that correspond to geometric,
textual and semantic properties of the entities. The next step is to feed training
entities, expressed through their features, into a classification algorithm that
utilizes them to classify new entities to categories. We applied both model based
(Support Vector Machines) and memory based (k Nearest Neighbour) state-of-
the-art classification methods®. Further, we tested two hybrid solutions that first
create clusters of similar training spatial entities and then apply either SVM or
kNN respectively. Each of the algorithms is described in Sect.3.3. During the
third step, depending on the algorithm, either the trained model is applied on
the new entity, or the new entity is matched to the training ones (using the
cosine similarity of the respective feature vectors of the entities), in order to
produce category recommendations. In the case where the similarity between a
cluster and an (external) entity needs to be computed, this is done by considering
the average feature vector of all entities contained in the cluster and, similarly,
applying the cosine similarity with the vector of the (external) entity. The general
rule used for producing the average vector of each cluster is by applying an OR
operation on the boolean training features (since we wanted the cluster to be
characterized with the specific training feature value if at least one of the clusters

5 More sophisticated or recent algorithms could have been tested, however, the focus
of this work lies mainly on defining meaningful and effective training features. Thus,
these two algorithms were selected as intuitive representatives of two categories of
classification algorithms that have shown to be effective in several scenarios.

Learning to Classify Spatiotextual Entities in Maps 543

entities was characterized by it) and computing the average value of the training
features represented by double values.

3.2 Feature Selection

In our scenario, the entities to be classified are the spatiotextual entities that
exist on the map (e.g. buildings, roads, parks) and the variable to be predicted
is the category(ies) of the entities. Note that an entity may belong to multiple
categories. To learn a classifier for assigning entities to categories, we represent
each spatiotextual entity by a feature vector. We consider features that capture
spatial, textual and semantic properties of the entities, as listed next.

— Spatial properties
e Type. Six distinct geometry types are considered: Point, LineString, Poly-
gon, LinearRing, Circle and Rectangle. Each type is treated as a boolean
feature, so six positions in the feature vector are used.

e Geometry

x Points. This denotes the number of points that the geometry of the
entity comprises when represented as a point set. It provides an indi-
cation of how complex the geometry is.

* Area. This represents the size of the entity’s geometry.

x Mean. Mean edge length is a feature used to capture properties of the
shape of the entity.

x Variance. Variance of edge lengths is also related to the entity’s shape.

— Textual properties

e Text. For each entity of the training set, we extract the textual description
of its name. We consider each word separately and count their frequency
within the dataset. Then, we sort the list of words by their frequency,
filtering out words with frequency below a certain threshold (set to 20in
our experiments). Finally, we apply a stopword list®, removing this way
words without any particular meaning. What remains are special meaning
identifiers, such as “Road”, “Avenue”, “Park”, “Court”, etc. Each of these
keywords is used as a separate boolean feature, realizing, thus, a bag-of-
words model for representing the text of the entities.

— Semantic properties

e Categories. This is a set of 1,421 boolean features, corresponding to each
of the OSM categories. This feature is used in the scenario where an entity
has been previously annotated with one or more categories, and we wish
to recommend additional relevant categories for this entity”.

5 https://code.google.com /archive/p/stop-words/.

" These features are only mentioned here for completeness, since they are utilized in
the implemented OSMRec prototype - JOSM plugin. However, they are not included
in the experimental evaluation that is described next.

https://code.google.com/archive/p/stop-words/

544 G. Giannopoulos et al.

We should note here that we select different representations for the numeric
features (double precision number or set of boolean features) to comply with the
functionality of the different models and similarity functions we apply. Namely,
we consider boolean features in the case of SVM, since it is well known that
such models perform better when the input feature vectors are vertically nor-
malized within (or at least close) to the interval [0,1]. Thus, for example, for
the feature “Area of Geometry”, defining several area ranges corresponding to
separate feature positions, we allow the model to relate these different areas
(feature positions) with different training classes. On the other hand, in the case
of clustering or applying kNN, where similarity measures such as the cosine sim-
ilarity are applied, using the exact value of a feature (e.g. area of geometry) is
preferable in order to better quantify the difference between two entities.

3.3 Algorithms

SVM. The first algorithm applies multilabel SVM classification, using the
SV Mmulticlass jmplementation®, considering as training items the spatiotex-
tual entities themselves and as labels the categories that characterize them. The
method maps the training entities into a multidimensional feature space and
aims at finding the optimal hyperplanes that discriminate the entities belong-
ing to different categories. The optimality of the hyperplane depends on the
selected parameter C, which adjusts the trade-off between misclassified training
entities and optimal discrimination of correctly classified entities. The output of
the training process is a model (essentially a weight vector) that is able to map
the feature vector of a new, unannotated entity to a set of categories, providing,
also, a matching score for each category. This way, one can obtain the top-n
most fitting categories for a new spatial entity.

kNN. The second algorithm searches for k-Nearest Neighbours in the set of
training entities. The algorithm compares the new entity with each one of the
training entities and recommends the categories that characterize the most sim-
ilar training entities. As similarity measures we consider cosine similarity and
Euclidean distance. The two similarity functions were initially applied to the
feature vectors of the respective entities. However, we empirically observed that,
in the specific setting, boosting the vector-calculated similarity score with the
area-based and point-based similarity scores between two entities improves the
precision of the algorithms. Specifically, we use the following formula in our
experiments to calculate the similarity score S between two entities u, v:

Scos = cosSim + 2 x (1 — areaDist) + 2 * (1 — point Dist)

|area, — area,|

where areaDist = 1
Max ared., , ared, (1)

|points, — points,|

and pointDist = - -
max points,,, points,

8 https://www.cs.cornell.edu/people/tj/svm_light /svm_multiclass.html.

https://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html

Learning to Classify Spatiotextual Entities in Maps 545

where cosSim is the cosine similarity on the whole feature vector of the two
entities and is interchanged in our experiments with the similarity that is based
on the euclidean distance

euSim = 1 — euDist/ max euDist (2)

The similarity of a trained entity with the new entity is propagated to the
categories that annotate the training entity. So, for each candidate category, we
get an aggregate score from all matching training entities that are annotated by
it. This way, we can get the top-n most fitting categories for a new spatial entity.

clustering+SVM. The third algorithm, SVM on clustered entities, first clus-
ters the training entities, to identify groups of similar entities, based on the
training features that represent them. Then, the entities assigned to each cluster
go through the SVM training process in separate groups. This procedure pro-
duces a number of SVM models equal to the number of clusters. The rationale
of this approach is that the clustering step is expected to produce subsets of
the training entities containing more homogeneous entities, w.r.t. to the defined
training features. Thus, the SVM training step is performed on more coher-
ent groups of entities, with the expectation to produce more specialized SVM
models. Then, a test entity is matched only with some of these models (corre-
sponding to the most similar training entities) and the eventually used category
recommendation models are trained only by entities similar to the test entity.

We applied an Expectation Maximization clustering algorithm (using the
implementation provided by Weka®). The algorithm starts by assigning initial
probabilities to items belonging to clusters and then it iteratively re-defines
clusters and re-assigns items to clusters, until it converges. The specific imple-
mentation provides the option either to define a fixed number of clusters to be
formed, or to allow the system to result to the most fitting number of clusters.
Thus, we performed our experiments using both options.

In order to match a new entity to appropriate cluster(s), we calculate the
cosine similarity of this entity’s feature vector against all the entities con-
tained in the training set. Based on the K'° most similar training entities €j,
j € [1,K] that emerged from this process and, using their cosine similarity
scores cos(e;, enew) With the new entity’s feature vector eye,,, we assign simi-
larity weights between each cluster and the new entity. Specifically, the value of
a cluster weight w,, is calculated by the frequency of the cluster’s appearance
in the set of K most similar training entities and additionally, the similarity of
each training entity (belonging to the cluster) with the new entity:

K
We; = Z COS(ej’ enew) * Jl(ey‘“i) (3)

j=1

9 http://www.cs.waikato.ac.nz/ml/weka, .
10 Experimentally tuned to K = 50 by testing the recommendation results while chang-
ing its value in the interval [10,100] with step 10.

http://www.cs.waikato.ac.nz/ml/weka/

546 G. Giannopoulos et al.

with 1 being the indicator function.

Then, we apply each of the M matched SVM models (corresponding to the
matched clusters above) to produce a ranking of categories for the new entity.
Let 7., ; denote the ranking of the j-th category by the ranking function of
cluster ¢;; the final ranking score between a category j and the new entity is
given by linearly weighting the cluster rankings with the cluster importance wy,:

M
S(eneunj) = ZwCi *Teje (4)
=1

Finally, we consider the top-n categories ranked according to the process
above.

clustering+kNN. The fourth algorithm, kNN on clustered entities, first clus-
ters the training entities to identify groups of similar entities (using the same
aforementioned Expectation Maximization clustering algorithm), based on the
training features that represent them. Then, it performs a kNN algorithm that,
for each new spatiotextual entity, finds the most similar cluster. To do so, each
cluster is represented by its average feature vector, as described in Sect. 3.1. The
same rationale described in the clustering+SVM case applies here. Through clus-
tering, we expect to specialize the groups of training entities on which the kNN
algorithm is applied, only to those training entity groups that are found more
similar to the test entity.

Upon clustering, the process is identical to the one followed in kNN algorithm
with the difference that the training items are now clusters of entities and their
labels are the total of the categories that characterize the entities of the cluster.
The similarity function compares a new spatial entity with the average vector
of each cluster, and assigns it a ranked list of categories, based on the similarity
score of the entity with each cluster. Defining the set of all categories IV that
belong to a ranked list of matching clusters ¢;, i€[1,C], that is all the categories
that characterize entities belonging to the respective list of clusters and w, ,, the
matching score of the cluster ¢;’s centroid (where category n belongs to cluster
¢, with normalized frequency f., ») to the new entity, the aggregate matching
score of each category with the new entity is calculated as follows:

K
Sn - chi,n * fci,n (5)
1=1

In our experiment, we tried out K = 1 and K = 5, i.e. we considered the 1
and the 5 Nearest Neighbours-clusters of the new entity for detecting matching

categories'!.

1 In the case of clustering+kNN, our experiments consistently showed that the best
results were achieved with a low number of clusters, specifically, 14 and 28 for Athens

and London respectively. Thus, given this upper limit for k, we indicatively evaluated
the 1-NN and 5-NN cases.

Learning to Classify Spatiotextual Entities in Maps 547

4 Experimental Evaluation

Next, we present the evaluation of the proposed methods w.r.t. the recommenda-
tion precision they achieve. First, we describe the dataset used and the evaluation
methodology. Then, we compare the four algorithms and discuss the results.

4.1 Dataset and Evaluation Methodology

We performed our evaluation on two distinct subsets of OSM data covering
parts of: (i) Athens, Greece and (ii) London, UK, which we exported through
the Overpass API'? from the OSM website. Each of the two datasets contains
a total of about 20,000 spatiotextual entities which were properly divided into
training, validation and test sets, as will be described next. Table 1 presents some
statistics on both datasets.

Each dataset is partitioned into five subsets of similar sizes. Then, combining
each time different subsets to make (a) the training (3 subsets), (b) the validation
(1 subset) and (c) the test set (1 subset), we create five different arrangements
for five-fold cross-validation. In every fold, the validation set was used to tune
the parameters of the classification model and the test set was the one where the
actual evaluation of the method was performed. In this evaluation, we considered
the setting where test entities were clear of annotations, that is, they were to be
annotated for the first time. Thus, we do not consider the Semantic properties
mentioned in Sect. 3.2.

We experimented varying the following parameters. Parameter C' of the SVM
algorithm was set with the following values: {0.001, 0.01, 0.1, 1.0, 10.0, 100.0,
1000.0}. For Cl, the number of created clusters for the two hybrid approaches,
we set the values: {10, 50, 100, 200} and we also considered the automatic cluster
creation option of the algorithm that decided the optimal number of clusters to
be created. Finally, for the number k£ of Nearest Neighbours, we set 10 for the
kNN algorithm and experimented with 1 and 5 for the clustering-kNN approach.

Table 1. Dataset statistics.

Statistics Athens | London
Distinct classes 186 306
Classes per entity 1.0 1.1
Majority class #1 (Building/Building) frequency 7133 | 8036

Majority class #2 (ResidentialHighway/Footway) frequency | 3850 1942
Majority class #3 (Footway/UnclassifiedHighway) frequency | 1122 1083
Categories with frequency =1 20 % 25 %
Categories with frequency <2 33% |38%

12 http://overpass-api.de/.

http://overpass-api.de/

548 G. Giannopoulos et al.

As evaluation measure, we consider the precision of category recommenda-
tions, i.e. the ratio of correct recommendations to the total recommendations:

(6)

We consider three variations of the measure, depending on how strictly we define
the recommendation correctness:

P': In this case, a recommendation is considered correct if the recommended
category with the highest rank from the recommendation model is indeed a
category that characterizes the test entity.

P3: In this case, a recommendation is considered correct if one of the five
recommended categories with the highest rank from the recommendation model
is indeed a category that characterizes the test entity.

P10: Similarly, a recommendation is considered correct if one of the ten rec-
ommended categories with the highest rank from the recommendation model is
indeed a category that characterizes the test entity.

The rationale behind the definition of these three measures is that, in prac-
tice, it is common to provide the top-N recommendations. So, using these mea-
sures, we wanted to evaluate some representative cases, setting N = 1,5, 10. Note
that the above measures are slight variations of the commonly used measure of
Precision@N which measures the number of correct results in the top-N rank
positions. Our measures are defined in a boolean manner, indicating whether at
least one correct category is found within the recommended ones to annotate the
entity. Given that, whether the recommendation set consists of 1, 5 or 10 cate-
gories, the recommendation is considered successful if at least one category from
it indeed characterizes the respective entity. Another reason for this adaptation
is the very low average number of categories that annotate each entity in our
datasets (and in OSM in general), that lies a little above 1 category per entity.
This means that measuring Precision@N with N > 1 would be meaningless.

Finally, we note that when we used a validation step, the best performing
configuration was chosen according to the highest P! validation value (since this
is the strictest of the applied measures), while when no validation was applicable,
then we considered the P! test value. Thus, the overall precision Table 8 presents
the best sets of P!, P> and P'° values considering the best P! as described above.

#correct_category_recommendations

Ftotal _category_recommendations

4.2 Algorithm Comparison and Discussion

We first present individual analysis results for each algorithm separately.

SVM. Table2 presents the test values on precision of the SVM algorithm, for
several training feature configurations. A general observation is that Spatial
properties (either geometry types or geometry values) highly contribute to the
precision of the model. On the other hand, Text features result to very low
quality recommendations, at least when used on their own. The best precision
in terms of P! comes by combining Spatial properties and Text. Type features
used on their own provide the best values for P'0 in both datasets.

Learning to Classify Spatiotextual Entities in Maps 549

Table 2. SVM feature combinations for Athens and London.

Features Athens test set London test set
C p! ps p C p! ps po

Type 0.1 159.25 |82.85|91.06|0.001 | 52.15 | 73.54 |83.25
Points and area 100 |47.76 |72.65 |79.10 | 100 |47.30 |59.29 |62.59
Mean and variance 0.01 |53.73 | 77.66 |87.39 |0.1 44.71 169.32 | 78.19
Points, area & type 0.01 |59.15 |76.55 |89.95 | 100 |47.26 |58.55 |67.44
Text 1 6.78 | 985 | 9.94 |1 14.05 |23.27 | 24.93
Points, area, type & text | 10 59.49 |70.55 | 75.67 | 1000 |59.59|73.20 |80.02
Spatial properties & text | 1000 | 59.99 | 81.61 |89.56 | 1000 |55.44 | 75.92|81.43
Spatial properties 1000 | 59.50 | 79.69 |88.42 | 1000 |50.34 |66.09 |75.90

Table 3. kNN feature combinations for Athens and London.

Features Athens test set London test set
pl pb plo pl pb plo

Type 42.57 | 53.62 |54.96 |44.67 |54.50 |56.40
Points and area 40.06 |51.00 | 52.25 |43.2 |52.74 |54.55
Mean and variance 57.42 169.32 | 71.56 | 51.88 63.06 |65.40
Points, area & type 42.66 |53.66 |54.93 |44.60 |54.42 |56.35
Points, area, type & text 46.91 | 58.06 |59.46 |54.13 |64.04 | 66.29
Spatial properties & text 59.98 | 71.57 | 73.45 | 58.81|70.15 | 72.39
Spatial properties 56.58 | 68.13 |69.92 |52.01 |62.77 | 64.94
Points, area, type - double values | 42.57 | 53.62 | 54.96 |44.67 |54.51 |56.40

kNN. Table 3 presents the recommendation precision values for the kNN algo-
rithm. Spatial properties and Text combined give the highest precision in both
datasets. However, these values are lower than the respective ones produced by
SVM. Further, the difference in precision increases while moving from P! (neg-
ligible) to PV (high). The overall better performance of SVM compared to kNN
can be probably attributed to the generalization properties of the SVM model:
kNN compares straightforwardly training and test entities and utilizes only cat-
egories from matching training entities. On the other hand, SVM, produces a
model that assigns a score to every available category for the respective test
entity, based on the importance of the entity’s features for the trained model.
Essentially, by finding optimal hyperplanes that discriminate different classes-
categories in the training feature space, SVM can effectively handle both the
potential sparseness of the training data and outlier data (i.e. incorrect entity
annotation cases) that would otherwise negatively affect the model’s training.

550 G. Giannopoulos et al.

Table 4. Clustering+SVM feature combinations for Athens and London for the auto-
matic cluster selection mode.

Features Athens test set London test set
¢ Clust. | P1 P® pl0 ¢ Clust. | P! P plo

Type 0.01 14 31.21 | 68.25 | 75.71 | 0.01 21 33.57 | 57.10 | 66.16
Points and area 0.01 14 28.02 | 46.66 | 59.54 | 0.001 | 21 26.37 | 36.60 | 50.93
Mean and variance 0.1 14 28.98 | 47.23 | 59.41 | 0.001 | 28 26.74 | 37.57 | 52.75
Points, area & type 0.001 | 14 27.86 | 46.69 | 60.01 | 0.01 28 26.61 | 37.50 | 51.97
Points, area, type & text | 100 14 28.41 | 48.80 | 57.94 | 1000 | 28 35.18 | 45.87 | 51.12
Spatial properties & text | 1000 | 14 29.37 | 45.28 | 57.94 | 1000 | 28 38.02 | 45.14 | 54.62
Spatial properties 100 14 28.65 | 41.76 | 55.65 | 1000 | 28 30.02 | 37.35 | 48.33

Table 5. Clustering+SVM feature combinations for Athens and London with manual
selection of clusters.

Features Athens test set London test set
@ Clust. | P! P> PO | C Clust. | P! PS5 pto

Points, area & type 1000 10 44.07 | 56.99 | 68.91 | 0.001 | 10 25.26 | 44.06 | 55.20
Spatial properties & text | 1000 10 40.98 | 53.97 | 59.53 | 0.001 10 23.38 | 37.36 | 49.16
Spatial properties 1000 10 44.46 | 57.22 | 64.78 | 0.01 10 22.76 | 36.29 | 48.21
Points, area, type & text | 1000 10 43.45 | 63.48 | 64.75 | 1000 10 25.30 | 40.37 | 48.21
Type 0.1 10 44.70 | 60.33 | 65.20 | 0.1 10 29.60 | 44.37 | 57.20
Points, area & type 0.01 50 43.37 | 45.18 | 59.03 | 0.01 50 43.37 | 50.18 | 60.71
Points, area, type & text | 0.01 50 43.37 | 45.18 | 59.03 | 0.001 | 50 23.56 | 33.60 | 48.08
Spatial properties 1000 50 42.39 | 50.33 | 61.31 | 0.01 50 23.28 | 32.80 | 46.81
Spatial properties & text | 1000 50 43.06 | 51.43 | 62.02 | 0.01 50 23.98 | 32.82 | 47.34
Type 0.01 50 38.02 | 39.37 | 41.67 | 0.01 50 25.01 | 34.40 | 38.56
Points, area & type 0.01 | 100 40.15 | 45.10 | 59.70 | 0.001 | 100 19.76 | 35.44 | 56.01
Points, area, type & text | 0.001 | 100 45.26 | 58.34 | 68.32 | 1000 | 100 25.51 | 42.79 | 48.68
Spatial properties 0.01 | 100 40.18 | 51.36 | 61.44 | 0.01 | 100 26.14 | 37.77 | 57.51
Spatial properties & text | 0.001 | 100 40.18 | 51.35 | 61.46 | 1000 | 100 32.71 | 53.68 | 59.58
Type - 100 - - - - 100 - - -
Points, area & type 0.001 | 200 30.39 |39.04 | 50.60 | 0.001 | 200 - - -
Points, area, type & text | 0.001 | 200 45.26 | 58.34 | 68.32 | 0.001 | 200 - - -
Spatial properties 0.1 200 26.91 | 39.97 | 48.01 | 0.001 | 200 23.68 | 32.08 | 43.12
Spatial properties & text | 100 200 38.75 | 44.76 | 53.40 | 0.01 | 200 23.97 | 23.60 | 43.80
Type - 200 - - - - 100 - - -

clustering+SVM. Tables4 and 5 present recommendation precision values
for the hybrid clustering+SVM approach we propose. The first table presents
results using the automatic number of cluster selection of the EM algorithm
for Athens and London, while the second one the respective results when we
manually provide several values for the number of clusters parameter. The best
values are produced by manual selection of the number of clusters and, in most
cases, for low values of this parameter (10 or 50 clusters). However, the results are
rather poor, compared to the SVM and kNN algorithms. A possible explanation
is that the clustering process is not performed with the proper objective in
order to facilitate and enhance the upcoming SVM training process. Namely,
the clusters are created using an improper clustering criterion, w.r.t. the specific

Learning to Classify Spatiotextual Entities in Maps 551

task. Another issue might lie on the selection of the matching process, where
we match test entities with training entities straightforwardly and not with a
representation of the clusters they belong to, as we do in the clustering+kNN
case. Nevertheless, since this general approach of creating ensembles of classifiers
and properly combining them to obtain better results has worked in several other
classification settings, we intend to further investigate it.

clustering+kNN. Tables6 and 7 present recommendation precision values for
the hybrid clustering+kNN approach we propose for applying 1-NN and 5-NN
on clusters respectively. In this case, we report only results produced by the
automatic number of clustering selection option of EM algorithm. The manual
setting of the parameter produced consistently worse results and these results
are, thus, omitted, due to lack of space. This hybrid solution produces very
good recommendation precision, that even surpasses the simple SVM model for
P? and P'°. Here, in contrast with the clustering+SVM case, the clustering
step facilitates the upcoming kNN classification process. This can be intuitively
explained as follows: by considering clusters of similar entities, instead of indi-
vidual entities, we basically enhance the “Nearest Neighbours” of test entities;
the test entities are still matched with similar training entities, but now, through
the matched clusters, a more rich/diverse set of categories can be mapped to the
test entities. So, when the precision regards the top-5 or top-10 recommended
entities, finding correctly recommended categories becomes more probable.
Another observation is that the 1-NN configuration provides much better
results than the 5-NN. This can be explained by the fact that each cluster already
contains several categories to be recommended. So, if we consider many clusters,
the recommendation set of categories gets too diverse, hurting, thus, the rec-
ommendation precision. Also, we can observe that relatively small numbers of
clusters achieve the best precision values (14 for Athens - 28 for London). Finally,
again, the geometry related features are the ones providing the highest precision;
specifically, the Type for Athens and the Spatial properties for London.

All Methods. Table8 presents the best achieving configuration for each tested
algorithm, w.r.t. P1. SVM achieves the highest accuracy for P! and clustering+kNN

Table 6. Clustering+kNN (1-NN) feature combinations for Athens and London.

Features Athens test set London test set
Clusters | P! p° plo Clusters | Pt p° plo

Spatial properties & text 14 51.22 | 71.14 | 79.14 | 21 47.54 | 61.43 | 69.71
Points, area, type & text 14 58.69 | 80.51 | 89.13 |21 44.35 | 55.12 | 62.03
Mean and variance 14 44.43 | 55.52 | 60.00 | 28 45.92 | 55.81 | 61.83
Points, area & type 14 31.61 | 53.41 | 61.37 | 28 50.38 | 71.23 | 81.46
Points, area & type - double val. | 14 39.62 | 51.04 | 56.51 | 28 45.24 | 56.64 | 65.65
Type 14 59.15 | 82.53 | 91.08 | 28 51.67 | 71.44 | 82.85
Spatial properties 14 55.95 | 79.36 | 87.89 | 28 51.24 | 72.93 | 84.03
Points and area 14 55.94 | 79.18 | 87.68 | 28 31.37 | 47.90 | 56.04

552 G. Giannopoulos et al.

Table 7. Clustering+kNN (5-NN) feature combinations for Athens and London.

Features Athens test set London test set
Clusters | P! P° plo Clusters | P! P® plo

Spatial properties & text 14 39.13 | 58.74 | 62.56 | 21 41.62 | 52.37 | 58.79
Points, area, type & text 14 38.69 | 58.16 | 61.64 | 21 41.62 | 48.77 | 56.05
Mean and variance 14 38.52 | 49.37 | 54.39 | 28 41.62 | 49.06 | 54.55
Points, area & type 14 50.53 | 65.82 | 72.05 | 28 43.96 | 56.27 | 63.90
Points, area & type - double val. | 14 38.35 | 44.02 | 46.90 | 28 41.62 | 46.70 | 49.92
Type 14 50.73 | 63.86 | 76.12 | 28 41.62 | 52.89 | 61.29
Spatial properties 14 50.24 | 61.54 | 70.20 | 28 40.72 | 60.17 | 67.00
Points and area 14 38.46 | 60.21 | 65.15 | 28 41.62 | 45.12 | 50.89

for P'0 in both datasets, while P° is a “tie” for the two methods considering both
datasets. kNN comes third, with its performance degrading from P! to P19, clus-
tering+SVM provides the worst results of all. These results indicate that SVM is
preferable when we want to provide very few recommendations, but as accurate as
possible. On the other hand, when the setting allows us to provide more recommen-
dations, with the hope that a few of them will be correct, then clustering+kNN works
better.

Further, as a naive baseline, we consider the case where the majority class,
i.e. the category with the highest frequency in each dataset is constantly (i.e. for
each test entity) recommended, w.r.t. the P! measure. Similarly, we consider the
cases where the 5 and 10 most frequent classes are constantly recommended for
P? and P'°. The precision values are provided in the last line of Table8 and
demonstrate that the precision of the best solutions are consistently much higher
than the naive baseline, with a difference ranging from 10 % to 24 %.

Table 8. Overall recommendation precision for Athens and London.

Algorithms Athens test set London test set

pl pb pto | pt pb pto
SVM 59.99 81.61 |89.56 |59.59|73.20|80.02
kNN 59.98 | 71.57 |73.45 |58.81 |70.15 |72.39
Clustering+SVM 43.45 |63.48 |64.75 |43.37 |50.18 | 60.71
Clustering+kNN 59.15 | 82.53/91.08|51.67 |71.44 |82.85
Majority class recommendation | 35.65 | 68.33 | 75.76 |40.17 |63.07 | 72.97

Further, in general, it seems that applications of Geometry features or Spa-
tial properties features give the best results, enhanced in occasions by being
combined with Text features. However, in some cases (clustering+kNN), Type
features seem to work very well by their own. Text features, seem to have the
less effect on precision, probably due to their sparseness.

Learning to Classify Spatiotextual Entities in Maps 553

Another observation is the difference in recommendation precision between
Athens and London, with Athens having slightly better P! values and con-
siderably better P® and P10 values. This can be explained by examining some
simple statistics from the two datasets. First, Athens is based on a more compact
annotation set of 186 distinct classes, while the same number of spatial entities
(20000 entities) in London are annotated by a set of 306 classes, resulting to
higher heterogeneity in annotations. Second, the London dataset contains rela-
tively more classes that do essentially hurt the evaluation results, due to their
very low frequency. For example, categories with only one appearance in the
dataset comprise 20 % of Athens but 25 % of London dataset, while the respec-
tive numbers for categories with at most two appearances are 33 % and 38 %
respectively. Conclusively, the compactness of the annotation set and the lack
of outlier categories (which is the case of the specific Athens dataset, relatively
compared to the London one) seem to favour the recommendation precision.

With respect to the importance of the achieved values for the three evaluation
measure variations, reaching a precision of around 60 % in a multilabel classifica-
tion task, and for recommending just one category, is a rather important achieve-
ment. However, the other two measures are also important, considering a real world
deployment of the recommendation algorithms: recommending 5 or 10 categories

lo) @ 1ayS: O/ MeEmuUE SRS 1

& Falities/Place of Worship/Church ...
Man Made/Man Made/Buiding ...

This will change up to 1object. Recommended Classes: - @ Annotation/Contact (Common Schema) ...
Please select a key Key ke
- ":‘*“va amenity place_of_worship
raiway
buidng ves
Bl| Please select a value Jeisure garden catholic
| |amenty place_of_worship name St. Othwar
amenity shelter Feigon ichristian
Recently added tags oL etraction source ing
et uidng church website [www.st-othmar.at
Iwheelchair o
service=driveway |
nmwav_lmdewav-i
[buidingtevels=chapel |
Member O Role
¥ ", 7 members) e
¢ b Add | Aedt]

W =\, Sel.:Rel.:0 /Ways:1/Nodes:0

® . Relations: 2.231

B | associatedStreet (289311, 1 member)

g || assodatedStreet (113681, 4members)

/") associatedstreet (Florianigasse”, 3 members)
'+ assodatedstreet (Florianigasse”, 8 members)
(Florianigasse”,
(Florianigasse”,
(‘Florianigasse”,

< il

£ B | &

Fig. 1. Recommendations example

554 G. Giannopoulos et al.

to the user to choose from is a realistic option, and the proposed algorithms can
achieve precision up to 91 % for the 10 categories recommendation setting. This
means that most times, the system will be able to recommend at least one useful
category to the user.

To intuitively demonstrate the above conclusion, we present an exemplary
recommendation of the JOSM plugin we have implemented using our app-
roach, OSMRec [9]. In Fig. 1, we can see an example of recommendations for a
church in Vienna. The already existing, manual annotations set (right top of the
screen), contains the specific annotation pairs “amenity => place_of worship”,
“denomination => catholic” and “religion => christian”. Out of these three
annotations, the most geospatially meaningful is the first one, “amenity =>
place_of worship”, which is identified by our recommendation model (left top
panel). Further, our model recommends an even more accurate annotation,
“building => church”, that does not exist in the initial, manual annota-
tion set. Apart from that, our model recommends a more diverse annotation,
“historic => monument”, which is very probable to also characterize the spe-
cific entity.

5 Conclusions

In this paper, we presented a framework for producing category recommenda-
tions on spatial entities, based on previously annotated entities. We defined a
set of problem specific training features that where applied with four classifiers,
two state of the art and two hybrid solutions we proposed, and we reported
on their recommendation precision for two real OpenStreetMap datasets from
Athens and London. Specifically, we showed that the recommendation precision
is high enough to be used in real world applications, such as JOSM OSM edit-
ing tool, where our method is already implemented as a plugin (OSMRec). Our
future work includes further generalizing and testing the implemented frame-
work with more geospatial semantic datasets and evaluating the effectiveness
of Category features by using existing categories of an entity to predict new,
correct annotation categories for the entity.

Acknowledgments. This work was partially supported by EU projects GeoKnow
(GA no. 318159) and City.Risks (H2020-FCT-2014-653747).

References

1. Arnaud, V., Rodolphe, D.: Improving volunteered geographic information quality
using a tag recommender system: the case of OpenStreetMap. In: Arsanjani, J.,
Zipf, A., Mooney, P., Helbich, M. (eds.) OpenStreetMap in GIScience, pp. 59-80.
Springer, Cham (2015)

2. Jilani, M., Corcoran, P., Bertolotto, M.: Automated highway tag assessment of
OpenStreetMap road networks. In: Proceedings of the SIGSPATIAL 2014 (2014)

Learning to Classify Spatiotextual Entities in Maps 555

. Parundekar, R., Oguchi, K.: Learning driver preferences of POIs using a semantic
web knowledge system. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O.,
Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 703-717. Springer, Heidelberg
(2012)

. Silva, A., Martins, B.: Tag recommendation for georeferenced photos. In: LBSN
(2011)

. Schedl, M., Vall, A., Farrahi, K.: User geospatial context for music recommendation
in microblogs. In: SIGIR (2014)

. Mooney, P., Corcoran, P.: Annotating spatial features in OpenStreetMap. In: GIS-
RUK (2011)

. Miilligann, C., Janowicz, K., Ye, M., Lee, W.-C.: Analyzing the spatial-
semantic interaction of points of interest in volunteered geographic information.
In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS,
vol. 6899, pp. 350-370. Springer, Heidelberg (2011)

. Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.: Recommendations in location-based
social networks: a survey. Geoinformatica 19, 525-565 (2015)

. Karagiannakis, N., Giannopoulos, G., Skoutas, D., Athanasiou, S.: OSMRec tool
for automatic recommendation of categories on spatial entities in OpenStreetMap.
In: RecSys (2015)

	Learning to Classify Spatiotextual Entities in Maps
	1 Introduction
	2 Related Work
	3 Recommendation Models
	3.1 Problem Definition and Method Outline
	3.2 Feature Selection
	3.3 Algorithms

	4 Experimental Evaluation
	4.1 Dataset and Evaluation Methodology
	4.2 Algorithm Comparison and Discussion

	5 Conclusions
	References

