
Supporting Arbitrary Custom Datatypes
in RDF and SPARQL

Maxime Lefrançois(B) and Antoine Zimmermann

École Nationale Supérieure des Mines, FAYOL-ENSMSE,
Laboratoire Hubert Curien, 42023 Saint-Étienne, France
{maxime.lefrancois,antoine.zimmermann}@emse.fr

Abstract. In the Resource Description Framework, literals are com-
posed of a UNICODE string (the lexical form), a datatype IRI, and
optionally, when the datatype IRI is rdf:langString, a language tag.
Any IRI can take the place of a datatype IRI, but the specification only
defines the precise meaning of a literal when the datatype IRI is among
a predefined subset. Custom datatypes have reported use on the Web
of Data, and show some advantages in representing some classical struc-
tures. Yet, their support by RDF processors is rare and implementation
specific. In this paper, we first present the minimal set of functions that
should be defined in order to make a custom datatype usable in query
answering and reasoning. Based on this, we discuss solutions that would
enable: (i) data publishers to publish the definition of arbitrary custom
datatypes on the Web, and (ii) generic RDF processor or SPARQL query
engine to discover custom datatypes on-the-fly, and to perform oper-
ations on them accordingly. Finally, we detail a concrete solution that
targets arbitrarily complex custom datatypes, we overview its implemen-
tation in Jena and ARQ, and we report the results of an experiment on
a real world DBpedia use case.

Keywords: Literals · Datatypes · RDF · Linked data

1 Introduction

The Resource Description Framework empowers the Web of Data with three
kinds of entities: IRIs, blank nodes, and literals [3]. IRIs are obviously central as
they allow the interlinking of datasets and serendipitous discovery of more data.
Blank nodes have been the subject of several papers (a comprehensive review
is found in [9]). Literals are extremely important since they are, after all, the
carriers of the data that is eventually processed. In fact, we argue that IRIs are
only crucial insofar as they offer a way of traversing linked data towards the
discovery of literal values.

RDF defines literals as being composed of a UNICODE string and a datatype
IRI1, the latter being an arbitrary IRI that may refer to any datatype conforming

This work has been supported by ITEA2 project SEAS 12004.
1 And optionally a language tag when the datatype IRI is rdf:langString, but for
the purpose of this paper, we will simply consider literals as pairs.

c© Springer International Publishing Switzerland 2016
H. Sack et al. (Eds.): ESWC 2016, LNCS 9678, pp. 371–386, 2016.
DOI: 10.1007/978-3-319-34129-3 23

372 M. Lefrançois and A. Zimmermann

to the definition in [3, Sect. 5]. The datatype that the IRI refers to gives meaning
to the literals having that type. Indeed, by definition, a datatype defines what
value the UNICODE string represents in that type.

An RDF processor that is able to distinguish the values of literals for a
given datatype IRI is said to recognise the IRI. It is possible to program an
RDF processor such that it recognises a fixed set of IRIs by implementing the
associated set of specifications. Usually, the set of recognised datatypes is the
set of XSD datatypes. However, even some RDF processors don’t process them
in a uniform way [5]. And even then, processors cannot compare literals with
datatype IRIs they do not recognise. In this paper, we want to address the case
of a processor that does not necessarily recognise a fixed set of IRIs but is able to
determine the datatype associated with an IRI on the fly. We provide motivating
use cases for this in Sect. 2.

To achieve this, we first show that an RDF processor does not necessarily
need to “know” the actual datatype (which is a mathematical structure that can-
not always be represented in a computer format). Instead, for some reasoning or
query answering purposes, recognising a datatype amounts to using a small set
of functions that can usually be provided in a computer language. We describe
these functions in Sect. 3. In Sect. 4, we show several options for implementing
an RDF processor that can take advantage of a computerised description of
these functions such that it can recognise some new datatypes on the fly. We
present our own implementation in Sect. 5. Our evaluation in Sect. 6 demon-
strates that the approach does not introduce significant overhead while it makes
both publishing data easier, and writing more concise queries when compared
to an approach purely based on standard datatypes. Section 7 provides a criti-
cal discussion of the overall approach and our specific implementation, with an
overview of future work.

2 Use Cases for on-the Fly Support of a New Datatype

This section introduces several motivating use cases for enabling on-the-fly sup-
port of custom datatypes in RDF processors and SPARQL query engines.

Sharing Energy Related Data. In the ITEA2 SEAS project that partly funds
this research, industrial partners want to share energy-related data such as
energy consumption and production, capacities, temperatures, and they use
various custom datatypes for representing these data. Sometimes, they use
different datatypes to represent similar information, such as ex1:wattHour,
ex2:barrelOfOilEquiv, and ex3:GJ for energy quantities. RDF processors and
SPARQL query engines cannot be updated for the support of each individual
datatype in use. Also, it is impossible to write a SPARQL query that selects
consumptions or productions that are within a given range. Instead, processors
could rely on a generic mechanism for automatically retrieving sufficient infor-
mation for the data to be processed, queried, and compared.

Supporting Arbitrary Custom Datatypes in RDF and SPARQL 373

Distributed Computation. In distributed and collaborative computing, it is nec-
essary to transfer the state of a program execution in a serialised form. A state
can be shared as a combination of metadata and serialised OOP objects that
can be adequately represented in RDF, with serialised objects being written as
literals with a type indicating the class membership. In this situation, it could be
desirable to know which executions reach the same state. This would be possible
with a SPARQL query, had there been a mechanism for associating the datatype
IRI to the appropriate datatype definition.

Well Known Text Literals. In the OGC standard GeoSPARQL [11], a
datatype is defined for serialising geolocated region of space, such as
"LINESTRING(0 0, 1 1, 1 2, 2 2)"^^geo:wktLiteral.2 However, wktLiteral can
also specify a coordinate reference system that differs from the default CRS84
by adding a URI at the beginning of the literal, e.g., "<http://www.opengis.net/
def/crs/EPSG/0/4326> Point(33.95 -83.38)"^^geo:wktLiteral. There is no
restriction on the URI being used at this position in the standard, so some
wktLiterals may not be understood even by processors that implement the
GeoSPARQL standard. Had the coordinate system been given as a datatype
IRI, and assuming a mechanism as we propose to dynamically obtain the speci-
fication of the datatype, new coordinate systems could be supported as soon as
they appear.

3 Requirements for on-the Fly Support
of a New Datatype

In this section, we describe required functionalities to effectively recognise a
datatype IRI, but first we provide preliminary definitions. For clarity, we will
then restrain to the case when it is assumed that value spaces are pairwise
disjoint before addressing the more general case.

3.1 Preliminaries

As mentioned in footnote 1, we only focus here on literals that do not have
a language tag. Therefore, from now on, a literal will be a pair comprising a
UNICODE string called the lexical form and an IRI called the datatype IRI.
When we need to refer to an arbitrary IRI, we use names of the form a, b, etc.
with letters from the beginning of the alphabet, while for arbitrary UNICODE
string, we use names like s, t, etc. with letters from the end of the alphabet. We
first recall necessary definitions from the RDF 1.1 specifications.

Definition 1 (Datatype). A datatype D is a structure comprising the follow-
ing components:

2 Subsequently, we will use geo: for http://www.opengis.net/ont/geosparql. Similarly,
we will use usual prefixes rdf:, rdfs:, xsd:, and owl: in all examples.

http://www.opengis.net/ont/geosparql

374 M. Lefrançois and A. Zimmermann

– a set L(D) of UNICODE strings, called the lexical space;
– a set V (D), called the value space of D;
– a mapping L2V (D) : L(D) → V (D), called the lexical-to-value mapping, that

maps all strings in the lexical space to a value in the value space.

To avoid paraphrasing RDF 1.1 Semantics, we only refer the most relevant
definitions in [7]. In this paper, we rely heavily on the notion of recognised
IRI, simple D-interpretation, and D-entailment (or simple entailment recog-
nising D) defined in [7, Sect. 7]. We also utilise the extensions to RDF and
RDFS-entailment recognising D from [7, Sects. 7 and 8]. When an RDF proces-
sor recognises an IRI identifying a datatype Da, we say that it supports Da.

3.2 Pairwise Disjoint Value Spaces

An RDF processor that supports a datatype Da identified by an IRI a must
be able to check two things: whether a UNICODE string belongs to the lexical
space of Da or not, and whether two literals with datatype Da share the same
value.

Well-formedness. Given a UNICODE string s, is the lexical form s well formed
in Da, i.e., Does it belong to the lexical space of Da? Or equivalently, is literal
"s"^^a well typed? i.e., s ∈ L(Da).
For example, "12.5" is well formed in xsd:decimal, while "abc" is not (that
is, "12.5"^^xsd:decimal is well typed, and "abc"^^xsd:decimal is ill-typed).

Equality. Given two UNICODE strings s,t, do "s"^^a and "t"^^a share the
same value? i.e., L2V (Da)(s) = L2V (Da)(t).
For example, "0.50"^^xsd:decimal and ".5"^^xsd:decimal share the same
value.

Note that if a UNICODE string is not in the lexical space of a datatype,
then it does not have a value. Hence, it would never be equal to any other literal
value.

Concerning SPARQL query engines, basic graph matching only requires being
able to join values, and therefore nothing more than what precedes is needed.
Now, SPARQL offers an extension point related to filtering and ordering literals:
SPARQL implementations may extend the XPath and SPARQL Tests operators
{=, ! =, <,>,<=, >=} [6]. Apart from testing equality, SPARQL engines may
need to test the ordering of literals.

Value comparison. Given two UNICODE strings s,t, is the value of "s"^^a

lower (resp., greater) than the value of "t"^^a? i.e., L2V (Da)(s) <
L2V (Da)(t) (resp., L2V (Da)(s) > L2V (Da)(t)).

These functionalities are sufficient to check for simple D-entailment between
RDF graphs, and even RDFS entailment recognising D, as long as the value
spaces are infinite (and we assume here they are disjoint), as shown in [4]. The
case of RDFS reasoning recognising datatypes of finite size is tricky and discussed
in Sect. 7.

Supporting Arbitrary Custom Datatypes in RDF and SPARQL 375

3.3 Overlapping Value Spaces

Now, as justified by the use cases, datatypes value spaces may overlap. Practi-
cally, we need to extend the equality and value comparison checking to different
datatypes.

Cross-datatype equality. Given two datatypes Da and Db respectively iden-
tified by IRIs a and b, given two UNICODE strings (s,t) ∈ L(Da) × L(Db),
do "s"^^a and "t"^^b share the same value? i.e., L2V (Da)(s) = L2V (Db)(t).
For example, "1"^^ex2:barrelOfOilEquiv and "6.1178632e9"^^ex3:GJ share
the same value.

Cross-datatype value comparison. Given two datatypes Da and Db respec-
tively identified by IRIs a and b, given two UNICODE strings (s,t) ∈
L(Da)×L(Db), is the value of "s"^^a lower (resp., greater) than the value of
"t"^^b? i.e., L2V (Da)(s) < L2V (Db)(t) (resp., L2V (Da)(s) > L2V (Db)(t)).
For example, "1"^^ex2:barrelOfOilEquiv is bigger than "1"^^ex3:GJ.

These functionalities are again sufficient to check for simple D-entailment
between RDF graphs. However, they may not be sufficient for RDFS entailment,
even with infinite value spaces. [4] proved that if any intersection of value spaces
is infinite or empty, then these functions would be sufficient to do correct and
complete RDFS reasoning recognising D (see Sect. 7 for more details). Note that
if these constraints are not met, it is still possible to perform sound reasoning that
is complete on graphs that only use the datatype IRIs in literals rather than as
subject, predicate, or object. For example, graphs can contain this type of triples:
:s :p "1"^^xsd:int, but not this type of triples: :p rdfs:range xsd:integer.

4 Implementation Options

RDF processors that have to deal with a datatype IRI for which they do not
have hard-coded implementation should be able to retrieve a processable version
of the functions described in Sect. 3. This assumes that these functions can be
computed. In general, it is not the case. For instance, a datatype could encode
a FOL formula, with the value space being the set of equivalent class wrt FOL
entailment. In this paper, we want to address the most general case, namely
when equality, well-formedness, and comparison are all computable functions
(i.e., that the associated decision problems are decidable).

For cross-datatype comparisons, our requirements suggest that it should be
possible to compare literals from any datatype to literals from any other. It is
not practically doable, so any solution would be partial. However, we want to
provide a mechanism that makes it possible to extend to an arbitrary large finite
set of supported datatypes.

Clearly, any solution must involve an agreement between both the publisher3

and the consumer on a common mechanism for presenting and exploiting the
required functionalities. In an ideal situation, a standard would exist that would
3 Here, the publisher is the one that specifies the datatype associated with an IRI.

376 M. Lefrançois and A. Zimmermann

reduce the need for coordinating between publishers and consumers. These func-
tions could be provided by a centralised datatype registration service, where pub-
lishers submit their datatype specification. However, such a solution is unprac-
tical and at odd with basic web principles.

Therefore, in what follows, we focus on solutions that work on the principle
that the requested functions are accessible by way of dereferencing the datatype
IRI. As a matter of fact, this is precisely what RDF 1.1 Semantics suggests in
Sect. 7. Therefore, in this section, all the solutions that we describe require that
datatype IRIs are HTTP IRIs.

Using Processor-Specific Modules. ARQ and SESAME offer ways to register
classes that implement custom SPARQL filter functions. The support of cus-
tom datatypes could be done in a similar way. Hence, the information these
implementations would need to get from the datatype IRI would be a jar with
the necessary class, for instance. This solution is reasonably simple, but it is
implementation-specific, and the custom datatype publisher would require to
write one class for each RDF processor. It also presents serious security issues,
unless the RDF engine implements complicated control measures to avoid exe-
cuting harmful unknown compiled code.

Using Functions Defined in a Script. Instead of using a compiled class for each
implementation, this solution consists in providing the code of the required func-
tions. The burden of interpreting the code would then fall on the designers of
RDF processors. Nonetheless, a pivot language such as JavaScript, for which
engine integration exists in many programming languages, would make this solu-
tion viable. Moreover, it uses the full expressivity of a programming language
and hence enables the specification of arbitrary custom datatype. We chose to
follow this approach for our implementation described in Sect. 5.

Using a Web Service. An alternative to provide the code directly would be to
offer the same functionalities encapsulated in a web service. The drawback of
this approach compared to a script is that the service needs high availability,
the code cannot be cached, compiled, and optimised. Otherwise, this approach
is worth investigating and we expect to do so in future work.

Declarative Vocabulary-Based Description. Using the full expressivity of a pro-
gramming language to describe a custom datatype is excessive in many cases. It
would hence be interesting to describe a datatype using a vocabulary, possibly
inspired from the OWL 2 datatype restrictions [16]. We are currently undergoing
research to define and use such a vocabulary, and this solution will be further
discussed in Sect. 7.

In the context of this paper, we will focus on the script-based solution.

5 Script-Based Support of Arbitrary Custom Datatypes

We focus on a solution where the custom datatype specification is defined using
a scripting language. This section defines a specific solution for this, where we

Supporting Arbitrary Custom Datatypes in RDF and SPARQL 377

use the JavaScript language. Javascript has already been proposed as a language
to implement custom funtions in SPARQL [17]. The solution we propose consists
of: (i) guidelines for custom datatype publishers, including the definition of an
API that the code in the JavaScript document must implement (Sect. 5.1); (ii)
guidelines for RDF processors and SPARQL engines (Sect. 5.2). In a realistic
setting, not all publishers will be following our guidelines, so we provide more
functionalities than strictly needed for datatype support in order to make the
approach robust to errors, corner cases, and missing information. This can serve
as a model for other implementations, whether they are script-based, service-
based, or declarative.

5.1 Guidelines for Datatype Publishers

The proposed solution requires to use an HTTP IRI a to identify datatype Da,
and to enable RDF processors and SPARQL engines to retrieve a JavaScript
document from the datatype IRI when they look up a with a HTTP Accept
header field that contains application/javascript (i.e., use content negotiation).
Multiple datatypes may be defined in the same document, such as xsd:string

and xsd:int that are defined in the same document at location http://www.
w3.org/2001/XMLSchema. Hence the RDF processor would not know what
part of the code it should execute for each datatype. Let Da be a datatype
identified by IRI a. We propose that the code implements a simple interface
CustomDatatypeFactory, with a unique function getDatatype(iri). When called
with the string a, this function returns an object that holds the specification of
datatype Da, i.e., an instance of an interface CustomDatatype. We describe the
methods in interfaces CustomDatatypeFactory and CustomDatatype, and sketch
the expected behaviour of their implementations. This API and a formal set of
constraints is described at http://w3id.org/lindt. All these methods take string
parameters, and can generate errors as specified below.

Interface CustomDatatype defines a single method, getDatatype.

CustomDatatype getDatatype (iri)

A retrieved document contains a specification of custom datatype Da iden-
tified by an IRI a if and only if getDatatype(a) returns an object da that imple-
ments interface CustomDatatype, and that complies with the set of constraints
defined below. Such an object is called the specification object of datatype Da.

Interface CustomDatatype defines the following set of methods.

String getIri()

Boolean isWellFormed (lexicalForm)

Boolean recognisesDatatype (datatypeIri)

String[] getRecognisedDatatypes ()

Boolean isEqual (lexForm1, lexForm2[, datatypeIri2])

Integer compare (lexForm1, lexForm2[, datatypeIri2])

String getNormalForm (lexicalForm1)

String importLiteral (lexicalForm, datatypeIri)

String exportLiteral (lexicalForm, datatypeIri)

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://w3id.org/lindt

378 M. Lefrançois and A. Zimmermann

Let da be the implementation of CustomDatatype returned by a call to
getDatatype(a), i.e., da is the specification object of Da. First suppose that the
value space of the defined datatype is disjoint with that of every other datatypes.

isWellFormed. A string s is in the lexical space of Da if and only if a call to
da.isWellFormed(s) returns boolean true.

isEqual. Two literals "s"^^a and "t"^^a have equal values if and only if a call to
da.isEqual(s, t) returns boolean true. This method must generate an error
if either s or t is not in the lexical space of Da. Finally, this method must be
reflexive, symmetric, and transitive.

getNormalForm. It is of great interest for RDF processors to be able to nor-
malize lexical forms. For instance in the context of datatype xsd:float, the
normal form of lexical form 42.0 is lexical form 4.2E1. Method getNormalForm

must return a string if the lexical form given as parameter is in the lexical
space, or generate an error otherwise. Finally, this method is coherent with
da.isEqual. Among other constraints, it is idempotent.

compare. This method must return a negative integer, zero, or a positive inte-
ger, depending on if the value of the first parameter is lower, equal, or greater
than the value of the second parameter, respectively. It must generate an
error if one of the parameters is not well formed, or if the literals are not
comparable. Finally this method must be such that for any three well formed
lexical forms s, t, and u,
- da.isEqual(s,t) ⇔ da.compare(s,t) = 0;
- da.compare(s,t) × da.compare(t,s) ≤ 0;
- (da.compare(s,t) ≥ 0)∧(da.compare(t,u) ≥ 0) ⇒ (da.compare(s,u) ≥ 0).

For datatypes whose value space is considered to be disjoint with that of
any other datatype, the set of methods described above is sufficient to enable
effective querying and RDFS reasoning recognising D, as justified in Sect. 3.2.
As the value space of a datatype may intersect with that of other datatypes,
interface CustomDatatype is completed as follows:

recognisesDatatype. Suppose the publisher of datatype ex1:wattHour is aware
of the existence of datatype ex3:GJ, and knows how to compare values of
ex1:wattHour literals with ex3:GJ literals, while the inverse is not true. In
this case, the methods of the object that represents ex1:wattHour should
be used to compare ex1:wattHour literals with ex3:GJ literals, and not the
opposite. A datatype must recognise itself, but it does not need to recognise
a datatype whose value space is disjoint with its own. Datatype Da recog-
nises datatype Db identified by IRI b if and only if da.recognisesDatatype(b)

returns boolean true.
isEqual. This method has an optional parameter which is the datatype IRI of

the second literal. It must generate an error if the given IRI is not recognised.
Given datatypes Da, Db, Dc identified by IRIs a, b, c, such that Da and Db

are custom datatypes with specification objects da and db, Da recognising
Db and Dc, Db recognising Dc, lexical forms s and t well formed in Da, u

well formed in Db, and v well formed in Dc, all of the following must be true:

Supporting Arbitrary Custom Datatypes in RDF and SPARQL 379

- da.isEqual(s,t,a) = da.isEqual(s,t)

- a=c ⇒ da.isEqual(s,u,b) = db.isEqual(u,s,a)

- da.isEqual(s,u,b) and db.isEqual(u,v,c) ⇒ da.isEqual(s,v,c)

compare. This methods has an optional parameter which is the datatype IRI of
the second literal. It must generate an error if the given IRI is not recognised.
Given the same conditions as for isEqual, all of the following must be true:
- da.compare(s,t,a) = da.compare(s,t);
- da.isEqual(s,v,c) ⇔ da.compare(s,v,c) = 0;
- da.compare(s,u,b) × db.compare(u,s,a) ≤ 0;
- (da.compare(s,u,b) ≥ 0)∧(db.compare(u,v,c) ≥ 0) ⇒ (da.compare(s,v,c)

≥ 0).
importLiteral. Given a datatype Da identified by IRI a and with specifica-

tion object da, this method takes as input a lexical form t and a datatype
Db identified IRI b, and returns a well formed lexical form s such that
L2V (Da)(s) = L2V (Db)(t). If Da does not recognise b or if there exists
no such well formed lexical form, then the method must generate an error.
Else, the following must be true:
- da.isEqual(da.importLiteral(t,b),t,b)

exportLiteral. Given a datatype Da identified by IRI a and with specification
object da, this method takes as input a lexical form s and another datatype
Db identified by IRI b, and returns a well formed lexical form t such that
L2V (Da)(s) = L2V (Db)(t). If Da does not recognise b, if s is not well
formed, or if there exists no such well formed lexical form, then the method
must generate an error. Else, the following must be true:
- da.isEqual(s,da.exportLiteral(s,b),b)

5.2 Guidelines for RDF/SPARQL Engines

When an RDF processor or a SPARQL query engine encounters a literal with
an unknown datatype Da identified by IRI a, it may attempt to retrieve the
JavaScript document located at URL a, using an HTTP GET request with an
Accept header field that contains application/javascript.

If it retrieves such a document, it may then call method getDatatype(a) to
get a specification object da of datatype Da. Lexical form validation or value
comparisons between literals must then be equivalent to calling methods of
da, as specified in the previous section. Finally, SPARQL query engines imple-
ment the following addition to SPARQL 1.1 Sect. 15.1 recommendation [6]: given
datatypes Da and Db identified by IRIs a and b, Da being a custom datatype
with specification object da and recognising Db, then when a SPARQL query
engine compares two literals "s"^^a and "t"^^b, the ordering of these two liter-
als must match the one given by function da.compare(s,t,b).

To avoid security issues, the code may be executed in a sandbox environment
without further precaution; it may undergo some static formal verifications; or it
may be submitted to a trusted web service for approval. If the RDF processor or
the SPARQL query engine decides not to use the datatype specification object,
the datatype must be treated as an unrecognised datatype.

380 M. Lefrançois and A. Zimmermann

6 Implementation and Experiment

This section reports the implementation of these guidelines in Jena and ARQ,
and the results of an experiment on a real world DBpedia use case.

6.1 Publication of a Simple Custom Datatype for Length

For illustration purposes, we introduce a custom datatype to represent lengths.
This datatype is identified by IRI http://w3id.org/lindt/v1/custom datatypes#
length, abbreviated as cdt:length. Its lexical space is the concatenation of the
lexical form of an xsd:double, an optional space, and a unit that can be either
a metric length unit, or an imperial length unit, in abbreviated form or as full
words, in singular or plural form. The value space corresponds to the set of
lengths, as defined by the International Systems of Quantities, i.e., any quantity
with dimension distance. The lexical-to-value mapping maps lexical forms with
units in the metric system to their corresponding length according to the Interna-
tional Systems of Quantities, while the forms with an imperial unit are mapped
to their equivalent length according to the International yard and pound agree-
ment. For example, all literals below are well typed and share the same value.

"1 mile"^^cdt:length

"5280 ft"^^cdt:length

"63360 in."^^cdt:length

"1.609344 km"^^cdt:length

"1609.344 metre"^^cdt:length

"1.609344E+6 mm"^^cdt:length

We published a JavaScript implementation of the specification of cdt:length,
following the guidelines of Sect. 5.1. We further followed best practices for data
on the Web, and serve the most appropriate document using content negotiation:

– if the HTTP header option Accept contains text/html or application/

xhtml+xml, then a HTML document containing a human readable description
of datatype Length is served;

– if it contains text/turtle, then a short RDF description of datatype Length is
served;

– if it contains application/javascript, then a JavaScript document that con-
tains the actual specification of custom datatype Length is served. This is
equivalent to calling http://w3id.org/lindt/v1/custom datatypes.js#length.

6.2 Implementation in Jena and ARQ

We implemented the support for on-the-fly custom datatype recognition in both
the Jena RDF processor, and the ARQ SPARQL engine.4 It follows guidelines
from Sect. 5.2, but for now it only supports custom datatypes whose value space
is disjoint from that of any other datatype.

4 https://github.com/maximelefrancois86/jena.

http://w3id.org/lindt/v1/custom_datatypes#length
http://w3id.org/lindt/v1/custom_datatypes#length
http://w3id.org/lindt/v1/custom_datatypes.js#length
https://github.com/maximelefrancois86/jena

Supporting Arbitrary Custom Datatypes in RDF and SPARQL 381

A new attribute enableDiscoveryOfCustomDatatypes has been added to class
JenaParameters, and package com.hp.hpl.jena.datatypes has been slightly mod-
ified as follows: If Jena parameter
JenaParameters.enableDiscoveryOfCustomDatatypes is set to true, then:

1. When method getSafeTypeByName from class TypeMapper is called with an
unknown datatype IRI a, it calls static method getCustomDatatype of a new
Jena class CustomDatatype for a new instance of RDFDatatype.

2. This method first makes an HTTP call to a, with an Accept:

application/javascript HTTP header field, and follows redirects. If a
JavaScript document is retrieved, its code is evaluated in the default
JavaScript script engine (Oracle Nashorn in Java 1.8). An instance of inter-
face CustomDatatypeFactory (see Sect. 5.1) is then compiled. Its method
getDatatype is called and an instance of interface CustomDatatype is com-
piled. This instance is wrapped in an instance of Jena class CustomDatatype,
and sent back to the TypeMapper.

3. Most methods of Jena class CustomDatatype wrap calls to the compiled
instance of interface CustomDatatype.

In ARQ, the main modification concerns class NodeValue in package
com.hp.hpl.jena.sparql.expr, which is used for the SPARQL operators equal
and less-or-equal, and for the ORDER BY clause. When comparing node values,
if their datatype is an instance of CustomDatatype, then calls to the compiled
instance of interface CustomDatatype are made. A few other minor modifications
have also been required:

– a new instance of ValueSpaceClassification has been added;
– in package com.hp.hpl.jena.sparql.expr.nodevalue, class NodeValueCustom has

been added, and class NodeValueVisitor has been modified.

6.3 Experiment

In this section we present the results of evaluating the proposed protocol, and
report on the performances on loading and querying three datasets based on
DBpedia but with different approaches for representing lengths. All the details,
resources, and instructions that enable the reproduction of this experiment can
be found at URL http://w3id.org/lindt.

Datasets. We base our datasets on the DBpedia 2014 English specific
mapping-based properties dataset, which contains 819,764 triples with 21 custom
datatypes among those DBpedia defines. From this, we extracted the 223,768
triples that describe lengths,5 i.e., those with the following datatypes:

– http://dbpedia.org/datatype/millimetre

– http://dbpedia.org/datatype/centimetre

5 This dataset is available at http://wiki.dbpedia.org/Downloads#3.

http://w3id.org/lindt
http://wiki.dbpedia.org/Downloads#3

382 M. Lefrançois and A. Zimmermann

– http://dbpedia.org/datatype/metre

– http://dbpedia.org/datatype/kilometre

For instance, the following triple represents the length of the Bathyscaphe
Trieste submarine.

dbpedia:Bathyscaphe_Trieste

<http://dbpedia.org/ontology/MeanOfTransportation/length>

"17983.2"^^dbpdt:millimetre .

We call this dataset dbpedia. From this dataset, we generated the dataset
custom by making all literals use the same datatype Length. For example, the
same fact is represented as follows:

dbpedia:Bathyscaphe_Trieste

<http://dbpedia.org/ontology/MeanOfTransportation/length>

"17983.2 mm"^^cdt:length .

Finally, we generated a third dataset, qudt, which used the QUDT [8] ontol-
ogy to model the same facts. This is among the alternative choices for represent-
ing physical measures that only relies on standard datatypes and encode the
relationship between the value and the unit in a graph, using an ontology of
quantities.6 As an example, the length of the Bathyscaphe Trieste submarine
may be modelled as follows with the QUDT ontology:

dbpedia:Bathyscaphe_Trieste

<http://dbpedia.org/ontology/MeanOfTransportation/length>

[qudt:quantityValue

[qudt:numericValue "17983.2"^^xsd:double ;

qudt:unit qudt-unit:millimetre]] .

Finally, each dataset has been derived in four datasets, that contain the first
100 %, 50 %, 25 %, and 12.5 % of the original dataset.

Queries. Besides evaluating the loading time of each dataset, we evaluated the
querying time of the following simple query: Return the 100 triples that concern
the biggest lengths that are lower than 5 m, order the results according to the
descending order of the length. Depending on the dataset, this query writes
differently. Let us just note the conciseness of the query for dataset custom:

PREFIX cdt: <http://w3id.org/lindt/v1/custom_datatypes#>

SELECT ?x ?prop ?length WHERE {

?x ?prop ?length .

FILTER(datatype(?length) = cdt:length

&& ?length < "5m"^^cdt:length)

}

ORDER BY DESC(?length)

LIMIT 100

6 Note that using complex graph structures for representing physical quantities would
solve the problem of datatype support, but it displaces the problem to the level of
ontologies, as there exists many for describing measurements (in chronological order,
UCUM in OWL [2], MUO [13], QUDV [1], OM [14], QUDT [8]).

Supporting Arbitrary Custom Datatypes in RDF and SPARQL 383

Table 1. Average and standard deviation of loading or querying time of datasets
(in ms).

Experiment Protocol and Results. For a given dataset, the experiment con-
sists in repeating 100 times: (i) resetting the TypeMapper instance, (ii) loading
the dataset, and (iii) querying the dataset and iterating through all the results.
Duration of steps ii and iii were measured, and we report below the average
duration and the standard deviation of these durations. We led twice the exper-
iment for datasets custom: once with “cold start”, where the custom datatype
is discovered and loaded during step (ii), and once with “hot start”, where the
custom datatype is manually loaded before step (ii). This difference only affects
loading times. The experiments were run on a server with a 64 bits Intel Xeon R©

CPU E5-1603 v3 processor with 4 cores at 2.80 GHz, it has 32 GB DDR3 RAM
and is running Ubuntu 14.04 LTS.

Table 1a and b report loading and querying times, respectively. Loading times
of datasets custom are very close to those of datasets qudt, with on average
468 ms penalty for discovering and loading the custom datatype in the case of
cold start. On the other hand, datasets custom have the best performance
regarding querying time.

– Querying time of datasets custom is between 33 % and 47 % that of datasets
dbpedia. This can be explained by the fact that the query for dataset dbpedia
hides actually 4 queries: one for each datatype that represents a length. We
believe this difference would grow if dbpedia was using more custom datatypes
to represent lengths.

– Querying datasets custom is also slightly faster than querying datasets qudt,
except for 100 % of triples. Yet, the query for datasets qudt actually has an
anchor IRI to start with, whereas the base of the query for dataset custom
has none.

384 M. Lefrançois and A. Zimmermann

To evaluate the impact of having an IRI anchor, we derived a second SPARQL
query, height, by fixing the predicate URI to http://dbpedia.org/ontology/
Person/height. Table 1c reports querying times of this query on datasets cus-
tom and qudt. Fixing this IRI has a greater impact on querying time of datasets
custom than on datasets qudt, because this query already had anchor IRIs.
These results show that custom datatypes have low impact on loading and query-
ing time, while increasing the genericity of this solution.

7 Discussion

Our proposal is only partially addressing the problem of dealing with custom
datatypes in a generic way. It also has shortcomings that we discuss here, with
possible ways to avoid them. We first discuss the drawbacks of our implementa-
tion. We then describe possible extensions of our work to more completely sup-
port custom datatypes processing, and emphasise the relationship with OWL 2
custom datatype definitions. We then examine how well our proposal enables
D-entailment reasoning.

Drawbacks. Executing code found online presents a potential security threat.
However, the CustomDatatypeFactory indirection already represents a kind of
protection. Actual custom datatype specification objects may be stored as pri-
vate members of function getDatatype(iri). Then, the next loaded executable
code cannot modify its definition. The RDF processor must be sure that the next
loaded executable code could not modify previously loaded executable codes, and
that it calls the right getDatatype(iri) method to get the definition of D: the
one that has been retrieved at its IRI. The RDF processor could also execute
the code in a sandbox environment, or perhaps apply static analysis to identify
harmful code.

Besides, the use of a full-fledged programming language is a bit of an overkill
for simple cases such as restricting existing datatypes. We discuss the case of a
declarative description of the datatype.

Extending Datatype Description. In several cases, a simple declarative descrip-
tion of a datatype is sufficient. As a matter of fact, OWL 2 already pro-
vides means to define datatypes that restrict some of the W3C-standard
datatypes using constraining facets xsd:length, xsd:minLength, xsd:maxLength,
and xsd:pattern. Similarly, we could provide a declarative description of custom
datatypes based on other existing ones. Examples of what this vocabulary could
represent include:

– A datatype for lengths could be derived from a datatype for measured quan-
tities in all units, as proposed by the Unified Code for Units of Measure [15];

– Describing composite datatypes, formed from the combination of lexical sep-
arators and multiple standard literals (e.g., vectors of xsd:integer). An RDF
processor could then use its support of the derived datatypes to support the
composite datatype;

http://dbpedia.org/ontology/Person/height
http://dbpedia.org/ontology/Person/height

Supporting Arbitrary Custom Datatypes in RDF and SPARQL 385

– XSD type definition components and facets [12] could be provided declara-
tively;

– Direct relationships between datatypes could be used, such as disjointness or
subtyping. From an operational point of view, such relations could speed up
decisions but would have complicated consequences on reasoning.

Such a vocabulary would favour the interlinking of datatypes.

Reasoning with Custom Datatypes. The expressiveness of RDF with custom
datatypes is unlimited. To make this clear, consider a datatype where the lexical
space is the set of Turtle documents, and the value space contains the equivalent
classes of RDF graphs according to the OWL 2 RDF-based semantics entailment
regime (a.k.a OWL 2 Full). The lexical-to-value mapping is the obvious mapping
from the documents to their class of equivalent OWL Full ontologies. Equivalence
in OWL 2 Full is known to be undecidable [10] and therefore, D-entailment when
D contains such a datatype is undecidable. Therefore, reasoning with datatypes
is generally undecidable. In fact, even simple datatypes can impact D-entailment
reasoning deeply, as witnessed by the following example:

rdfs:Resource rdfs:subClassOf xsd:nonNegativeInteger,

xsd:nonPositiveInteger .

These two triples are inconsistent in RDFS recognising {xsd:nonNegative
Integer, xsd:nonPositiveInteger} but reasoners implemented in Jena, Corese,
and Sesame are unable to detect it. However, as noted in Sect. 3, under certain
constraints on datatype value spaces or input graphs, our solution allow correct
and complete reasoning for RDFS recognising D. Even in a more general case,
reasoning is at least sound.

8 Conclusions

Custom datatypes are currently frown upon because they do not facilitate inter-
operability. If custom datatypes could be more easily supported generically, it
would ease the publication of some domain-specific datasets which otherwise
are difficult to represent with standard datatypes. We defined requirements for
supporting arbitrary datatypes in reasoning and querying and proposed a con-
crete solution that requires that the designers of new datatypes follow guidelines
that are in line with Linked Data principles. Assuming these guidelines are fol-
lowed, RDF processors and SPARQL engines can effectively take advantage of
custom datatypes on-the-fly, modulo a little overhead in implementing support
for our proposal. We empirically demonstrated that performance is not much
impacted, compared to a standard implementation. In some cases, relying on
custom datatypes leads to better results than restructuring the data to only
use standard ones. Arguably, in the use cases we identified, custom datatypes
make data publishing more flexible, intuitive, and efficient. Nonetheless, we are
conscious of some of the shortcomings of our approach and are investigating
other directions for concretely implementing the requirements, based on a linked

386 M. Lefrançois and A. Zimmermann

datatype vocabulary and web services. Finally, we want to investigate more
deeply real needs from data publishers in exposing their own datatypes to the
open Web.

References

1. Quantities, Units, Dimensions, Values (QUDV). SysML 1.2 Revision Task Force
Working draft, Object Management Group, 30 October 2009

2. Bermudez, L.: The unified code for units of measure in OWL. OWL Ontol-
ogy (2006). https://marinemetadata.org/files/mmi/ontologies/ucum,accessed12/
04/2016

3. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax,
W3C Recommendation, 25 February 2014

4. de Bruijn, J., Heymans, S.: Logical foundations of RDF(S) with datatypes. J. Artif.
Intell. Res. 38, 535–568 (2010)

5. Emmons, I., Collier, S., Garlapati, M., Dean, M.: RDF literal data types in prac-
tice. In: Proceedings of the 7th International Workshop on Scalable Semantic Web
Knowledge Base Systems, vol. 1 (2011)

6. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language - W3C Working Draft 5.
W3C Working Draft, W3C, 5 January 2012

7. Hayes, P., Patel-Schneider, P.F.: RDF 1.1 Semantics, W3C Recommendation 25.
W3C Recommendation, W3C, 25 February 2014

8. Hodgson, R., Keller, P.J., Hodges, J., Spivak, J.: QUDT - Quantities, Units. Dimen-
sions and Data Types Ontologies. Technical report, NASA (2014)

9. Hogan, A., Arenas, M., Mallea, A., Polleres, A.: Everything you always wanted to
know about blank nodes. J. Web Semant. 27, 42–69 (2014)

10. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language Profiles (2nd edn.). W3C Recommendation, W3C, 11 Decem-
ber 2012

11. Perry, M., Herring, J.: OGC GeoSPARQL - A Geographic Query Language for RDF
Data. Ogc implementation standard, Open Geospatial Consortium, 10 September
2012

12. Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C.M., Thompson, H.S.:
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C
Recommendation, W3C, 5 April 2012

13. Polo, L., Berrueta, D.: MUO - Measurement Units Ontology, Working Draft DD
April 2008. Working draft, Fundación CTIC (2008)

14. Rijgersberg, H., van Assem, M., Top, J.L.: Ontology of units of measure and related
concepts. Semant. Web J. 4(1), 3–13 (2013)

15. Shadow, G., McDonald, C.J.: The Unified Code for Units of Measure. Technical
report, Regenstrief Institute Inc., 22 October 2013

16. W3C OWLWorking Group: OWL 2 Web Ontology Language Document Overview
(Second Edition), W3C Recommendation 11 December 2012. Technical report,
W3C (2012)

17. Williams, G.: Extensible SPARQL functions with embedded javascript. In:
Proceedings of the Workshop on Scripting for the Semantic Web (2007)

https://marinemetadata.org/files/mmi/ontologies/ucum, accessed 12/04/2016
https://marinemetadata.org/files/mmi/ontologies/ucum, accessed 12/04/2016

	Supporting Arbitrary Custom Datatypes in RDF and SPARQL
	1 Introduction
	2 Use Cases for on-the Fly Support of a New Datatype
	3 Requirements for on-the Fly Support of a New Datatype
	3.1 Preliminaries
	3.2 Pairwise Disjoint Value Spaces
	3.3 Overlapping Value Spaces

	4 Implementation Options
	5 Script-Based Support of Arbitrary Custom Datatypes
	5.1 Guidelines for Datatype Publishers
	5.2 Guidelines for RDF/SPARQL Engines

	6 Implementation and Experiment
	6.1 Publication of a Simple Custom Datatype for Length
	6.2 Implementation in Jena and ARQ
	6.3 Experiment

	7 Discussion
	8 Conclusions
	References

