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Abstract In the last decade, counterparty default risk has experienced an increased
interest both by academics as well as practitioners. This was especially motivated
by the market turbulences and the financial crises over the past decade which have
highlighted the importance of counterparty default risk for uncollateralized deriv-
atives. After a succinct introduction to the topic, it is demonstrated that standard
models can be combined to derive semi-model-free tight lower and upper bounds on
bilateral CVA (BCVA). It will be shown in detail how these bounds can be easily
and efficiently calculated by the solution of two corresponding linear optimization
problems.

Keywords Counterparty credit risk · CVA · Tight bounds · Mass transportation
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1 Introduction

Events such asLehman’s default have drawn the attention to counterparty default risk.
At the very latest after this default, it has become obvious to all market participants
that the credit qualities of both counterparties—usually a client and an investment
bank—need to be considered in the pricing of uncollateralized OTC derivatives.
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Over the past years, several authors have been investigating the pricing of deriva-
tives based on a variety of models which take into account these default risks. Most
of these results are covered by a variety of excellent books, for example Pykhtin [16],
Gregory [12], or Brigo et al. [7] just to name a few. For a profound discussion on the
pros and cons of unilateral versus bilateral counterparty risk let us refer to the two
articles by Gregory [11, 13].

In the following exposition, we are concerned with the quantification of the small-
est and largest BCVAwhich can be obtained by any given model with predetermined
marginal laws. This takes considerations of Turnbull [21] much further, who first
derived weak bounds on CVA for certain types of products. Our approach extends
first ideas from Hull and White [15], where the hazard rate determining defaults
is coupled to the exposure or other risk factors in either deterministic or stochastic
way. Still, Hull and White rely on an explicit choice of the default model and on
an explicit coupling. More related is the work by Rosen and Saunders et al. [8, 17],
on which we prefer to comment later in Remark8. As the most related work we
note the paper by Cherubini [9] which provided the basis for this semi-model-free
approach. There, only one particular two-dimensional copula was used to couple
each individual forward swap par rate with the default time. Obviously, a more gen-
eral approach couples each forward swap par rate with each other and the default
time—which is in gist similar to Hull andWhite [15]. From there the final step to our
approach is to observe that the most general approach directly links the whole sto-
chastic evolution of the exposure with both random default times. We will illustrate
in the following that these couplings can be readily derived by linear programming.
For this purpose the BCVAwill be decomposed into three main components: the first
component is represented by the loss process, the second component consists of the
default indicators of the two counterparties and the third component is comprised of
the exposure-at-default of the OTC derivative, i.e. the risk-free present value of the
outstanding amount1 at time of default. This approach takes further early consider-
ations of Haase and Werner [14], where comparable results were obtained from the
point of view of generalized stopping problems.

In a very recent working paper by Scherer and Schulz [18], the above idea was
analyzed in more detail. It was shown that the computational complexity of the
problem is the same, no matter if only marginal distributions of defaults or the joint
distribution of defaults are known.

After submission of this paper we became aware of related results by Glasserman
and Yang, see [10]. Although the main idea of their exposition is similar in gist,
Glasserman and Yang focus on the unilateral CVA instead of bilateral CVA. Besides
an analysis of the convergence of finite samples to the continuous setup, their exposi-
tion is mainly focused on the penalization of deviation from some base distribution.
In contrast, our focus is on bilateral CVA, with special attention to numerical solution
and to the case that payoffs also depend on the credit quality.

1In accordance with the full two-way payment rule under ISDA master contracts, see e.g. Bielecki
and Rutkowski [2] (Sect. 14.4.4), we assume that the close-out value is determined by the then
prevailing risk-free present value.
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In summary, this exposition makes the following main contributions:

• First, the three main building blocks of such an adjustment are clearly identified
and separated, and it is shown how any coupling of these blocks leads to a feasible
adjustment. Unlike Cherubini, who only considered the very specific case of an
interest rate swap, all kinds of derivatives (interest rate, FX, commodity, and even
credit derivatives) are covered in a unified way—even if the payoff, and thus the
present value of the derivative, is explicitly depending on the credit quality of any
of the two counterparties.

• Second, by generalizing Cherubini’s approach, upper and lower bounds on
unilateral and bilateral counterparty value adjustments are derived. It will be
demonstrated that these bounds can be efficiently obtained by the solution of linear
optimization problems, more specifically, by the solution of balanced transporta-
tion problems. In contrast to the approaches of Turnbull [21] or Cherubini [9], both
the upper and lower bound derived here are tight bounds, i.e. there exists some
stochastic model which is consistent with all given market prices in which these
bounds are attained.

The rest of the paper is organized as follows. In Sect. 2 a succinct introduction to
bilateral counterparty risk is given, before the decomposition of the BCVA into its
building blocks is carried out in Sect. 3. In Sect. 4 the two main approaches for the
calculation of counterparty valuation adjustments are briefly reviewed. Finally, the
tight bounds on CVA are derived in Sect. 5, before the paper concludes.

2 Counterparty Default Risk

As usual, to model financial transactions with default risk, let (Ω,G ,Gt,Q) be a
probability space where Gt models the flow of information and Q denotes the risk-
neutral measure for a given risk-free numéraire process Nt > 0, see e.g. Bielecki
and Rutkowski [2] for more details. Further, let the space be endowed with a right-
continuous and complete sub-filtration Ft modeling the flow of information except
default, such thatFt ⊆ Gt := Ft ∨ Ht withHt being the right-continuous filtration
generated by the default events.

Subsequently, we consider a transaction with maturity T between a client A and
a counterparty B where both are subject to default. The respective random default
times are denoted by τA and τB. In order to take into account counterparty default
risk we distinguish three cases:

• neither A nor B defaults before T : D0 := {τA > T} ∩ {τB > T},
• A defaults before B and before T : DA := {τA ≤ T} ∩ {τA ≤ τB},
• B defaults before A and before T : DB := {τB ≤ T} ∩ {τB ≤ τA}.
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For simplicity of presentation, we assume in the following thatQ[τA = T ] = Q[τB =
T ] = Q[τA = τB] = 0. Under this assumption these sets2 yield a decomposition of
one, i.e. it holds

1D0 + 1DA + 1DB = 1 Q-almost-surely.

In the following, let us consider a transaction consisting of cash flows C(B,A,Ti)
paid by the counterpartyB at times Ti, i = 1, . . . ,mB, and cash flowsC(A,B,Tj) paid
by the client A at times Tj, j = 1, . . . ,mA. Taking into account default risk of both
counterparties, the quantification of the bilateral CVA is summarized in the following
well-known theorem, which in essence goes back to Sorensen and Bollier [19].

Theorem 1 Conditional on the event {t < min(τA, τB)}, i.e. no default has occurred
until time t, the value VD

A (t,T) of the transaction under consideration of bilateral
counterparty risk at time t is given by

VD
A (t,T) = VA(t,T) − CVAA(t,T) = −(

VB(t,T) − CVAB(t,T)
) = −VD

B (t,T)

where the risk-free present value of the transaction is given as

VA(t,T) = E

[
mB∑

i=1

Nt

NTi

· C(B,A,Ti)

∣∣∣∣∣
Ft

]

− E

⎡

⎣
mA∑

j=1

Nt

NTj

· C(A,B,Tj)

∣∣∣∣∣∣
Ft

⎤

⎦

= −VB(t,T)

and where the bilateral counterparty value adjustment CVAA(t,T) is defined as

CVAA(t,T) :=E

[
1DB · Nt

NτB

· LB
τB

· max(0, VA(τB,T)) |Gt

]

− E

[
1DA · Nt

NτA

· LA
τA

· max(0, VB(τA,T)) |Gt

]

= − CVAB(t,T). (1)

Here Li
t denotes the random loss (between 0 and 1) of counterparty i at time t.

Proof A proof of Theorem 1 can be found in Bielecki and Rutkowski [2], Formula
(14.25) or Brigo and Capponi [4], Proposition 2.1 and Appendix A, respectively.

Based on Theorem 1, the general approach for the calculation of the counterparty
risk adjusted value VD

A (t,T) is to determine first the risk-free value VA(t,T) of the
transaction. This can be done by any common valuation method for this kind of
transaction. In a second step the counterparty value adjustment CVAA(t,T) needs to
be determined. So far, two main approaches have emerged in the academic literature,
which will be briefly reviewed in Sect. 4.

2We note that Brigo et al. (in [4, 6]) use different sets to order the default times, which are in essence
reducible to the above three events.
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3 The Main Building Blocks of CVA

Subsequently, let us assume that the default times τi with i ∈ {A,B} can only take a
finite number of values {t̄1, . . . , t̄K} in the interval ]0,T [. For continuous timemodels
this assumption can be justified by the default bucketing approach, which can, for
example, be found in Brigo and Chourdakis [5], if K is chosen sufficiently large.
To be able to separate the default dynamics from the market value dynamics, let us
introduce the auxiliary time s, s ∈ [t,T ] and the discounted market value

Ṽ+
i (t, s,T) := Nt

Ns
· max(0, Vi(s,T)).

Then we can rewrite Eq. (1) as:

CVAA(t,T) = E

[
K∑

k=1

LB
t̄k

· 1DB · 1t̄k (τB) · Ṽ+
A (t, t̄k,T) |Gt

]

(2)

−E

[
K∑

k=1

LA
t̄k

· 1DA · 1t̄k (τA) · Ṽ+
B (t, t̄k,T) |Gt

]

.

Here,1M is the indicator function of the setM; ifM = {m}we simplywrite1m instead.
Now, collecting all terms relating to the default in the default indicator process δ,

δik := 1Di · 1t̄k (τi),

we can rewrite the BCVA in a more compact manner as

CVAA(t,T) = E

[
K∑

k=1

LB
t̄k

· δBk · Ṽ+
A (t, t̄k,T) |Gt

]

(3)

−E

[
K∑

k=1

LA
t̄k

· δAk · Ṽ+
B (t, t̄k,T) |Gt

]

.

From Eq. (3) we immediately see that the BCVA at time t is composed of six discrete
time3 processes:

• two default indicator processes δAs and δBs ,
• two loss processes LA

s and LB
s , and

• two discounted exposure processes Ṽ+
A (t, s,T) and Ṽ+

B (t, s,T).

In this way, we are able to separate the default dynamics δ from the loss process L
and the exposure process Ṽ . From this decomposition, it becomes obvious that the
BCVA is completely determined by the joint distribution of these six processes.

3In the following, we replace the time index t̄k with k for notational convenience.
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Remark 1 We note that in general it is even sufficient to model four processes
(loss dynamics and market value dynamics) plus a two-dimensional random variable
(τA, τB). However, in the case of finitely many default times, it is more convenient
to work with the default indicator process instead.

Remark 2 For simplicity of the subsequent exposition, we assume that the loss
process is actually constant and equals 1: Li

t = li = 1. The theory of the remainder
of this exposition is not affected by this simplifying assumption, with one notable
exception: the resulting two-dimensional transportation problems will become a
multi-dimensional transportation problemwhich renders its numerical solutionmore
complex, but still feasible.

Remark 3 As we have noted, the default indicator process can only take a finite
number of values in the bucketing approach. More exactly, it holds that the joint (i.e.
two-dimensional) default indicator process δ = (δk)k=1,...,K ∈ R

2×K , defined by

δk :=
(

δAk
δBk

)
, k = 1, . . . ,K,

takes only values in the finite set

Y :=
⎧
⎨

⎩
γ ∈ R

2×K | γi,k ∈ {0, 1},
∑

i,k

γi,k ≤ 1

⎫
⎬

⎭

which has exactly 2K + 1 elements. Therefore, the discrete time default indicator
process is also a process with a finite state space.

Let us further introduce the joint exposure process in analogy to the above,

Xk :=
(
Ṽ+
A (t,t̄k ,T)

Ṽ+
B (t,t̄k ,T)

)
, k = 1, . . . ,K .

Then it holds

CVAA(t,T) =
K∑

k=1

(
E

[
δBk · XA

k |Gt
] − E

[
δAk · XB

k |Gt
])

. (4)

To avoid technical considerations for brevity of presentation, we prefer to work
with discrete processes (i.e. discrete state space) in discrete time. Thus, it may be
necessary to discretize the state space of the remaining discounted exposure process.
In general, there exist (at least) two different approaches how a suitable discrete state
space version of the process X could be obtained:

• In the first approach—completely similar to the default bucketing approach—
the state space R

2×K for the joint exposure process X is divided into N disjoint
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components. Then X is replaced by some representative value on this component
(usually an average value) on each of the components, and the probabilities of the
discretized process are set in accordance with the original probabilities of each
component (cf. the default bucketing approach).

• From a computational and practical point of view, a much more convenient
approach relies on Monte Carlo simulation: N different scenarios (i.e. realiza-
tions) of the process X are used instead of the original process. Each realization is
assumed to have probability 1/N .

For both approaches it is known that they converge at least4 in distribution to the
original process, which is sufficient for our purposes. For more details on the con-
vergence, let us refer to the recent working paper by Glasserman and Yang [10].

4 Models for Counterparty Risk

In the last decade two main approaches have emerged in the literature how to model
the individual, resp. joint distribution of the processes δ and X:

• The most popular approach is based on the rather strong assumption of indepen-
dence between exposure and default. Based on this independence assumption, only
individual models for δ and X need to be specified for the CVA calculation. This
kind of independence assumption is quite standard in the market, see for example
the Bloomberg CVA function (for more details on the Bloomberg model let us
refer to Stein and Lee [20]).

• Alternatively, andmore recently, amore general approach is based on a jointmodel
(also called hybrid model) for the building blocks δ and X of the CVA calculation,
see Sect. 4.3.

4.1 Independence of CVA Components

Let us assume that the exposure process X is independent of the default process δ.
Then the expectation inside the summation can be split into two parts:

K∑

k=1

E
[
δBk · XA

k |Gt
] =

K∑

k=1

E
[
δBk |Gt

] · E [
XA
k |Gt

]
. (5)

4The Monte Carlo approach converges in distribution due to the Theorem of Glivenko–Cantelli.
For state space discretization, if for example conditional expectations are used on each bucket, then
convergence is in fact almost surely and in L1 due Lévy’s 0–1 law.
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It is well known that the expected value

E
[
XA
k |Gt

] = E
[
Ṽ+
A (t, t̄k,T)

∣∣Gt
] = E

[
Nt

Nt̄k

· max(VA(t, t̄k,T), 0)

∣
∣∣∣Ft

]
(6)

matches exactly the price of a call option on the basis transaction at time t with strike
0 and exercise time t̄k . The CVA equation can hence be rewritten as

CVAA(t,T) =
K∑

k=1

(
E

[
δBk |Gt

] · E [
XA
k |Gt

] − E
[
δAk |Gt

] · E [
XB
k |Gt

])
, (7)

and thus the BCVA can be calculated without any further problems as the corre-
sponding default probabilities5 E

[
δBk |Gt

] = Q [τB ∈ Δk, τB ≤ τA|Gt] can be easily
computed from any given credit risk model: in order to calculate the probability
Q [τB ∈ Δk, τB ≤ τA|Gt], the default times τA and τB together with their dependence
structure have to be modeled. One of the most popular models for default times in
general are intensity models, as for example described in Bielecki and Rutkowsi [2],
Part III.

Remark 4 It has to be noted that a model with deterministic default intensities plus
a suitable copula is sufficient for the arbitrary specification of the joint distribution
of default times. Stochastic intensities do not add any value in this context. This is
true as long as the default risk-free discounted present value is independent of the
credit quality of each counterpart. This means that the payoff itself is not allowed to
be linked explicitly to the credit quality of any counterparty.

Remark 5 Let us point out that the intensity model is just one specific example
how default times could be modeled. The big advantage of our approach is that any
arbitrary credit risk model can be used instead, as only the distribution of the default
indicator δ finally matters. In case only marginal default models are available, we
can also take into account the remaining unknown dependence between the default
times, however, at the price of a higher dimensional transportation problem.

4.2 Modeling Options on the Basis Transaction

Since it could be observed in Eq. (6) that options on the basis transaction need to be
priced, a suitable model for this option pricing task needs to be available. Depending
on the type of derivative, any model which can be reasonably well calibrated to
the market data is sufficient. For instance, for interest rate derivatives, any model
ranging from a simple Vasicek or CIR model to sophisticated Libor market models
or two-factor Hull–White models could be applied. In case of a credit default swap,

5With Δk :=]t̄k−1, t̄k] if the default bucketing approach has been used, otherwise Δk := {t̄k}.
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any model which allows to price CDS options, i.e. any model with stochastic credit
spreadwould be feasible. However, for CVAcalculations, usually a trade-off between
accuracy of the model and efficiency of calculations needs to be made. For this
reason, usually simplermodels are applied forCVAcalculations than for other pricing
applications. It needs to be noted that since the financial market usually provides
sufficiently many prices of liquid derivatives, any reasonable model can be calibrated
to these market prices, and therefore, we can assume in the following that the market
implied distribution of the discounted exposure process is fully known and available.

4.3 Hybrid Models—An Example

Anotherway to calculate theCVA is to use a so-called hybrid approachwhichmodels
all the involved underlying risk factors. Instances of such models can for example be
found in Brigo and Capponi [4] for the case of a credit default swap, or Brigo et al. [6]
for interest rate derivatives. In Brigo et al. [6], an integrated framework is introduced,
where a two-factor Gaussian interest-rate model is set up for a variety of interest rate
derivatives6 in order to deal with the option inherent in the CVA. Further, tomodel the
possible default of the client and its counterparty their stochastic default intensities are
given as CIR processes with exponentially distributed positive jumps. The Brownian
motions driving those risk factors are assumed to be correlated. Additionally, the
defaults of the client and the counterparty are linked by a Gaussian copula.

In summary, the amount of wrong-way risk which can be modeled within such
a framework strongly depends on the model choice. If solely correlations between
default intensities (i.e. credit spreads) and interest rates are taken into account, only
a rather weak relation will emerge between default and the exposure of interest rate
derivatives, cf. Brigo et al. [6]. Figure5 in Scherer and Schulz [18] provides an
overview of potential CVA values for different models which illustrates that models
can differ quite significantly.

5 Tight Bounds on CVA

From the previous section it becomes obvious that hybrid models yield different
CVAs depending on the (model and parameter implied) degree of dependence
between default and exposure. However, it remains unclear how large the impact
of this dependence can be. In other words: Is it possible to quantify, how small or
large the CVA can get for any model, given that the marginal distributions for expo-

6Although this modeling approach is a rather general one, it has to be noted that it links the
dependence on tenors of swaption volatilities to the form of the initial yield curve. Therefore, the
limits of such an approach became apparent as the yield curve steepened in conjunction with a
movement of the volatility surface in the aftermath of the beginning of financial crisis in 2008,
when these effects could not be reproduced by such a model.
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sure and default are already given? In the following, wewant to address this question
based on our initially given decomposition of the CVA in building blocks.

As mentioned in Sect. 4.2, we can reasonably assume that the distribution of
the exposure process X is already completely determined by the available market
information. In a similar manner, we have argued that also the distribution of the
default indicator process δ can be assumed to be given by the market. Nevertheless,
let us point out that the following ideas and concepts could indeed be generalized to
the case that only the marginal distributions of the default times are known. Further,
we can even consider the case that the dependence structure between different market
risk factors is not known but remains uncertain. However, all these generalizations
come at the price that the resulting two-dimensional transportation problem will
become multi-dimensional.

For the above reasons, we argue that the following approach is indeed semi-model-
free in the sense that no model needs to be specified which links the default indicator
process with the discounted exposure processes.

5.1 Tight Bounds on CVA by Mass Transportation

Let us reconsider Eq. (4) and let us highlight the dependence of the BCVA on the
measure P.

CVAP
A(t,T) =

K∑

k=1

(
EP

[
δBk · XA

k |Gt
] − EP

[
δAk · XB

k |Gt
])

.

With some abuse of notation, the measure P denotes the joint distribution of the
default process δ and the exposure processX. Since both processes havefinite support,
P can be represented as a (2K + 1) × N matrix with entries in [0, 1]. We note that the
marginals of P, i.e. the distributions of δ and X (denoted by the probability vectors
p(X) ∈ R

N and p(δ) ∈ R
2K+1) are already predetermined from the market. Therefore,

P has to satisfy
1�P = p(X), and P1 = p(δ).

Remark 6 In case of independence between δ and X, P is given by the product
distribution of δ andX,whereas in hybridmodels the joint distributionP is determined
by the specification and parametrization of the hybridmodel. In the independent case,
P is hence given by the dyadic product

P = p(δ)p(X)�.
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Obviously, the smallest and largest CVA which can be obtained by any P which is
consistent with the given marginals, is given by

CVAl
A(t,T) := min

P∈P
CVAP

A(t,T),

CVAu
A(t,T) := max

P∈P
CVAP

A(t,T),

where
P := {P ∈ [0, 1](2K+1)×N | 1�P = p(X), P1 = p(δ)}.

It can be easily noted that the setP is a convex polytope. Thus, the computation of
CVAl

A(t,T) and CVAu
A(t,T) essentially requires the solution of a linear program, as

the objective functions are linear in P.

Remark 7 The structure of the above LPs coincides with the structure of so-
called balanced linear transportation problems. Transportation problems constitute
a very important subclass of linear programming problems, see for example Bazaraa
et al. [1], Chap. 10, for more details. There exist several very efficient algorithms for
the numerical solution of such transportation problems, see also Bazaraa et al. [1],
Chaps. 10, 11 and 12.

Let us summarize our results in the following theorem:

Theorem 2 Under the given prerequisites, it holds:

1. CVAl
A(t,T) ≤ CVAA(t,T) ≤ CVAu

A(t,T).
2. These bounds are tight, i.e. they represent the lowest and the highest CVA which

can be obtained by any (hybrid) model which is consistent with the market data
and there exists at least one model which reaches these bounds.

The tightness of our bounds is in contrast to Turnbull [21], where only weak bounds
were derived. Of course, bounds always represent a best-case and a worst-case esti-
mate only, which may strongly under- and overestimate the true CVA.

Remark 8 We note that a related approach of coupling default and exposure via
copulas was presented by Rosen and Saunders [17] and Crepedes et al. [8]. However,
their approach differs from ours in some significant aspects. First, exposure scenarios
are sorted by a single number (e.g. effective exposure) to be able to couple exposure
scenarios with risk factors of defaults by copulas. Second, risk factors of some credit
riskmodel are employed instead of workingwith the default indicator directly. Third,
their approach is restricted to the real-world setting and does not consider restrictions
on the marginal distributions in the coupling process, which is e.g. necessary if
stochastic credit spreads should be considered.
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5.2 An Alternative Formulation as Assignment Problem

For the above setupwehave assumed that the probabilities for all possible realizations
of the default indicator process could be precomputed from a suitable default model.
If for somedefaultmodel this should not be the case, but only scenarios (with repeated
outcomes for the default indicator) could be obtained by a simulation, an alternative
LP formulation could be obtained. In such a scenario setting, it is advisable that
for both Monte Carlo simulations, the same number N of scenarios is chosen. Then
for both given marginal distributions we have p(δ)

j = p(X)
i = 1/N . If we apply the

same arguments as above we obtain again a transportation problem, however, with
probabilites 1/N each. If we have a closer look at this problem, we see that the
optimization actually runs over all N × N permutation matrices—since each default
scenario is mapped onto exactly one exposure scenario. This means that this problem
eventually belongs to the class of assignment problems, for which very efficient
algorithms are available, cf. Bazaraa et al. [1]. Nevertheless, please note that although
assignment problems can be solved more efficiently than transportation problems, it
is still advisable to solve the transportation problemdue to its lower dimensionality, as
usually 2K + 1 � N (i.e. time discretization is usually much coarser than exposure
discretization). However, if stochastic credit spreads have to be considered, they have
to be part of the default simulation and thus assignment problems (with additional
linear constraints to guarantee consistency of exposure paths and spreads) become
unavoidable.

6 Example

6.1 Setup

To illustrate these semi-model-free CVA bounds let us give a brief example. For this
purpose let us consider a standard payer swap with a remaining lifetime of T = 4
years analyzed within a Cox–Ingersoll–Ross (CIR) model at time t = 0. The time
interval ]0, 4[ is split up into K = 8 disjoint time intervals each covering half a year.
For simplicity, the loss process is again assumed to be 1.

6.1.1 Counterparty’s Default Modeling

Tomodel the defaults we have chosen the well-known copula approach with constant
intensities using the Gaussian copula. For further analyses in this example we will
focus on the case of uncorrelated counterparties (ρ = 0) and highly correlated coun-
terparties (ρ = 0.9). Furthermore, the counterpartys’ default intensities are assumed
to be deterministic.Wewill distinguish between symmetric counterparties with iden-
tical default intensities and asymmetric counterparties. Thus, four different settings
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Fig. 1 Probabilities EQ[ δik] in % for Case 1 to Case 4

result: Fig. 1 shows the probabilities Q[ δik = 1] = EQ[ δik] in each of the four cases
under the risk-neutral measure Q implied from the market. To be in line with the
following figures, the probabilities for a default of counterparty B inΔk , i.e. EQ[ δBk ],
correspond to the positive bars and defaults of counterparty A to the negative bars.
The left plots show identical counterparties (cases 1 and 2) and the right ones the
cases, where counterparty B has a higher default intensity (cases 3 and 4). Further-
more, the upper plots correspond to uncorrelated defaults and for the ones below we
have ρ = 0.9.

Case 1: symmetric, uncorrelated λA = 150 bps λB = 150 bps ρ = 0
Case 2: symmetric, correlated λA = 150 bps λB = 150 bps ρ = 0.9
Case 3: asymmetric, uncorrelated λA = 150 bps λB = 300 bps ρ = 0
Case 4: asymmetric, correlated λA = 150 bps λB = 300 bps ρ = 0.9
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Fig. 2 Expected exposures
EQ

[
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k

]
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Table 1 EQ
[
XA
k

]
and EQ

[
XB
k

]
in basis points

k 1 2 3 4 5 6 7 8

EQ[XA
k ] in bp 49.2 59.2 60.1 55.2 45.9 33.4 17.9 0

EQ[XB
k ] in bp 48.9 58.5 59.1 54.2 45.1 32.6 17.5 0

6.1.2 Counterparty Exposure Modeling

As already mentioned, a simple CIR model is applied for the valuation of the payer
swap. Since our focus is on the coupling of the default and the exposure model, we
have opted for such a simple model for ease of presentation. In the CIR model, the
short rate rt follows the stochastic differential equation

drt = κ(θ − rt)dt + σ
√
rtdWt

where (Wt)t≥0 denotes a standard Brownian motion. Instead of calibrating the para-
meters to market data (yield curve plus selected swaption prices) on one specific day,
we have set the parameters in the following way

κ = 0.0156, θ = 0.0311, σ = 0.0313, r0 = 0.030

to obtain an interest rate market which is typical for the last years. Considering now
the discounted exposure of each counterparty within the discrete time framework of
our example, we can easily compute EQ

[
Xi
k

]
as the average of all generated scenar-

ios from a Monte Carlo simulation. Figure2 illustrates the results of a simulation,
which are also given in Table1. Positive bars correspond toEQ

[
XA
k

]
, negative bars to

EQ
[
XB
k

]
, and the small bars correspond to EQ[ṼA(tk,T)]. Since payer and receiver

swap are not completely symmetric instruments, there remains a residual expectation,
as can be observed from Fig. 2.
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Fig. 3 Minimal and maximal CVAA, EQi

[
δBk · XA

k |Gt
]
and −EQi

[
δAk · XB

k |Gt
]
in bps

6.2 Results

In case of independence between default and exposure, the bilateral CVA is easily
obtained by multiplying the default probabilities (as shown in Fig. 1) with the cor-
responding exposures (as shown in Fig. 2) and summation. Besides the independent
CVAi, the minimal and maximal CVAl and CVAu have been calculated as well.

The results of these calculations are illustrated in Fig. 3 and Table2 for each time
intervalΔk . Analogously toFig. 1wehave for each of the four cases a separate subplot
and the left plots belong again to cases 1 and 2. The positive bars now correspond
to EQi

[
δBk · XA

k

]
and the negative ones to EQi

[
δAk · XB

k

]
. In the case of the minimal

CVA, EQl

[
δBk · XA

k

]
vanishes, meaning that for counterparty A in case of a default

of counterparty B the exposure is zero, as the present value of the swap at that time
is negative from counterparty A’s point of view. Contrarily, for the maximal CVA,
EQu

[
δAk · XB

k

]
is zero. Here, Qu, Ql, and Qi denote the optimal measures for the

maximal, the minimal, and the independent CVA, respectively. As expected there
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Table 3 Computation times for the two-dimensional transportation problem

K 10 20 20 20

N 1024 1024 2048 4096

Time in seconds 0.2 0.5 1.5 6

are large gaps between the lower and the independent CVA, as well as between
the independent CVA and the upper bound. This means that wrong-way risk (i.e.
higher exposure comes with higher default rates) can have a significant impact on
the bilateral CVA. Interestingly, this observation holds true for all four cases, of
course, with different significance depending on the specific setup. Although it is
clear that our analysis naturally shows more extreme gaps than any hybrid model, it
has to be mentioned that these bounds are indeed tight.

6.3 Computation Time, Choice of Algorithm,
and Impact of Assumptions

Theoretically, the computation of the bounds boils down to the solution of a linear
programming problem. From this it can be expected that state-of-the-art solvers like
CPLEX or Gurobi will yield the optimal solution within reasonable computation
time.UsingCPLEX,we have obtained the following computation times on a standard
workstation (Table3).

It can be observed that the problem can be solved for reasonable discretization
levels within decent time. Rather similar computation times have been obtained with
an individual implementation of the standard network simplex based on Fibonacci
heaps. However, for larger sizes, the performance of standard solvers begins to dete-
riorate. To dampen the explosion of computation time, we have resorted to a special
purpose solver for min cost network flows (which are a general case of the trans-
portation problem) for highly asymmetric problems, as in our case 2K + 1 � N .
Based on Brenner’s min cost flow algorithm, see Brenner [3], we could still solve
problems with K = 40 and N = 8192 beneath a minute.

If one has to resort to the assignment formulation (to consider credit spreads
accordingly), computation times increase due to the fact that now assignment prob-
lems have to be solved. Here, a factor 100 compared to the above computation times
cannot be avoided.

If the coupling of the twodefault times is left flexible, the problembecomes a trans-
portationproblemwith threemargins, i.e. of sizeK + 1 × K + 1 × N . For these types
of problems, no special purpose solver is available and one has to resort to CPLEX.
Scherer and Schultz [18] have exploited the structure of this three-dimensional trans-
portation problem to reduce computational complexity. They were able to reduce the
problem to a standard two-dimensional transportation problem, hence rendering the
computation of bounds similarly easy, no matter if default times are already coupled
or not.
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7 Conclusion and Outlook

In this paper we have shown how tight bounds on unilateral and bilateral counter-
party valuation adjustment can be derived by a linear programming approach. This
approach has the advantage that simulations of the uncertain loss, of the default
times and of the uncertain value of a transaction during her remaining life can be
completely separated. Although we have restricted the exposition to the case of
two counterparties and one derivative transaction, the model can easily be extended
to more counterparties and a whole netting node of trades. Further, as exposure is
simulated separately from default, all risk-mitigating components like CSAs, rating
triggers, and netting agreements can be easily included in a such a framework.

Interesting open questions for future research include the analogous treatment in
continuous time, which requiresmuchmore technically involved arguments. Further,
this approach yields a newmotivation to consider efficient algorithms for transporta-
tion or assignment problems with more than two marginals, which did not yet get
much attention so far.
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