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Abstract. Many research works focus on the adoption of cloud
infrastructure as a service (IaaS), where virtual machines (VM) are
deployed on multiple cloud service providers (CSP). In terms of virtual
resource allocation driven by security requirements, most of proposals
take the aspect of cloud service customer (CSC) into account but do
not address such requirements from CSP. Besides, it is a shared under-
standing that using a formal policy model to support the expression
of security requirements can drastically ease the cloud resource manage-
ment and conflict resolution. To address these theoretical limitations, our
work is based on a formal model that applies organization-based access
control (OrBAC) policy to IaaS resource allocation. In this paper, we first
integrate the attribute-based security requirements in service level agree-
ment (SLA) contract. After transformation, the security requirements are
expressed by OrBAC rules and these rules are considered together with
other non-security demands during the enforcement of resource alloca-
tion. We have implemented a prototype for VM scheduling in OpenStack-
based multi-cloud environment and evaluated its performance.

Keywords: Cloud security - Resource management - Security policy

1 Introduction

Today cloud computing is essentially provider-centric. An increasing number
of fiercely competing CSPs operate multiple heterogeneous clouds. In terms of
IaaS, each provider offers its own, feature-rich solutions for customer VMs. More
significantly, in cloud IaaS, physical hardware is usually shared by multiple vir-
tual resources for maximizing utilization and reducing cost. Unfortunately, this
vision suffers from a lack of homogeneity: many cloud virtual resources can not
be deployed due to deficiencies in (1) unified expression; (2) interoperability.
Lack of unified expression results in vendor lock-in: services are tightly cou-
pled with the provider and depend on its willingness to deploy them. Lack of
interoperability stems from heterogeneity of services, and more importantly of
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service-resource mapping, not compatible across providers. For better interop-
erability and control, cloud brokering is nowadays the rising approach towards
a user-centric vision. It may be seen as a paradigm in delivering cloud resources
(e.g. compute, storage, network). With the help of brokering technology, user’s
security needs will be necessarily considered in cloud and these security require-
ments can be included in SLA contract which is a legal document where the
service description is formally defined, delivered, and charged.

Cloud Service Customer (CSC) Cloud Service Providers (CSPs)
SLA contracts (1 Specifies SLA requirement of VMs 2] Specify SLA offered by HOSTs
(Service capacity, QoS and Security) and the security requirement
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Fig. 1. The proposed policy based process to allocate virtual resources

Therefore, to overcome the aforementioned issues, we enhance the broker-
ing technology by developing a configuration management process to allocate
VMs in TaaS cloud. Shown in Fig. 1, with WS-Agreement [1] based contracts,
both CSC! and CSP specify and manage their security requirements related to
infrastructure in order to ensure end-to-end security across different components
(Steps 1,2). After receiving the SLA contracts, the broker derives the concrete
deployment policies according to security and non-security requirements (Steps
3,4,5). Particularly, the broker is able to arbitrate contradicting demands and
make decisions (Step 6). In the end, the broker applies un algorithm to generate
the final allocation solution (Step 7) then deploys and configures VMs on HOSTs
(Step 8). Our method is evaluated by setting up a cloud computing environment
to conduct virtual resource allocation process. Experimental results show that
our approach demands minimal user (CSC and CSP)’s intervention and enables
unskilled cloud users to have access to complex deployment scenarios. In par-
ticular, our solution tackles the lack of application of existing policy model that

! In this paper, CSC stands for the end customer of cloud.
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can support security expression when dealing with multiple clouds. Our contri-
bution meets key-functional requirement for user-centric as (i) it addresses the
SLA configuration options at the IaaS layer from service capacity to security
constraint. (ii) it considers multiple requirements of security and applies the
OrBAC model to translate attribute-based security constraint to concrete pol-
icy. (iil) it provides conflict management to detect and handle the contradictory
requirements from CSC and CSPs, with possibility to judge the policy prior-
ity by evaluating users’ profiles. (iv) it proposes a resource allocation algorithm
which takes resource capacity, QoS and security policy into account. To the best
of our knowledge, there is no method in the literature that considers all these
points.

The rest of the paper is organized as follows: Sect.2 outlines the expres-
sion of security policy by CSC and CSPs with an exhaustive example. Section 3
illustrates the enforcement of security policy for VM allocation. Section 4 gives
an implementation integrated with our solution and evaluates four experiments.
Section 5 reviews existing proposals on cloud resource scheduling and security-
aware allocation solution. Section 6 concludes the paper and outlines future work.

2 Expression of Security Policy

2.1 SLA Contract Expression

To generate security policies for CSC and CSP, we suggest, as a first step, to spec-
ify a generic document, which describes the requirements for service capacity,
quality of service (QoS) and security constraint. SLA contract is such a docu-
ment used in service negotiation and management. Based on a well-formatted
template, CSP and CSC exchange their offers until reaching an agreement [2].
Among existing SLA specifications, we choose WS-Agreement because the for-
mat is open so that it can integrate various service parameters. Meanwhile,
WS-Agreement is widely used by lots of research and industrial projects such
as BREIN [3], IRMOS [4], and OPTIMIS [5]. Hence a WS-Agreement contract
consists of name, context, service terms, guarantee terms and negotiation con-
straints, CSC and CSP can integrate service capacity, QoS and security require-
ment in its structure.

In cloud computing, the CSP’s system can be viewed as a large pool of
interconnected physical hosts. We use HOST to present the finite set of hosts
from a CSP. Note that, VM and HOST may have multiple attributes each with
their own values and these attributes can be assigned either manually by a user
or automatically by the system. In terms of security requirement, as CSC and
CSPs do not know the information of each other, they express their security
constraints by attribute in Formulas1, 2 and 3.

permiSSion([Hattr,name : Hattr,value]a [Vattr,name : Vattr,value]) (1)

permiSSion([Hattr,name : Hattr,value]a [Uz]) (2)

separate(v;, vj) (3)
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In the three formulas, Hu¢tr name and Viier name indicate the attribute name of
HOST and VM respectively; Huitr vatue a0nd Vattr vaiue denote separately the
attribute value of HOST and VM; each of v;, v; represents a unique virtual
machine ID (VMID). Formulas 1 and 2 are used to specify the permission of
VM allocation: HOST(s) with attributes assigned is (are) permitted to deploy
VM(s). The difference is that in the first formula, the CSC specifies VM by
attribute and in the second formula, VMID is given directly. These two options
give the CSC more flexibility to express their security requirements. In addition,
the CSC declares the coexistence constraint by Formula 3: v; and v; can not
be allocated on the same HOST. Formula 4 is used by CSP to express the
deployment prohibition. Similar with Formula 2, HOST with HOSTID A, is not
permitted to deploy VM(s) assigned with attribute.

pT‘OhlemOn([hz], [Vatt'r,name : Vattr:ualue]) (4)

In an example that we will use throughout the paper, we consider an
DevOps [6] use case. DevOps is an emerged software development methodology
that enhances collaboration between development, quality assurance (QA) and
IT operations. Numerous companies are actively practicing DevOps since it aims
to help them to maximize the predictability, efficiency, security, and maintain-
ability of operational processes. Adoption of DevOps is being driven by many
factors including using public IaaS. Suppose that a software company has to
deploy 3 VMs (v1,v2,v3) in cloud for a development project. Each VM contains
its metadata such as properties, required volume, QoS specification and secu-
rity constraint. We suppose that each VM runs a project server and there exist
three types of VM: production (prod), development (dev), and test. prod server
runs live applications supporting the company’s daily business and the data is
public for e-business customers; dev server consists of development environment
thus developers with private right can access it; test server is used to conduct
software test between development and production phase and it is accessible by
testers with private login account. At the same time, there exist 2 CSPs (h1,h2)
and each has its own metadata such as price, location and state indicating if it
is certificated by security audit organizations. A readable illustration of VM and
HOST configuration is shown in Fig. 2.

2.2 Derivation of Security Policy

Security constraints need to be transformed to concrete security policies includ-
ing VMID and HOSTID. Here we suggest using the OrBAC [7] model which
supports the expression of permission and prohibition.

OrBAC in Brief. The OrBAC model is an extension of the role-based access
control (RBAC) [8] model. It defines a conceptual and industrial framework to
meet the needs of information security and sensitive communication and allows
the policy designer to define a security policy independently. The concept of
organization is fundamental in OrBAC. An organization is an active entity that
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Fig. 2. An DevOps use case of virtual resource allocation

is responsible for managing a security policy. Each security policy is defined for
an organization. The model is not limited to permissions, but also includes the
possibility to specify prohibitions and obligations. Besides, the security rules
do not apply statically but their activation may depend on contextual condi-
tions [9]. Context [10] is defined through logical rules and it can be combined in
order to express conjunctive context, disjunctive context and negative context.
An OrBAC policy is defined as: security_rule (organization, role, activ-
ity, view, context) where security_rule belongs to {permission, prohibition,
obligation}. Once a security policy has been specified at the organizational level,
it is possible to instantiate it by assigning concrete entities to abstract entities
by the predicates which assign a subject to a role, an action to an activity and an
object to a view. Meanwhile, all the operations are related to a specified context:

— empower(org, subject, role): in organization org, subject is empowered in role;

— consider(org, action, activity): in organization org, action implements activity;

— use(org, object, view): in organization org, object is used in view;

— hold(org, subject, action, object, context): in organization org, subject does
action on object in context.
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Based on the above definitions, a concrete permission policy could be derived by
the following rule?:

permission(org, role, activity, view, context)
A empower(org, subject, role) A consider(org, action, activity)
Ause(org, object, view) A hold(org, subject, action, object, context)

— Is_Permitted(subject, action, object)

From Security Constraint to OrBAC Policy. Derivation of OrBAC pol-
icy from security constraint requires policy mining technology which parses the
configured rules and automatically reaches an instance of high level model cor-
responding to the deployed policy. Most of the existing RBAC based mining
methods [11,12] generate abstract policy by taking concrete rules as input. How-
ever, in our scenario, both abstract and concrete rules should be derived from
attribute-based description. The following is the problem definition.

Definition 1. Policy Mining Problem

Given a set of attribute of Subject S (HOST), a set of attribute of Action A,
a set of attributes of Objects O (VM), and SAO_attr an attribute-based subject-
action-object assignment relation (Formulas 1, 2, 4), find a set of ROLES, a
subject-to-role assignment SR, a set of activity ACTIVITIES, an action-to-
activity assignment AA, a set of VIEWS, an object-to-view assignment OV
and RAVCROLESx ACTIVITIESx VIEWS, a many-to-many mapping of role-
to-activity-to-view assignment relation®.

Algorithm 1 explains the generation of permission policy. First of all, after
receiving contracts from CSC and CSPs, broker extracts the attribute informa-
tion of each VM and HOST then generates three kinds of structures as input: (1)
VM list: storing all the attributes of related VMs; (2) HOST list: storing all the
attributes of related HOSTSs; (3) VM security constraint list: storing all the secu-
rity constraints of CSC. After initialization of policy p, concrete action deploy is
assigned to a new activity (lines 2,3). Then the relevant HOSTID list ID_h_list
and relevant VMID list V M _v_list are generated from each term in VM security
constraint list ¢, (line 4-6). For example, the relevant HOSTID and VMID for
the security constraint permission([“certificate” : “true”], [“purpose” : “dev”])
are HOST1 and VM1. After finding the relevant VMID(s) and HOSTID(s), an
abstract permission with a new role currentRole and new view currentView
is created (line 7-9). Finally, all the HOSTIDs in ID_h_list are assigned to
currentRole and all the VMIDs in VM _v_list are assigned to currentView (line
10-15). The prohibition policy for CSP is generated in the same way by taking

2 A concrete prohibition policy Is_Prohibited(subject, action, object) could be derived
by the same way from prohibition(org, role, activity, view, context).

3 In this paper, all the rules share the same action (“deploy”), organization (“super-
Cloud”) and context (“default”). For reasons of simplicity, we do not illustrate orga-
nization and context in algorithm and policy.
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input of VM list, HOST list and HOST security constraint list. Step 1 in Fig. 2
demonstrates an example of permission and prohibition generation.

Algorithm 1. permissionGeneration(l,,ly, ¢,): permission policy generation
Input: VM list [,,, HOST list [, VM security constraint list ¢,
Output: OrBAC policy p
: Initiate p
p.activity < create new activity
p.consider( “deploy”, p.activity)
for c,; in ¢, do
ID_hlist «— get relevant HOSTID(s) from I
ID v list — get relevant VMID(s) from I,
p.currentRole <+ create new role for HOSTs in ID_h_list
p.currentView < create new view for VMs in I D _v_list
9:  p; < create permission: permission(p.currentRole, p.activiy, p.currentView)
10: for IDy; in ID_h_list do

11: p.empower(I Dy, p.currentRole)
12: end for

13: for ID,; in ID_v_list do

14: p.use(ID,;, p.currentView)

15: end for

16: end for

17: return p

3 Enforcement of Security Policy

3.1 QoS Filtering

Shown in Step 2 of Fig. 2, this process aims to disable the permission which
does not satisfy the QoS constraint. To this end, an evaluation between VM’s
performance requirements and HOST’s capacity will be conducted. For exam-
ple, in our scenario, QoS requirements contain the term of availability and the
deployment permission between VM2 and HOST1 is disabled.

3.2 Conflict Management

After generating OrBAC policies from security constraint and executing QoS
filtering, the broker aggregates permission rules of CSC and prohibition rules of
CSP like:

permission({h;},vi) (5)
prohibition(hj, {v;}) (6)

In Formula 5, each VM vy, has a set of hosts {h;} which allow it to be deployed
and in Formula 6, a set of VM {v;} are not permitted to deploy on the HOST
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h;. The rewriting of rules is used to detect conflicts between permissions and
prohibitions. A conflict corresponds to a situation where a subject HOST is both
permitted and prohibited to perform a given action deploy on a given object VM.
We divide conflicts into the following two types and for each type an allocation
solution is proposed.

Type I: Conflict With Concession Space. Defined in Formula 7, HOST
h; is permitted and prohibited simultaneously to deploy VM vy In fact, except
for hj, VM v, has other allocation solutions. In this case, we disable h; from
the allocation permissions of vy (Formula 8). For example, in step 3 of Fig.2,
permission({hi, ha},v3) and prohibition(hy,vs) belong to this type and the
solution is disabling permission(hy,vs).

conflict Typel (hj,vy) < permission({h;},vr) A prohibition(h;,{v})

Ahyefh) Aue{w) A [Nk 26 O

disable(permission(h;,vy)) < conflict Typel (h;, vy) (8)

Type II: Conflict Without Concession Space. Shown in Formula 9, com-
pared with the conflict of type I, the difference is that in Type II, except for h;,
VM v;, has no other deployment solutions. In this case, we adopt a priority based
approach proposed in [13] and introduce two labels p(h) and p(v) as priorities of
VM and HOST. p; < ps means that py has higher priority than p;. As virtual
resource allocation is related to different factors such as risk and trust, the pri-
orities could be predefined by users or determined by the broker. For example,
some of CSPs’ prohibitions can be disabled by the broker in case that the CSC
has a low risk score. Making decisions on priority is beyond the scope of this
paper and here we suppose that CSPs obtain higher priority to fulfill all their
security requirements. Thus, in Formula 10, the current conflict resolution is
disabling the permission of h,. For example, the solution for permission(hs,v1)
and prohibition(hs, v1) is disabling the former rule.

conflict Typell(h;,vi) < permission(h;,vy) A prohibition(h;,{v}) (9)
A hi=h; A vg € {v}
disable(permission(h;,vy)) < conflict_ Typell(h;,vi) A p(vg) < p(hi) (10)

3.3 Virtual Resource Allocation

The aim of previous steps is to generate the final VM allocation solution. Without
loss of generality, we demonstrate the generation of allocation solution from
security policy by considering the CSC’s preference on price. Algorithm 2 shows
the resource allocation process. It takes permission policy p, VM list I,, HOST
list I;, and separation constraint c as input and generates the deployment solution
which maps VMs to HOSTs. In each permission rule, VMID and a list of its
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possible target HOSTs are extracted (line 1-4). To satisfy the price preference
of CSC, the target HOSTs are ranked from low price to high price (line 5) thus
the one with the lower price will be chosen preferentially. The final deployment
solution depends on mainly two factors (line 9): (1) if the VM has coexistence
conflict with the VMs which have been already deployed on the HOST. (2) if the
HOST has enough volume to deploy the VM. Step 4 in Fig. 2 shows an example
of resource allocation.

Algorithm 2. resourceAllocation(p, 1y, ln, ¢): virtual machine allocation
Input: OrBAC permission p, VM list I,,, HOST list /;,, separation constraint ¢
Output: deployment solution

1: for each concrete rule r; in p do
2 if r; is active then
3 ID,; «— get object in 7;
4 ID_h_list < get all the HOSTIDs permitted for I D,; in r;
5: Rank ID_h_list from low price to high price
6 for IDy; in ID_h_list do
7 v; < get VM from [, by I D,;
8 h; < get HOST from I, by IDn;
9 if ID,; not in separation constraint c
and h; has enough volume for v;
and v; has not been allocated then

10: add (v; attaches host h;) to solution
11: end if

12: end for

13:  end if

14: end for

15: return solution

4 Implementation and Evaluation

SUPERCLOUD [14] is a European project which aims to support user-centric
deployments across multi-cloud and enable the composition of innovative trust-
worthy services. Its main objective is to build a security management architecture
and infrastructure to fulfill the vision of user-centric secure and dependable
clouds of clouds. One use case is developing a middle-ware layer between CSC
and CSPs and this middle-ware could allocate virtual resources on physical
infrastructures. In this context, there is a need to consider a multi-cloud envi-
ronment with security constraints. For example, virtual resources should not be
mapped to physical resources that do not comply with its security requirements;
physical resources should not deploy virtual resources that are potentially harm-
ful to its operation; or virtual resources should not coexist on the same physical
resource as another potentially malicious virtual resource [15].
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In order to implement and evaluate our virtual resource allocation framework,
we setup an IaaS cloud environment on a physical machine (Intel(R) Core(TM)
i7-4600U 2.7 GHz with 16 GB of RAM running Windows 7). Then different VMs
(2 cores and 2GB of RAM) are created on VirtualBox platform with Ubuntu
system. We now install DevStack [16] based cloud framework, a quick instal-
lation of OpenStack [17] ideal for experimentation. Each VM is regarded as a
physical HOST for the purpose of experimentation. At the same time, a JAVA
based program runs as cloud broker and it connects VirtualBox platform by
SSH protocol. The OrBAC policy is generated and managed by the JAVA-based
OrBAC API [18]. Figure 3 illustrates our experimental architecture.

Cloud Service Providers (CSPs)

———————————————————————— P e e P e e e

» SLAcontract = SLAcontract = SLAcontract

® ® ®

openstack l ubuntul WHSﬂ' ubunt_u‘ W’”Sﬂ' ubu@‘
Host 1 Host2 Hostn

— 2 7 ¥ N

1 | 1
OrBACAPI y N 0
1 I 1
1 1

<
b wvirtualBOI —————————————— )
-

Broker

OpenStack Nova API

Fig. 3. Implementation for virtual resource allocation

4.1 Experiment 1: Contract Processing

This experiment measures the duration for contract processing which is the
runtime required by the broker to process the JSON [19] based WS-Agreement
file and generates VM and HOST list. Since there does not exist a great difference
between SLA contracts of VM and HOST, here we measure contract processing
time for VMs. We vary the VM number from 0 to 125 and for each number we
randomly generate service attributes in different quantity from 5 to 20. Figure 4
shows the result. For a small scope of VM and attribute number, the runtime
is very low (30ms). The time increases with bigger scope of VM and attribute
number. The maximum duration of the experiment is less than 100ms which
indicates that the runtime is acceptable.

4.2 Experiment 2: Policy Generation

In the second experiment, we analyze the required time for OrBAC policy gener-
ation (Algorithm 1 for permission and similar algorithm for prohibition genera-
tion) once contracts are processed by the broker. In Fig. 5, we study the amount
of time the broker takes to generate security policies with increasing number of
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VM and HOST. For example, 60 as values in x-axis and y-axis indicates that
there exist 60 VMs and HOSTs and the corresponding value in z-axis (400 ms)
shows the short time needed to generate the OrBAC policies.

4.3 Experiment 3: Allocation Latency

Our third experiment investigates the impact of VM number and HOST number
on the execution time of Algorithm 2. In Fig. 6, VM and HOST number vary from
10 to 60. Given 60 as VM and HOST number, the allocation latency takes about
only 1s. In real case, as HOST number is limited, the estimation of allocation
latency is acceptable and it confirms the efficiency of our resource allocation
algorithm.

4.4 Experiment 4: Price

The experiment measures the cost for CSC after VM allocation. We generate
VMs randomly from 10 to 60 and configure 8 HOSTs. For simplicity, each HOST
is supposed to provide only one type of IaaS solution with price fixed from 0.02
dollars/hour to 0.08 dollars/hour?. Then we compare the total price between
two allocation solutions (Fig. 7). The first solution is Algorithm 2 which concerns
CSC’s price preference and the second solution does not consider it thus VMs are
allocated arbitrary on HOSTs. As a result, Algorithm 2 shows a great advantage
in reducing the deployment cost.

5 Related Work

Although virtual resource scheduling problems are NP-complete, it is well-
studied by the research community by proposing various heuristic and approx-
imate approaches for addressing different issues. Among three service mod-
els (SaaS, PaaS and IaaS) of cloud computing, virtual resource allocation in
TaaS cloud has been considered by some works in the literature. Some of these
works [20,21] focus on the capacity of CSP. In this case, some strategies like
immediate, best effort and Nash equilibrium [22] have been applied to alloca-
tion algorithm in order to optimize the deployment algorithm with constraints
such as QoS and energy [23]. Another effort is SLA-oriented resource manage-
ment [24]. Among lots of requirements of CSC, security is a critical issue to
be taken into account [25]. Bernsmed et al. [26] present a security SLA frame-
work for cloud computing to help potential CSCs to identify necessary protec-
tion mechanisms and facilitate automatic service composition. Berger et al. [27]

4 The prices are inspired from current cloud IaaS solution of Amazon EC2 and
Microsoft Azure. For example, in Amazon EC2, price for the instance of m4.xlarge
(4 cores, 16 GB RAM) is 0.239$/h and it costs 0.3088/h (4 cores, 7GB RAM) for
the instance of A3 in Microsoft Azure.
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take isolation constraint and integrity guarantee into consideration and imple-
ment controlled access to network storage based on security labels. In [28], dif-
ferent virtual resource orchestration constraints are resumed and expressed by
attribute-based paradigm. Regarding these constraints, a conflict-free strategy
is developed to mitigate risks in TaaS Cloud [29]. Most of above works have been
motivated from security requirements expressed by CSC. In [30], CSP speci-
fies its security requirements including forbid constraint which forbids a set of
VM instances from being allocated on a specified HOST. However, in multi-
cloud environment, as CSC and CSPs do not have vision of each other before
establishing contract, specifying security requirement can be very tricky for both
sides. The main focus of these efforts is scheduling VMs either for the purpose
of high-performance computing or satisfying security constraints according to
the requirements of CSC. Our approach is to capture security and non-security
requirement from both CSC and CSP, and apply a formal policy model to drive
virtual resource allocation.

6 Conclusion

In this paper, we have presented, formalized and enforced security requirement
for virtual resource allocation. We first present the SLA contracts for CSC and
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CSPs which contain service capacity, QoS and security constraint. We then trans-
form the attribute-based SLA contract to concrete OrBAC policies. Finally, we
allocate virtual resources after resolving conflicts in policies and demonstrate the
efficiency and reliability of our solution by OpenStack-based implementation.

In future works, we plan to investigate the decision making during the con-
flict resolution. Another potential direction is to develop a suitable front-end
application interface for SLA contract specification.
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