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Abstract. Due to measurement errors or interference noise, Kinect depth maps
exhibit severe defects of holes and noise, which significantly affect their applic‐
ability to stereo visions. Filtering and inpainting techniques have been extensively
applied to hole filling. However, they either fail to fill in large holes or introduce
other artifacts near depth discontinuities, such as blurring, jagging, and ringing.
The emerging reconstruction-based methods employ underlying regularized
representation models to obtain relatively accurate combination coefficients,
leading to improved depth recovery results. Motivated by sparse representation,
this paper advocates a similarity and position constrained sparse representation
for Kinect depth recovery, which considers the constraints of intensity similarity
and spatial distance between reference patches and target one on sparsity penalty
term, as well as position constraint of centroid pixel in the target patch on data-
fidelity term. Various experimental results on real-world Kinect maps and public
datasets show that the proposed method outperforms state-of-the-art methods in
filling effects of both flat and discontinuous regions.
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1 Introduction

Microsoft Kinect is a representative RGB-D sensor that has achieved great success in a
wide variety of vision related applications such as augmented reality, robotics, and
human-computer interactions. The performance of these applications largely depends
on the quality of acquired depth images. It has been observed that Kinect depth maps
suffer from various defects, including holes, wrong or inaccurate depth measurements,
and interference noise. Because the depth information is unavailable in holes and depth
discontinuities between objects should be preserved, the recovery of Kinect depth maps
has become a challenging problem.

Qi et al. [1] proposed a fusion based method using non-local filtering scheme for
restoring depth maps. He et al. [2] proposed a guided filter that can preserve sharp edge
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and avoid reversal artifacts when smoothing a depth map. Dakkak et al. [3] proposed an
iterative diffusion method which utilizes both available depth values and color segmen‐
tation results to recover missing depth information, but the results are sensitive to the
segmentation accuracy. In order to obtain more precise filter coefficients, Camplani
et al. [4] used a joint bilateral filter to calculate the weights of available depth pixels
according to collocated pixels in color image. Based on a joint histogram, Min et al. [5]
instead proposed a weighted mode filter to prevent the output depth values from being
blurred on the depth boundaries. However, filtering-based approaches often yield poor
results near the depth discontinuities, especially around the large holes.

Inpainting techniques seem more promising in depth hole filling than filtering, inter‐
polation and extrapolation algorithms. With an aligned color image, Liu et al. [6]
proposed an extended FMM approach [7] to guide depth inpainting. Structure-based
inpainting [8] fills the holes by propagating structure into the target regions via diffusion.
The diffusion process makes holes blurred, and texture is thus lost. Xu et al. [9] further
introduced the exemplar-based texture synthesis into structure propagation so that the
blurring effects can be somewhat avoided. In order to prevent edge fatting or shrinking
after hole inpainting, Miao et al. [10] used the fluctuating edge region in depth map to
assist hole completion. However, the missing depth values near the object contour are
directly assigned to the mean of available depth values in fluctuating edge region, which
is hence inaccurate for representing the depth contours.

Reconstruction-based methods apply image synthesis techniques to predict missing
depth values. Since the reconstruction coefficients are resolved in a closed-loop scheme
in terms of the minimization of residuals, higher hole-filling accuracy is achievable.
Chen et al. [11, 12] cast the depth recovery as an energy minimization problem, which
addresses the depth hole filling and denoising simultaneously. Yang et al. [13] proposed
an adaptive color-guided autoregressive (AR) model for high quality depth recovery,
where the depth recovery task is converted into a minimization of AR prediction errors
subject to measurement consistency.

Based on sparse representation, in this paper, we represent missing depth regions as
the linear combination of the surrounding available depth values, and establish a simi‐
larity and position constrained sparse representation (SPSR) to solve the optimal weights
with the help of the associated color image. SPSR comprises similarity-distance-
inducing weighted ℓ1 sparsity penalty term and position-inducing weighted data-fidelity
term, which thus not only readily grasps the salient features of depth image but also
considerably promotes representation accuracy.

2 Proposed Method

2.1 Problem Setup

In reconstruction-based methods, the missing depth value is recovered from the
surrounding available pixels around the target by a linear weighted combination repre‐
sentation. Let D(x) denote the missing depth at position x and {D(ym) | 1 ≤ m ≤ M}
denote all M known depth pixels at positions {ym | 1 ≤ m ≤ M} in a search window
centered at x. This procedure reads

Kinect Depth Holes Filling by Similarityand Position 379



D(x) =

M∑
m=1

w(ym)D(ym) (1)

where w(ym) is the coefficient of D(ym), reflecting the contribution of the available depth
value at position ym to the reconstruction. The key issue for successfully reconstructing
D(x) is to appropriately determine predictor coefficients.

Reconstruction coefficients are usually assigned by how similar surrounding pixels
are to the target pixel. Gaussian smoothing filter, bilateral filter [14] and non-local means
(NLM) [15] is able to obtain the coefficients.

However, the coefficients by the above mentioned methods are primarily responsible
for the distance or similarity between the nearby pixels and the target pixel, but neglect
the data fidelity in terms of the reconstruction error. In contrast, linear regression method
can resolve the coefficients by minimizing the error between reconstructed data and
observed data, whose solution is hence theoretically deduced rather than intuitively
assigned. Furthermore, since the lost depth pixels cannot provide a valid observation,
the objective of the linear regression is usually established on the basis of the color image
instead of the depth map.

2.2 Similarity and Position Constrained Sparse Representation

In formulating the objective regression function, if only the target pixel is represented
as a linear combination of surrounding pixels, the equation is too much under-deter‐
mined and is thus hard to address. Inspired by the NLM, we instead perform a patch-
wise regression analysis. Patches are centered on the target pixel to be recovered, where
all pixels instead of the single centroid pixel attend the regression.

Figure 1 illustrates the outline of our used framework, which consists of two major
phases: analysis phase and synthesis phase. The former fulfills patch-wise regression
analysis to obtain the linear combination coefficients in color space, and then the latter
reconstructs the missing counterpart depth with the available coefficients. To ensure that

Fig. 1. Outline of the analysis and synthesis framework in hole filling. Notations “I” and “D”
mean the color intensity of a certain patch and the depth of a certain pixel, respectively.
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the synthesis phase uses valid reference depth values, the corresponding depth pixel of
the centroid pixel in a reference patch should not be located at holes.

Let 𝐱 ∈ RN×1 be an observed patch, stacked into a N-dimensional column vector, and
𝐘 ∈ RN×M be a training set being composed of M nearby reference patches in a window,
whose m-th column consists of an individual reference patch 𝐘m. Without loss of gener‐
ality, the regularized linear regression reads:

𝐰∗ = arg min
𝐰

{||𝐱 − 𝐘𝐰||22 + 𝜆Ω(𝐰)
}

(2)

where 𝐰 ∈ RM×1 is an unknown coefficient vector, whose entries 𝐰i, i = 1, 2,… , M is
associated with an individual basis in training set. ||𝐱 − 𝐘𝐰||22 is the so-called data-
fidelity term, representing regression error (fitting error), and Ω(𝐰) is a prior related
penalty term. Typically, Ω(𝐰) = ‖𝐰‖1, corresponding to ℓ1 norm sparse representation;
or Ω(𝐰) = ||𝐰||22, corresponding to squared ℓ2 norm ridge regression. The penalty term
in the form of ℓ1 norm or squared ℓ2 norm promotes sparsity or smoothness of solution,
respectively. Parameter λ ≥ 0 is an appropriately chosen regularization factor, tuning
the tradeoff between the regression error and the penalization.

In a deep insight, the pixels belonging the same object nearly share equal depth
values, while pixels located in different objects often give quite distinct depth values.
From the perspective of the reconstruction of missing depth values, the surrounding
candidates in the same object should own larger weights than others. Thus, the recon‐
struction coefficients of depth maps are sparse in nature. In fact, sparsity priors have
been extensively exploited in previous works [16–18], which approach the problem of
depth inference by including a sparsity prior on local depth features. Therefore, we cast
the reconstruction of lost depth values as a sparsity representation problem, thus effi‐
ciently charactering the saliency of depth maps and adapting to the structure of depth
signals.

Bilateral filter considers spatial distance and intensity similarity in constructing
coefficients, yet irrespective of prediction residuals. Regression analysis, on the
contrary, considers fitting error, but completely ignores geometric distance and simi‐
larity. To make full use of the advantages offered by bilateral filter and regression anal‐
ysis, we intend to incorporate the metrics of distance and similarity into the regularized
objective function. Following this idea, one possible approach is to impose constraints
onto the weight penalty term. In this paper, we take ℓ1 norm SR and its weighted variant
on penalty term is expressed as:

𝐰∗ = arg min
𝐰

{||𝐱 − 𝐘𝐰||22 + 𝜆‖𝐡◦𝐰‖1
}

(3)

where “◦” denotes element-wise vector product and h is the weights preferring the
desirable properties of sparse solution w. Obviously, the large entries of h will result in
small entries of w. Therefore, if we specify h by the product of spatial distance and
intensity similarity, i.e., 𝐡 = 𝐝◦𝐬, then the reference patches being close and similar to
the target patch will be expected to take large coefficients. To be more precise, spatial
distance d is patch-wisely calculated by the Euclidean measure of the centroid

Kinect Depth Holes Filling by Similarityand Position 381



coordinates of target and reference patches. Suppose the target patch locates at (i, j) and
the m-th reference one locates at (k, l), then the m-th entry of d given by:

𝐝m =
√
(i − k)2 + (j − l)2 (4)

Intensity similarity s is obtained in terms of the Euclidean measure of the pixel values
in target patch and individual reference one:

𝐬m = ||𝐱 − 𝐘m||2 (5)

As illustrated in Fig. 1, although the coefficients are obtained for a whole patch
centered at the target color pixel, yet they are only applied to the reconstruction of the
centroid depth pixel rather than all pixels in a depth patch. Therefore, the centroid target
pixel should be given higher priority than other ones in computing the regression error.
In other words, the errors of centroid pixels in a patch should be overestimated while
those of the faraway pixels from patch center should be underestimated. If we use
weighting on errors to serve this purpose, the centroid pixels should be assigned larger
weights than others. Alternatively, the weights should be in inverse proportion to the
spatial intervals of the pixels to the centroid one. As usually done, weights derived from
Gaussian kernel function with respect to distance could be a better choice. Let p denote
the relative positions (in Euclidean distance) of any pixels to the centroid one, then the
weights read:

𝐤 = exp(−
𝐩2

2𝜎2 )
(6)

where 𝜎 is the decay of the exponential function. Obviously, the centroid pixel owns the
largest weight, namely, 1.

Incorporating the position weights k into the error term in Eq. (3), we have a refor‐
mulated equation as follows:

𝐰∗ = arg min
𝐰

{||𝐤◦(𝐱 − 𝐘𝐰)||22 + 𝜆‖𝐡◦𝐰‖1
}

(7)

which considers the spatial distance and similarity constraints on coefficients via
weighting penalty term, and the position constraint on regression errors via weighting
data-fidelity term.

Let K and H be diagonal weighting matrices with diagonal elements respectively
being k and h and elsewhere being zeros. Equation (7) can be rewritten as:

𝐰∗ = arg min
𝐰

{||𝐊(𝐱 − 𝐘𝐰)||22 + 𝜆‖𝐇𝐰‖1
}

(8)

||𝐇𝐰||1 is actually the weighted variant of ℓ1 norm. Let 𝐰′

= H𝐰, and thus
𝐰 = 𝐇−1𝐰

′, Eq. (8) can be turned into:

𝐰∗ = arg min
𝐰

{||𝐊(𝐱 − 𝐘𝐇
−1
𝐰

′

)||22 + 𝜆‖‖𝐰′‖‖1

}
(9)
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which can then be conveniently solved using the popular ℓ1 norm SR numerical algo‐
rithms. Reconstruction weights are firstly solved with Eq. (9) in the associated color
image and are then used to synthesize the missing depth values with Eq. (1).

3 Experiments and Results

In this section, we conduct experiments to evaluate the overall performance of the
proposed algorithm. The experimental datasets contain real-world Kinect depths
acquired by ourselves in door and public datasets from Middlebury RGB-D database
[19], which are respectively used for qualitative and quantitative evaluations. The
captured Kinect images are in a resolution of 480 × 640 while Middlebury datasets enjoy
a bit bigger size of 555 × 660. Three representative state-of-the-art methods, such as
Camplani’s joint bilateral filtering (JBF) [4], Liu’s color-guided FMM inpainting (GFI)
[6], and Yang’s adaptive autoregressive reconstruction (AAR) [13], are used for compar‐
isons on behalf of filter-based, inpainting-based and reconstruction-based methods,
respectively. For parameter settings, our method sets the size of search window to
21 × 21, the size of patch to 5 × 5, and parameter λ to 0.1. The individual parameters in
other methods are tuned to their best results according to [4, 6, 13].

3.1 Experiments on Real-World Kinect Depth Maps

In this subsection, our proposed similarity and position constrained ℓ1 sparse represen‐
tation is compared with the existing three methods: Camplani’s JBF [4], Liu’s GFI [6]
and Yang’s AAR [13]. To obtain real-world experimental samples, we captured indoor
images under normal lighting conditions using Kinect. Because of lack of ground truth,
we can only evaluate subjective effects. Two randomly selected results are shown in
Figs. 2 and 4.

Fig. 2. Recovered results by different methods. (a) Color image; (b) Original depth map; (c) JBF;
(d) GFI; (e) AAR; (f) Our method. (Color figure online)

Kinect Depth Holes Filling by Similarityand Position 383



As we can see from the recovered depth maps in Fig. 2, our method produces more
reasonable recovery than anchors around the depth boundaries. Particularly, as shown
in the highlighted regions, either JBF or GFI mistakes the holes between fingers in palm
and incorrectly fills in them with the foreground depth values. To observe the differences
more clearly, a local magnification version of the depth map in the highlighted palm
region is shown in Fig. 3. As shown in the highlighted regions, either JBF or GFI
mistakes the holes between fingers in palm and incorrectly fills in them with foreground
depth values. AAR gives closer outcomes to our method since they are both based on
reconstruction. Figure 4 shows an example where some large holes fail to be filled in
due to sharp depth discontinuities, but our method produces relatively more adequate
completion of the holes than anchors.

Fig. 3. A detailed comparison of marked palm area in Fig. 2. (a) Color image; (b) Original depth
map; (c) JBF; (d) GFI; (e) AAR; (f) Our method. (Color figure online)

Fig. 4. Recovered results by different methods where some regions fail to be filled. (a) Color
image; (b) Original depth map; (c) JBF; (d) GFI; (e) AAR; (f) Our method. (Color figure online)
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3.2 Experiments on Synthetically Degraded Datasets

In this subsection, we conduct another experiment on public datasets to comprehensively
evaluate the performance of our method. In quantitative experiments, ground truth depth
maps are needed to compute objective metrics, such as PSNR and SSIM (structural
similarity measure). Reference [13] supplies the synthetic datasets with Kinect-like
degradations from Middlebury’s benchmark [19], where structural missing is created
along depth discontinuities and random missing is generated in flat areas. We randomly
select three groups for evaluations, referred to as Art and Book, with each consisting of
a triple: a color image, an original depth map (as the ground truth), and an artificially
degraded depth. Figure 5 shows the color images, degraded depths and recovered results
by four methods. The quantitative results are then calculated against the ground truth
and are tabulated in Table 1.

Fig. 5. Subjective results of different methods on Middlebury datasets with synthetic
degradations. (a) Color image; (b) Degraded depth map; (c) JBF; (d) GFI; (e) AAR; (f) Our
method. (Color figure online)
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By a brief examination, all methods provide fine recovery performance for random
missing in flat regions, and their differences mainly lie in the sharp discontinuities within
missing areas. JBF and GFI produce annoying jaggy artifacts around depth discontinu‐
ities, particularly, at the side edge of the pot and the top edge of the book. But he results
of our method and AAR turns out much more natural. Meanwhile, subjective perform‐
ance variations roughly agree with statistics of the results reported in Table 1. In a more
bit careful inspection, the objective measures in Table 1 show that our method outper‐
forms AAR. This can be mainly attributed to the fact our method produces more optimal
reconstruction weights due to imposed similarity and position constraints. Again, our
method results in the best outcomes among four methods in the quantitative evaluation.

Table 1. Quantitative results of different methods on datasets with synthetic degradations.

Art Book
PSNR (dB) SSIM PSNR (dB) SSIM

JBF 29.1845 0.9442 26.5911 0.9416
GFI 29.6900 0.9451 26.7370 0.9433
AAR 30.1118 0.9581 26.8811 0.9471
Our 30.3104 0.9587 26.8854 0.9492

4 Conclusions

This paper has presented a similarity and position constrained sparse representation
method for filling in holes in the Kinect depth map. With the assistance of complemen‐
tary color image, the constraints of intensity similarity and spatial distance between
reference patches and target one are imposed on ℓ1 sparsity penalty term and the position
constraint of centroid pixel in the target patch is incorporated into data-fidelity term. In
contrast to standard sparse representation and squared ℓ2 norm ridge regression, the
developed sparse representation variant considering such similarity and position
constraints can provide more accurate coefficients to reliably predict lost depth pixels
at sharp boundaries. The results demonstrate that our method outperforms previous
approaches.
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