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Abstract. This study considers chain-topology networks, which has cer-
tain inherent limitations, and presents an optimization model that aug-
ments the network by the addition of a new link, with the objective of
minimizing Average Path Length (APL).

We built up a mathematical model for APL, and formulated our prob-
lem as Integer Programming. Then, we solved the problem experimen-
tally by brute-force, trying all possible topologies, and found the optimal
solutions that minimize APL for certain network sizes up to 1000 nodes.
Later on, we derived analytical solution of the problem by applying Lin-
ear Regression method on the experimental results obtained.

We showed that APL on a chain-topology network is decreased by the
proposed optimization model, at a gradually increasing rate from 24.81 %
to asymptotic value of 41.4 % as network grows. Additionally, we found
that normalized length of the optimal solutions decreases logarithmically
from 100 % to 58.6048 % as network size gets larger.
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1 Introduction

Many industries, today, prefer chain topology on their networks comprised of
nodes connected each other consecutively throughout both long and narrow
deployment areas like railways [1], highways [2], underground mines [3,4], as
well as in some special type of wireless sensor and mesh networks [3–7] and
backbones of telecommunication systems [8]. Similarly, it is also a well-known
implementation to connect (wi-fi) routers in daisy-chain topology to provide
internet access at each floor in towers or high buildings.

A major disadvantage of chain networks is to have high Average Path Length
(APL) relative to network size, unlike many other types of networks owning
the properties of “small-world” networks [9]. APL is generally desired to be
small, and is investigated analytically and numerically in many studies related to
network design and optimization [10–18], social networks [15,17,18], computing
[19], and logic design [20].
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In this paper, we examine APL for chain networks, and propose an opti-
mization model based on an additional link deployment to the network, with
the objective of minimizing APL. We derive analytical formulation for APL
prior to and subsequent to optimization process, as well as obtain numerical
results which precisely agreed with analytical analysis.

2 Network Model

Suppose we have a chain-topology network with n nodes, containing bidirectional
links between consecutive nodes. This network can be represented as a path
graph, Pn, with undirected edges1 as depicted in Fig. 1.

Fig. 1. A path graph representing a chain-topology network with n nodes

Suppose, we aim at augmenting this network further by adding a new perfor-
mance enhancing link between a certain pair of nodes on the network2 as illus-
trated in Fig. 2. We should notice at this point that the augmentation process
(i.e. adding a new link) is intentionally confined by just one new link in order to
keep the optimization cost minimum, and that the implementation cost of such
a new link can be assumed fixed regardless of the distance between connected
nodes, which is true especially for the leased lines obtained from ISPs.

Fig. 2. Adding a new enhancement link (i.e. edge) connecting vx and vy

We are now ready to ask our optimization problem:

Main Problem: Which nodes should be connected to reach the objective of
minimizing average path length (APL) on the network?

Not only does the proposed optimization model minimize APL, but also it
improves robustness on chained networks by means of generating alternative
routes, as well as reduces cost of packet transmissions.

3 Related Work

3.1 Chain Networks

Given the side effects of unbalanced energy consumptions at nodes in chain net-
works used in underground mines or on trains, the studies of [1,3,4,6] proposed
1 The edges are undirected because of bidirectional transmissions between nodes.
2 This could be realized via several ways like obtaining a leased line connection from

an ISP between the two points of interest, or using a long-range radio link.
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different protocols or node deployment strategies, aiming to provide balanced
energy consumptions at nodes in order to increase network lifetime.

Agbinya [2] discussed a specific application of chain networks on highways,
and addressed certain characteristics of the network such as interference level,
coverage area and path loss; on the other hand, Zhou et al. [5], in a recent
study, considered Chain-typed Wireless Sensor Networks (CWSN) deployed in
coal mines, and proposed a source-aware redundant packet forwarding scheme
for emergency information delivery in CWSN.

Leu and Huang [7] proposed a mathematical model that calculates the max-
imum throughput of a Wireless Mesh Network in chain-topology, dealing with
signal interference, hidden nodes and STDMA time slots among nodes.

Flammini et al. [8] considered the construction of wireless ATM layouts for
a chain of base stations, and showed that the problem studied was NP-complete
for special instances, and provided optimal solutions for certain cases.

3.2 Average Path Length (APL)

Several researchers derived analytical formulation of APL for different type of
networks. For instance, Kleinrock and Silvester [21] considered random graphs;
Fronczak et al. [18] and Guo et al. [14] studied a large class of uncorrelated
random networks with hidden variables; Zhang et al. [17] examined Apollonian
networks; Peng [16] dealt with Sierpinski pentagon; Gulyás et al. [13] focused on
the networks with given size and density; Chen et al. [11] investigated Barabási–
Albert scale free model; Zhi-guang et al. [10] discussed belt-type networks; and
Gao et al. [22] analysed Sierpinski gasket in a recent article.

In the field of logic design, Butler et al. [20] studied APL of binary decision
diagrams by deriving the APL for various functions, and showed that the APL
for benchmark functions is typically much smaller than for random functions.

Mao and Zhang [19] considered the computation problem of APL for large
scale-free networks, and presented a dynamic programming model to solve the
load-balancing problem for coarse-grained parallelization. Yen et al. [12] pre-
sented an efficient method for updating the closeness centrality of each vertex
and the APL of a network, where edges change dynamically as in the case of
social networks. In a recent study, Reppas et al. [15] introduced rewiring rules
to tune APL on a network while keeping the degree and clustering coefficient
distribution unchanged.

To the best of our knowledge, ours is the first study to propose an optimiza-
tion model aiming to minimize APL for chain networks by optimal deployment
of an incremental link.

4 Mathematical Model

4.1 Pure Path

Average path length, APL, of a network is an important parameter showing the
efficiency of information transmission on the network, and can be calculated by
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finding the shortest path between all pairs of nodes, adding their lengths3 up,
and then dividing by the total number of pairs.

To find the mathematical expression for APL of a chain network, let Pn be a
path graph including n vertices indexed in sequence from 1 to n, like v1, v2, ..., vn,
as depicted in Fig. 1. It is obvious that the shortest path between a certain pair
of nodes on a path graph is the subpath, having no alternative, between this pair
of nodes. Moreover, the length of such a subpath is equal to the number of edges
on itself. Thus, since the vertices are indexed in order, length of a subpath (PL)
between vertices of vj and vk on Pn can be stated rigorously as follows.

PL(vj ,vk) = |k − j|
Then, the Eq. 1 gives the sum of path lengths for all (unordered) pairs4

∑
PL(AllPairs) =

n−1∑

i=1

n−i∑

k=1

k (1)

After rewriting the Eq. 1, and dividing by the number of all pairs, which is
n(n−1)

2 , we find the APL for the path graph of Pn as given in Eq. 2.

APLPn
=

∑
PL(AllPairs)

n(n−1)
2

=
n + 1

3
(2)

According to Eq. 2, the APL for a chain-topology network is linearly propor-
tional with the length of the chain or the number of nodes, i.e. O(n), and almost
equal to one third of network diameter.

4.2 Path with an Additional Edge

Let P
′
n be a graph obtained by adding a new edge (vx, vy) to the path graph Pn

as depicted in Fig. 2. Rigorously,

P
′
n = Pn ∪ (vx, vy)

To built a general mathematical expression for APL on P
′
n, we first studied on

small networks (e.g. around 10 nodes), manually calculated APL, and produced
a sketchy formula for APL. Then, we extended our work with larger networks,
as repeatedly checking accuracy of the formula, and revised it when needed until
the formula persistently gave correct values for all networks investigated. This
process yielded Eq. 3. Yet we also verified its correctness via experiments as
described in the following sections.

APLP ′
n

=
∑t−1

i=1

∑t−i
k=1 k + (h − 1)(

∑x
i=1 i +

∑n−y+1
i=1 i) − 1 + R

n(n−1)
2

(3)

3 The length of a path is measured here in terms of hop count.
4 By all pairs we mean all unordered pairs because the edges are undirected, and for

this reason, it is enough to count path lengths in only one direction.
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where h = y − x, t = n − h + 1, and

R =

{
(2n − h − 1)

∑h/2
i=0 i − h(n − h + 1) + 2, if h is even

(2n − h − 1)
∑(h−1)/2

i=0 i + (h+1)2

4 − (h−1)(n−h+3)
2 , if h is odd

Thus, we obtained analytical expressions for APL prior to and subsequent
to additional link attachment into a path graph, as in Eqs. 2 and 3, which allows
us to formulate our problem in the form of Integer Linear Programming (IP) as
follows:

minimize APLP ′
n

subject to n, x, y are integer
x < y
1 ≤ x ≤ n
1 ≤ y ≤ n

where APLP ′
n

is given in Eq. 3.
It is known that IP is NP-hard [23], which implies that there is no known

polynomial-time solution for IP problems. Yet, in the following sections, we will
solve certain instances of the problem above by experimentally in the first place,
and then, construct a general analytical solution for any value of network size
(i.e. n) by means of linear regression method.

5 Finding Optimal Solutions

5.1 Numerical Solutions by Experiment

To find optimal solutions for certain cases of the problem introduced, we prepared
an experimental set-up shown as pseudo-code in Fig. 3.

In the experiment, we incremented network size from 3 nodes to 1000 nodes,
and varied attachment points (i.e. vertices) of the additional link for all possible

1: for n ← 3 to 1000 do � Varying network size
2: Enter Adjacency List of the Graph � Defining network topology for all cases
3: function APL(Graph)

4: Find the minimum APL among all calculated values at each step of n

5: function APL(G) � Determines APL for G
6: c ← 0 � Counter
7: APL ← 0
8: for all Pairs (vi, vj) in G do
9: function Dijkstra(vi, vj) � Runs Dijkstra

10: return Shortest Path (SP) between vi and vj

11: APL ← (APL ∗ c + Length(SP )/(c + 1)
12: c ← c + 1

13: return APL

Fig. 3. Experimental setup for determining APL
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cases as a brute-force approach. At each step of network size, we first defined
network topology by entering adjacency list for the network, for all possible
deployment of the additional link as varying variables of x and y, which represent
the relative location of vertices vx and vy. Then, for each topology, we found the
shortest paths for all pairs by implementing Dijkstra’s well-known shortest path
algorithm [23,24]. Notice that Dijkstra determines the shortest path between
only one pair of nodes, and for this reason, we iteratively employed it for all
pairs in the graph (i.e. topology). After calculating lengths (i.e. hop counts) of
the shortest paths for all pairs, we took average of them, and thus found APL.
Finally, we identified the minimum APL among all calculated APLs yielded
as varying locations of vx and vy. This experimental process was repeated for
certain network sizes of 3, 5, 10, 20, 50, 100, 200, 500 and 1000 nodes.

Table 1. Experimental results obtained by brute force computation

Network Size (n) APL for

Path Pn

APL for Ring

Pn ∪ (v1, vn)

Min APL (Optimal)

Pn ∪ (vx opt, vy opt)

Optimal Solutions

(xopt, yopt)

3 1.33 1.0 1.0 (x=1, y=3)

5 2.0 1.5 1.5 (x=1, y=5)

10 3.66 2.77 2.53 (x=2, y=8)

(x=3, y=9)

20 7.0 5.26 4.5 (x=4, y=16)

(x=5, y=17)

50 17.0 12.75 10.37 (x=10, y=40)

(x=11, y=41)

100 33.66 25.25 20.13 (x=21, y=80)

200 67.0 50.25 39.66 (x=41, y=159)

(x=42, y=160)

500 167.0 125.25 98.24 (x=104, y=397)

1000 333.66 250.25 195.87 (x=207, y=793)

(x=208, y=794)

Table 1 contains some of the numerical results acquired in the experiments,
including optimal solutions that minimize APL as well as results belong to
ring topologies (i.e. the cases in which the first and the last nodes of paths
are connected each other by the additional link). The first column in the table
includes network size in terms of the number of nodes, while the second and
the third columns contain APL for pure path (Pn) and ring topology (i.e.
Pn ∪ (v1, vn)) respectively. Notice that ring topology occurs when the first and
the last nodes on a path are connected each other. The fourth column involves
minimum APL which appears when the additional link is placed optimally (i.e.
Pn ∪ (vx opt, vy opt)). The last column shows optimal values of (vx, vy) that min-
imize APL.

Figure 4 shows experimental results in the form of 3-dimensional color map-
ping when network size equals to 100 nodes. As can be seen in the figure, APL
has the minimum value (i.e. dark blue color) at around x = 21 and y = 80,
or equivalently, vice versa. Notice that the red area from left bottom corner to
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right upper corner represent Path topology, whereas the points both at the left
up corner and at the right down corner produce Ring topology.

APL for All Possible Values of x and y
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Fig. 4. APL for varying values of x and y, when network contains 100 nodes (Color
figure online)

Verification of the Mathematical Model: One might doubt the accuracy of
our mathematical model presented in Sect. 4, i.e. Eq. 3. To verify correctness of
this mathematical expression, we first computed APL values by using Eq. 3 as
assigning all possible values to the variables up to network size of 1000 nodes,
and then searched out the instances giving minimum APL for each network
size. Afterwards, we compared minimum APL values computed in Eq. 3 with
the APL values yielded from the experimental calculations for certain network
sizes as listed in Table 1. We eventually observed that both the mathematical
model and the experimental calculations give precisely the same outcomes for
APL, which shows the consistency between these two different approaches.

5.2 Analytical Solution by Linear Regression

Table 1 contains numerical results of optimal solutions for certain network sizes.
However, to make a comprehensive analysis including asymptotic behaviour of
optimal solutions and other variables, we need to establish analytical relations
between these variables. For this purpose, we applied a linear regression method
on the numerical results at hand, based on least square technique, and conse-
quently, found the following relations.

APLP ′
n
(n) = 0.195331 ∗ n + 0.559447 (4)

xopt = Round(0.207174 ∗ n − 0.0251311) (5)
yopt = Round(0.793222 ∗ n + 0.0497688) (6)

where Round(z) is a function which returns the nearest integer to z.
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In fact, Eqs. 5 and 6 give precise answers to the main problem asked at the
beginning of this paper. Equation 4, on the other hand, yields exact outcome for
APL when an optimal solution is applied.

6 Discussions

6.1 Average Path Length (APL)

Figure 5 depicts APL for both Pn and P
′
n when optimal values of (vx, vy) is

applied, as network size varies from 3 nodes to 1000 nodes. As seen in the figure,
APL linearly increases for both cases as network size grows. However, notice
that Pn has higher slope than P

′
n, which means that adding extra edge reduces

APL on a network.
Notice that there is also model fit (i.e. regression line) which is obtained by

linear regression. Goodness of fit can even be visually evaluated in Fig. 5, as the
fitted line and numerical data exactly matches each other.

6.2 Improvement

Figure 6 exhibits the Improvement, i.e. the rate of decrement, on APL when an
additional edge is placed to the network at optimal positions. As can be followed
in the figure, the improvement rate begins with a slow growth at around 24.81 %
when n = 3, followed by a period of moderate growth, and then back to a period
of slow growth asymptotically approaching to 41.4 %, which is consistent with
the analytical analysis below.

Improvement = 100 ∗ (APLPn
− APL

′
Pn

)/APLPn

= 100 ∗ (n+1
3 − 0.195331n − 0.559447)

(n + 1)/3
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Fig. 5. Average Path Length (APL) for different topologies as network size grows
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= 300 ∗ 0.138n − 0.226114
n + 1

=
41.4n − 67.8342

n + 1
lim

n→+∞ Improvement = 41.4%

6.3 Optimal Solutions

Equations 5 and 6 are optimal solutions in analytic form, while values on the
fifth column in Table 1 are numeric solutions for certain network sizes. Thanks
to Eqs. 5 and 6, one can readily determine optimal values of (vx, vy) for any
network size. It is interesting to observe that the optimal solutions, when n = 3
and n = 5, are two end points of the path (i.e. (vx, vy) equals to (v1, v3) and
(v1, v5) respectively) . As network size grows, the optimal values of vx and vy
slide gradually towards the center of the network. This observation motivated
us to investigate normalized length between two end points (i.e. vx and vy) of
optimal solutions in the next part.

Another observation here is that there is only one (i.e. unique) optimal solu-
tion when the network size (n) is odd, whereas there may emerge many optimal
solutions when n is even, as can be observed in the fifth column of Table 1. We
discovered that alternative optimal solutions for the same network yield isomor-
phic graphs when they are applied.

 20
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Improvement on APL and NLOS  vs. Network Size

Improvement
NLOS

Fig. 6. Improvement on APL and normalized length of optimal solutions (NLOS) as
network size grows (smoothed)



Optimal Link Deployment for Minimizing Average Path Length in CN 357

6.4 Normalized Length of Optimal Solutions (NLOS)

NLOS represents the normalized distance between two end points (i.e. vx opt

and vy opt) of optimal link deployments that minimize APL. The normalization
process is performed with respect to network size. Figure 6 includes NLOS as
network size logarithmically grows. It can be deduced from the figure that the
NLOS is reduced logarithmically beginning from 100 % to around 58.6 %, which
is consistent with the analytical analysis below. This means that the optimal
solutions occur at around two end points of chain-topology when network size is
small, whereas attachment points of optimal solutions move away from this end
points as network size grows.

NL = 100 ∗ |yopt − xopt|
n − 1

=
Round(58.6048 ∗ n + 7.48999)

n − 1
lim

n→+∞NL = 58.6048%

7 Conclusion

Chain-topology networks performs poorly in certain performance metrics such
as throughput, robustness, energy efficiency in data transmissions [1–7]. This is
mostly due to fact that average path length (APL) in chain-topology is extremely
high, which is almost one third of network size as we showed.

In this study, we aimed at compensating this deficiency by presenting an
optimization model in which incremental link deployment was considered, with
the objective of minimizing APL on a chain network. For this purpose, we first
discovered mathematical expression of the objective, as well as formulated it
in the form of Integer Programming (IP). Then, we prepared an experimental
setup in order to determine APLs? of all possible topologies generated by plac-
ing an additional link to varying locations on a chain-topology network. Thus,
we found optimal solutions that minimize APL for specific network sizes up to
1000 nodes, and also verified accuracy of our mathematical model. Through the
experiments, for each specific network size, we implemented Dijkstra’s shortest
path algorithm for all pairs, and took average of their lengths in terms of hop
count to calculate corresponding APL values. Afterwards, we derived analyti-
cal solution by implementing Linear Regression method on the data obtained
experimentally, which allowed us to see asymptotic behaviour of the solutions.

Our analyses showed that the optimization model proposed was able to
reduce APL on chain-topology networks at a rate of between 24.81% and 41.4%,
with gradually increasing ratio as network size grows. Moreover, we found that
normalized length of the additional link for optimal solution asymptotically
approached to 58.6% of network size.

Besides contribution of such an additional link optimally implanted for min-
imizing the APL, further research is required to improve other performance
characteristics of chain-topology networks, such as ensuring load balancing.
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