Improving Spatial Indexing and Searching
for Location-Based DNS Queries

Daniel Moscoviter!(™), Mozhdeh Gholibeigi', Bernd Meijerink!,
Ruben Kooijman?, Paul Krijger?, and Geert Heijenk!

! University of Twente, Enschede, The Netherlands
d.moscoviter@student.utwente.nl,
{m.gholibeigi,bernd.meijerink,geert.heijenk}@utwente.nl
2 Simacan B.V., Amersfoort, The Netherlands
{ruben.kooijman,paul.krijger}@simacan. com

Abstract. In the domain of vehicular networking, it is of significant
relevance to be able to address vehicles based on their geographical posi-
tion rather than the network address. The integration of geocasting (i.e.
the dissemination of messages to all nodes within a specific geographical
region) into the existing addressing scheme of the Internet is challenging,
due to its logical hierarchy. One solution to Internet-based geographical
addressing is eDNS, an extension to the DNS protocol. It adds support
for querying geographical locations as a supplement to logical domain
names. In this work, eDNS is extended with nearest neighbor resolution
support, and further, a prototype server is developed that uses bound-
ing box propagation between servers for delegation. Our experiments
confirm that distributing location records over multiple servers improves
performance.

Keywords: Geocasting - Vehicular networks + DNS - eDNS

1 Introduction

The concept of Intelligent Transportation Systems (ITS) is an emerging area of
research [11]. The main objective of such systems is to use vehicular commu-
nication to develop novel applications for increasing safety, traffic management,
Internet access, or other valuable services. Aside from the opportunities for deliv-
ering many novel applications, a significant amount of research has focused on
ITS because of the technological difficulties that are involved. Mainly, vehicular
networks have to deal with highly dynamic network topologies of vehicles, their
high speed, limited communication ranges, and real-time constraints of potential
applications. We can differentiate between two different types of communication
in vehicular networks: Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communication. In the former type, data packets are exchanged between
vehicles using vehicular communication technologies without involvement of an
infrastructure. The latter type extends the vehicular ad hoc networks (VANETS)
with a fixed infrastructure (e.g., Roadside Units (RSUs)).

© IFIP International Federation for Information Processing 2016

Published by Springer International Publishing Switzerland 2016. All Rights Reserved
L. Mamatas et al. (Eds.): WWIC 2016, LNCS 9674, pp. 187-198, 2016.

DOI: 10.1007/978-3-319-33936-8_15

188 D. Moscoviter et al.

Vehicles in ITS will typically be equipped with localization technologies. This
allows vehicles to be addressed based on their geographical positions rather than
the network address (i.e. targeting a certain area, not a certain vehicle), utilizing
domain-specific forwarding strategies [1]. Messages can be sent to any single
node within a target region (geoanycast), or to all nodes within a target region
(geocast). Geocasting in particular enables a large number of new applications.
Warning about dangerous road conditions, assisting in speed management, and
delivery of infotainment are examples of use cases that geocasting can facilitate.

Geocasting requires a routing protocol that delivers messages to the intended
targets. It is a challenge to integrate geographically-scoped broadcasting into the
existing addressing scheme of the Internet, as IP-based addressing does not sup-
port geographical routing. Though solutions to this problem have been proposed,
there are bottlenecks and the concept is an open research issue. For instance,
GPS-based addressing and routing [9,10] requires a specialized infrastructure;
use of a geographical IPv6 prefix format [8] relies on a standardized allocation of
IPv6 addresses; and GeoNet [4,12] has Internet-wide scalability limitations [6].

One solution that was proposed to tackle these shortcomings is the Extended
DNS (eDNS) [5,6]. It is based on the Internet Domain Name System (DNS)
protocol, and extends it to support geographical addressing. While DNS already
supports storing locations using location (LOC) resource records, the novelty of
eDNS is that the locations can be used as a primary key to return Internet Pro-
tocol (TP) addresses that are associated with geographical regions. The appeal
of this method is that it does not require specialized hardware or software, nor
protocol modifications. Only modification of existing DNS implementations is
required, as described later in this document. Support for more efficient index-
ing, as well as delegation was added at a later stage [17]. However, opportunities
for improvement remain. For example, we can consider use cases where one would
be interested in entities close to a certain point, rather than entities within a
region. More possible improvements can be identified, and will be discussed fur-
ther in this paper.

As mentioned earlier, the concept of integrating geocasting into the exist-
ing infrastructure of the Internet is an important research issue in the field of
ITS research. Because of the aforementioned shortcomings in several proposed
solutions, this paper focuses on the eDNS protocol as a solution for the prob-
lem of addressing all entities within a geographical area. In our work, we have
improved and evaluated the eDNS protocol in several ways. This has resulted in
the following main contributions.

— We have designed and implemented nearest neighbor resolution by introducing
a new DNS resource record containing a location’s distance to a queried area.

— We have designed and implemented the propagation of bounding boxes to
parent DNS name servers, upon receiving location updates via the Dynamic
DNS (DynDNS) protocol.

— We have evaluated the performance of our eDNS implementation in terms of
throughput and latency for various input parameters.

Improving Spatial Indexing and Searching for Location-Based DNS Queries 189

The remainder of this paper is structured as follows. We review related work
on eDNS in Sect. 2. Then, we discuss our approach to improve eDNS in Sect. 3.
Section 4 shows the performance evaluation of our developed prototype. Finally,
we draw conclusions and discuss future work in Sect. 5.

2 Background and Related Work

Given the importance of geographical location based addressing in the domain
of vehicular networking, various research activities have been carried out over
the recent years. In this section we refer to some research relevant to our work.

Fioreze and Heijenk [5] propose the extension of DNS such that clients can
resolve IP addresses based on geographical coordinates, rather than domain
names. The proposal relies on the existing LOC record specification. The novelty
of the proposal is that LOC records are allowed to be used as the primary key for
DNS queries, in addition to the methods of using hostnames or IP addresses. The
eDNS proposal has various strengths. For one, it is based on the existing DNS
architecture, which has proven its high scalability, being used as the addressing
scheme in the Internet. Secondly, it does not require specialized hardware or
software, or modification of existing protocols.

In [6], a prototype implementation is described based on Name Server
Daemon (NSD)!. The prototype follows the suggestions made in the pro-
posal by adding support for the use of LOC records as the primary
key. Geographical queries have the following format, based on the format
of the LOC record: ‘(’dLat mLat sLat ‘N’|‘S’ dLon mLon sLon ‘E’|‘W’
alt[‘m’] size[‘m’]‘)’.domain. The geographical query format is hybrid, in
the sense that logical domain names can be mixed with a geographical loca-
tion. The geographical part is used on the lowest level. Thanks to this property,
top-level domains are not required to support the geographical format. The doc-
ument also describes a delegation strategy.

Westra [17] extended eDNS based on the previously mentioned implemen-
tation. The extended prototype is based on R*-trees [2] as an efficient spatial
data indexing and searching method. R*-trees are a variant of R-trees, which
are dynamic, hierarchical data indexing structures. To reduce network traffic for
delegation, [17] introduces the bounding box (BND) record type which defines
the bounding rectangle of child servers, preventing blind delegation of a location
request if it falls outside of the known coverage of the child server. Compati-
bility with existing DNS implementations is preserved. The query format was
extended to provide a higher precision.

Previous iterations of eDNS have mainly focused on storing location of nodes
that have a fixed location, such as RSUs. In [13], Van Leeuwen extends eDNS
with functionality to dynamically manage locations. In the work, it is assumed
that a central server exists that tracks dynamics of the environment. Function-
ality is added to the modified NSD server that retrieves records from this server,

! https://www.nlnetlabs.nl/projects/nsd/.

https://www.nlnetlabs.nl/projects/nsd/

190 D. Moscoviter et al.

rewrites its own zone file, rebuilds the database, and reloads. However, this
method does not work if no central server with locations exists.

3 The Approach

The problem of finding nearby nodes in tree data structures is known as k-
nearest neighbor (kKNN) resolution in the literature, where £ is the number of
closest results. This can be used to find the nearest RSU that has at least a
certain number of vehicles in its coverage range. These vehicles may potentially
forward information to the target geocast area in multiple hops. A client could
request nearest neighbor resolution in an eDNS query by appending a parameter
(‘nn="nn) to the geographical coordinates. The authoritative name server parses
this parameter and performs an algorithm to find nearby neighbors, ordered by
distance, rather than finding overlapping LOC records.

Nearest neighbor resolution becomes more complicated when delegation is to
be considered. Although it is possible for a name server to ask each subdomain
about its nearest neighbors, it is not doable to combine results from multiple
sources and selecting the nearest neighbors from that set, without knowing the
individual distances. One possible solution would be to have the authoritative
server request the actual LOC records from the subdomain, in addition to the
record type originally requested. The authoritative server could then parse these
records, apply its own distance calculations, and compare these results to the
distances of its own LOC records. Another solution is to have the authoritative
servers for the subdomains report the distances for its results. Every unique
record name would require its distance to be reported. There is no standardized
way to transfer such a distance value, so we propose the use of a new volatile
record for every unique result name, the distance (DST) record. These records
are not added to the persistent zone storage of the authoritative server, but
instead only generated temporarily for inclusion in the query answer. Its defini-
tion is an implementation of the TXT record: ‘v=dst1’ distance. The distance
is a decimal value in meters. Because each authoritative server already knows the
distances of the requested shape to its own LOC records after doing the local
nearest neighbor resolution, no additional computation is required. The par-
ent authoritative server uses these temporary records to order the other result
records, and trim the number of records to the requested number. Because DST
records are essentially metadata, they are returned in the ‘additional’ section of
DNS query answers. This is comparable to how the OPT pseudo-resource record
(RR) is returned for the Extension mechanisms for DNS (EDNS(0)) protocol
[3,15].

One considerable drawback of the first proposed solution is that it increases
the computational burden on the non-leaf authoritative servers, as they would
have to perform additional distance calculations. These distance calculations are
wasteful, because they were already performed by the subdomains to return the
initial nearest neighboring records set. After considering this imposed compu-
tational overhead, we chose to implement the second proposed solution in the
prototype.

Improving Spatial Indexing and Searching for Location-Based DNS Queries 191

Query type D Find k LOC records nearest to geo

(geo nn=k).x Select records of TYPE type with same name as nearest
LOC records

D Generate DST records for found records
D Select all NS records

D Select A records with same name as NS records content

_ > Find k LOC records nearest to
Query ANY D) geo

- name

(geo nn=k).yx Select records with same

name server D
client server y.x names
x Return records D Generate DST records for
D ——— found records

N Find k LOC records nearest to
Query ANY D geo

(geo nn=k).z.x | hame

server

Select records with same

2% J names
Return records ’ Generate DST records for

D found records

D Aggregate records of TYPE type

Return records

D Sort and trim to k records using DST records

Fig. 1. eDNS nearest-neighbor resolution with delegation.

A visualization of the processing done for nearest neighbor resolution in a
delegated deployment is shown in Fig. 1 for name server x with two subdomains.
Note that unlike the process for diameter-based delegation, no overlap with BND
records is checked, because all subdomains have to be queried regardless of the
result. Requests are sent to subdomains for ANY records, rather than the type
requested by the client, as we want to receive DST records in addition to the
requested type. It is argued by some that ANY queries should be deprecated to
prevent their use in amplification attacks [7], which attempt to overload a vic-
tim’s bandwidth capacity. DNS ANY queries are well-suited to this attack type,
because the response size of a request is significantly larger than the request
itself. We therefore note that the subdomain requests can alternatively be per-
formed using two separate queries for the type and TXT (the base type of DST)
records. Assuming x and each of its s subdomains have at least k LOC records,
the total number of records of the requested type that are known by x, will be
(14 s) x k. They are typically not included in the records returned to the client,
but are used to sort the resource record set (RRset) by distance and trim them
to k records. These are returned to the client. If less than, or exactly k records
of the requested type are known, all these records are returned.

The problem of managing dynamic nodes, such as vehicles, has been discussed
in [13]. The author added support for dynamic nodes by implementing a process
in the name server software that periodically reads an updated text file with a

192 D. Moscoviter et al.

list of nodes, rewrites its zone file, rebuilds the internal database, and reloads
the server. It is noted that an alternative approach to this problem is to use
the DynDNS Update protocol [16], but this protocol was not supported by the
version of the name server software that was used.

—_—
Add LOC record D Replace z.y.x LOC record
with name z.y.x

and location geo D Calculate bounding box of LOC records

D Replace y.x BND record

D Retrieve x A record from recursor

vehi- name
cle server |,
oy yx | Add BND record D Replace y.x BND record
with name y.x Calc. bounding box of
name D LOC and BND records
server
% D Replace x BND record
Return any error Return any error | | z

Fig. 2. eDNS location updating.

We implement dynamicity for vehicles using DynDNS Updates by making use
of a DNS name server that supports the DynDNS protocol. A layer of complexity
is added when the problem of dynamicity is combined with delegation. An eDNS
server needs to know the bounding box coverages of its child servers. If locations
in the child servers change, the known bounding boxes may need to be updated as
well. The process is visualized in Fig. 2. A similar process involves the deletion of
a LOC record. Rather than inserting a new record, only an old entry is removed.
Nothing changes from the perspective of x, as deletion can also result in the need
to send an updated bounding box to the parent server. Finally, one edge case
of deletion exists. If the last LOC record in a specific domain is deleted, there
is no valid bounding box to be created. The related BND record needs to be
removed, both in y.x and its parent name server x. The latter should therefore
be removed with a new DNS Update deletion message.

4 FEvaluation and Numerical Results

This section highlights the results of evaluating the implemented functionalities
with various configurations and settings to get insight into system behavior in
terms of throughput and latency. The evaluation is performed with sets of real
historic vehicle location data to simulate the realistic use case of tracking vehicles
in an eDNS system.

The prototype is deployed to clusters on Amazon Web Services for reliable
performance testing. A PostgreSQL database instance is launched for each server
instance, and all database instances are extended with PostGIS functionality.

Improving Spatial Indexing and Searching for Location-Based DNS Queries 193

The server instances are of the type m3.medium. Experiments that attempt to
replicate or compare to our results should therefore be run on instances with
equivalent computing performance.

4.1 Test Setups

Given the focus of our work, it is important to evaluate the performance of the

system by querying nodes within a specified geographical region; querying nodes

with the smallest distance to a specified geographical region; and updating nodes

with dynamic locations. Location data is needed to evaluate these perspectives.

We have used a historic data set of real vehicle location data. We represent such

a location with a LOC record, as well as an A record with a fictional IP address
(=)

of the vehicle.
xe :

) Minimal (b) Simple (c) Scaled depth (d) Scaled width

Fig. 3. Evaluation server setups.

We test the influence of server setups by configuring multiple name space
tree setups. Various testing setups are visualized in Fig. 3. The setups provide
a variety in terms of tree width and depth. Query performance is tested by
querying the top node in the name space tree. The LOC records are divided
over the edge nodes. The allocation of records to the edge nodes is close to
optimal, in the sense that each edge node is responsible for its own geographical
region. This causes the bounding boxes of the edge nodes to have no overlap.
The performance of location updates is tested by sending DynDNS updates to
one or more of the available edge nodes and measuring the performance. Various
input parameters of the setup can influence system performance.

4.2 Performance Metrics

The performance of the system is quantified in terms of throughput and latency
as the two most relevant performance indicators of the introduced system. For
our use case, the throughput determines how many vehicles the system is able to
keep track of, in terms of the number of queries and also the number of location
record updates the system can handle within one second. The latency influences
the responsiveness of the system, and how up-to-date the stored locations are.
This metric specifies the time interval between issuing queries and receiving
the corresponding reply back. Throughput has a strong inverse correlation to
latency. Therefore, we only show throughput in the figures.

194 D. Moscoviter et al.

All DNS query and update operations are performed with a reasonable time-
out of 1s. If no result is received before this timeout expires, the operation is
considered to have failed, and will not contribute to the overall throughput.

In our testing setup, each eDNS server connects to a database backend on
another server. The latency between these servers can be measured to determine
its influence on the other results. The ping command was used from an Elastic
Compute Cloud (EC2) instance to determine the communication delay between
two servers in the same availability zone. Executing consecutive ping requests
showed that latency between servers in the same availability zone lies within the
range [0.634,0.648) ms with a = 0.01.

For the sake of simplicity, we assume that the result data is normally dis-
tributed. This allows us to compute confidence intervals for the data points. All
results are displayed with a 95 % confidence interval (ov = 0.05). Note that some
graphs contain confidence intervals that are too small to be visible.

4.3 Numerical Results

In order to get reliable results for throughput of the system, it is necessary to
have reasonable packet arrival rate, such that the system does not wait for pack-
ets to arrive. On the other hand, the system should also not be overloaded to
the point where it is unable to reduce its internal buffer or respond within time-
out limits. To prevent the system from idling, it is necessary to send multiple
packets simultaneously. Initial tests have been performed to evaluate the per-
formance with different numbers of simultaneous packets. This is implemented
as a thread pool, with each packet being sent in its own thread (a ‘worker’).
As expected, employing more workers generally results in higher throughput,
although with significant diminishing returns. For every tested configuration,
throughput converges to a certain rate where at least one non-buffer related
performance bottleneck emerged, such as limited processor power. Even though
higher number of workers do not negatively affect throughput performance, we
saw that using an arbitrarily large number of workers is not reasonable because
of latency. Latency appears to consistently increase when a larger number of
workers is used. This happens because the server has to divide its resources
over all incoming requests, resulting in longer processing times for each request.
Based on these results, we do not consider there to be an optimal number of
workers, as even for specific configurations it is a trade-off between throughput
and latency. We have opted to perform the rest of the evaluation with 8 con-
current workers. With that number of workers, the majority of the potential
performance increase from concurrency has been achieved under most testing
configurations while having lower latencies than any higher number of workers.

We now evaluate the performance of both querying and updating of locations.

Querying. Throughput and latency have been evaluated for every combination
of setup, LOC record count and diameter. The LOC record count represents
the number of LOC records present in the system. This can be evaluated with a

Improving Spatial Indexing and Searching for Location-Based DNS Queries 195

varying number of LOC RR inserted in the eDNS servers. We have taken subsets
of various sizes from the previously mentioned data set to evaluate the influence
of the amount of LOC records in the databases. Three subsets containing 100,
1000 and 10000 locations were created. Since each of the locations represents a
vehicle, the diameter of the corresponding LOC record should be small. We have
chosen the default LOC diameter of 1 m as the diameter for each record. Multiple
setups are tested, and records are added to one or more edge nodes based on their
geographical position. Each edge node is allocated roughly the same number of
LOC records. Upon receiving a DynDNS update message that inserts or removes
a LOC or BND resource record, the BND record of the node itself will need to
be renewed. The total number of LOC and BND servers can therefore influence
the performance as they increase the number of spatial database operations that
need to be performed.

The query location diameter represents the size of the queried circular area,
specified via a diameter. It can be tested on the same data set by querying
various area sizes. For this, we can consider querying areas with diameter sizes
as low as 1 m up to 500 km. The larger sizes in this range would encompass our
entire data set. The query locations originate from the same data set as the
locations described earlier, but represent a different subset. They do share the
same characteristics of being more likely to refer to a location on a highway.

250 —e— 100 loc. 195 —e— setup (a)
—— 1000 loc. ° —a—setup (b)
-\’i 200 10000 loc. g 100 setup (c)
= = —o—setup (d)
= 150 5 o
o 2, <
! 5
8 100 5 50
c =
50 25
I — ChAA] 00000000
10° 10 10* 10° 10° 10" 10 10®° 10*
diameter (m) diameter (m)
Fig.4. Querying throughput (setup Fig.5. Querying throughput (10000
(a)). locations).

The throughput of the system with setup (a) is shown in Fig.4. One may
note that both the query diameter and data set size have a significant influence
on the results. Given that a throughput of around 240 queries per second is
achieved for both the data set of 100 and 1000 locations with low diameter sizes,
we can conclude that the performance is not limited by spatial computations
at this point. Rather, it is likely that network performance or packet handling
overhead are responsible for the bottleneck. Additionally, the graph shows that
for large diameter sizes and large data set sizes, the throughput approaches 0.
This indicates that within the timeout limit, the system is not able to return a

196 D. Moscoviter et al.

result with a large amount of matching locations. The performance for queries
applied to the data set of 100 locations also appear to converge, but to a different
value. This can be explained by the fact that queries with diameter sizes larger
than roughly 200 km already encompass most of the location points in the data
set, so increasing the diameter further will not increase the number of results.

Equivalent comparisons have been made for other setups, but graphs for these
are omitted because they show the same pattern of larger data set sizes resulting
in slower queries. Instead, we consider the performance of identical data set sizes
between different setups. With data sets of 10000 locations, shown in Fig.5,
performance of setup (c) rises above that of the other setups for small diameters.
This is likely the result of the system being able to divide its spatial computations
over the two edge nodes. At a diameter of around 100 m, throughput becomes
lower than setup (a)’s before converging to the same value.

The same comparison between setups for nearest neighbor queries is shown
in Fig. 6. The query nearest neighbor count represents the number of requested
nearby results. It can be tested with simple integers. The same location data set
as described for the query location diameter is used. Results roughly follow the
patterns discovered in the evaluation for diameter-based queries. Queries on a
system with this number of locations tend to perform better on setup (d)’s load
distribution, up to a point where the portion of packets that does not fit within
the specified timeout window becomes large enough that setup (a)’s single server
is able to more reliably provide a result.

100 —
30 —o— setup (a) B8 inserting
—m—setup (b) 80 B8 updating -
Q 25 setup (c) Q ABremoving
= 20 —+—setup (d) £ 60
B £
= =4
'%o 15 f:g 40
ER £
5 "B
= 0
1 5 25 125
. (a) (b) (c) (d)
nearest neighbors setup
Fig. 6. Querying throughput (nearest Fig. 7. Updating throughput (10000
neighbors, 10000 locations). locations).

Updating. We have evaluated three aspects of the dynamic location function-
ality: insertion, updating and removal. The insertion operation involves adding
an A record with an IP address, as well as an entity’s initial location in a LOC
record. For updating a location, we assume that an entity’s IP address has not
changed. The updating operation therefore involves removing an old LOC record
and replacing it with one containing a new location. The removal operation

Improving Spatial Indexing and Searching for Location-Based DNS Queries 197

removes both the last know location in the form of a LOC record, but also
the associated A record. The three different aspects therefore each involve two
database operations. The aspects are evaluated as follows for a data set with z
locations. For each location, a DNS Update message is sent that inserts both a
fictional IP address and a location. Then, all = locations are updated with indi-
vidual DNS Update messages that remove the old LOC record and insert the
new one. Finally, x DNS Update messages are sent that remove all entities. As
with the query evaluation, all operations are executed with 8 concurrent workers
to increase utilization. Storage of locations is also distributed over different edge
nodes depending on geographical coordinates, as described in Sect. 4.1.

In Fig. 7, we show the performance of the three mentioned operations when
executed on different setups and using the 10000 locations data set. As expected,
introducing more depth to the server tree results in a higher latency, because
each parent server needs to be updated with the renewed bounding boxes of
its direct child servers. Setup (d) shows that the system scales well in width.
Dividing LOC records over multiple servers appears to increase performance,
even if it includes the extra operation of updating the parent server compared to
setup (a). Updating locations is more expensive than the insertion and removal
operations. At least part of this discrepancy can be explained by observing that
the updating operation is always performed on a system that contains all x
locations in a data set. The insertion and removal operations work on a system
with 0 to x entities, depending on how many entities have already been inserted
or removed.

5 Conclusions and Future Work

In this paper we introduced two main improvements to the eDNS protocol. To
solve the problem of finding nearby results, we have described an approach for
nearest neighbor resolution functionality. This can be used when vehicles need
to be addressed via RSUs, but RSUs provide incomplete coverage of an area.

After previous works have shown that updating individual entities with new
locations is possible, we have also added the concept of dynamicity in eDNS
using the standardized DynDNS method. This allows us to track the locations of
vehicles in LOC resource records by keeping coverage information synchronized
over servers in the system.

Performance has been evaluated for queries and updates. The performance
is shown to be strongly dependent on server setup, as well as input parame-
ters. The test results show that in most of the evaluated scenarios, horizontal
scaling of server setups frequently influences the performance positively, while
vertical scaling always influences the performance negatively. Distributing LOC
records over multiple servers allows the system to perform its calculations faster,
potentially improving both throughput and latency.

In future work, focus can be placed on improving compatibility of the eDNS
protocol with the existing DNS protocol. This includes changing the query for-
mat to only include characters that are allowed by default, as well as mak-
ing use of the OPT pseudo resource record for communication of distances

198 D. Moscoviter et al.

between servers. Additionally, the scaling of the protocol may be evaluated more
extensively.

Acknowledgments. This paper is a result of research performed for a Master thesis
[14]. The authors would like to thank the support provided by OVSoftware B.V. and
Simacan B.V.

References

1. Baldessari, R., Bodekker, B., Deegener, M., Festag, A., Franz, W., Kellum, C.C.,
Kosch, T., Kovacs, A., Lenardi, M., Menig, C., et al.: Car 2 car communication
consortium manifesto. Technical report, CAR 2 CAR Communication Consortium
(2007)

2. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles, vol. 19. ACM (1990)

3. Damas, J., Graff, M., Vixie, P.: Extension mechanisms for DNS (EDNS(0)). STD
75, RFC Editor, April 2013

4. Ernst, T.: Final geonet architecture design, January 2010

5. Fioreze, T., Heijenk, G.: Extending DNS to support geocasting towards vanets: a
proposal. In: Vehicular Networking Conference (VNC), pp. 271-277. IEEE (2010)

6. Fioreze, T., Heijenk, G.: Extending the domain name system (DNS) to provide geo-
graphical addressing towards vehicular ad-hoc networks (VANETS). In: Vehicular
Networking Conference (VNC), pp. 70-77. IEEE (2011)

7. Gudmundsson, O., Majkowski, M.: Deprecating the DNS any meta-query type,
March 2015

8. Hain, T.: An ipv6 geographic global unicast address format. Internet-Draft draft-
hain-ipv6-geo-addr-02, IETF Secretariat, July 2010

9. Imieliniski, T., Navas, J.C.: Gps-based addressing and routing. RFC 2009, RFC
Editor, November 1996

10. Imieliniski, T., Navas, J.C.: Gps-based geographic addressing, routing, and resource
discovery. Commun. ACM 42(4), 86-92 (1999)

11. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., Weil,
T.: Vehicular networking: a survey and tutorial on requirements, architectures,
challenges, standards and solutions. Commun. Surv. Tutorials IEEE 13(4), 584—
616 (2011)

12. Kovacs, A.: Final geonet specification, January 2010

13. van Leeuwen, J.: Dynamicity Management in Domain Name System Resource
Records. University of Twente, Bachelorreferaat (2014)

14. Moscoviter, D.: Improving spatial indexing and searching for location-based DNS
queries. Master’s thesis, University of Twente (2016)

15. Vixie, P.: Extension mechanisms for DNS (EDNS0). RFC 2671, RFC Editor,
August 1999

16. Vixie, P., Thomson, S., Yakov, R., Bound, J.: Dynamic updates in the domain
name system (DNS update). RFC 2136, RFC Editor, April 1997

17. Westra, M.: Extending the Domain Name System with geographically scoped
queries. Master’s thesis, University of Twente (2013)

	Improving Spatial Indexing and Searching for Location-Based DNS Queries
	1 Introduction
	2 Background and Related Work
	3 The Approach
	4 Evaluation and Numerical Results
	4.1 Test Setups
	4.2 Performance Metrics
	4.3 Numerical Results

	5 Conclusions and Future Work
	References

