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Abstract Two nonlinear Monte Carlo schemes, namely, the linear Monte Carlo
expansion with randomization of Fujii and Takahashi (Int J Theor Appl Financ
15(5):1250034(24), 2012 [9], Q J Financ 2(3), 1250015(24), 2012, [10]) and the
marked branching diffusion scheme of Henry-Labordère (Risk Mag 25(7), 67–73,
2012, [13]), are compared in terms of applicability and numerical behavior regarding
counterparty risk computations on credit derivatives. This is done in two dynamic
copula models of portfolio credit risk: the dynamic Gaussian copula model and
the model in which default dependence stems from joint defaults. For such high-
dimensional and nonlinear pricing problems, more standard deterministic or simu-
lation/regression schemes are ruled out by Bellman’s “curse of dimensionality” and
only purely forward Monte Carlo schemes can be used.

Keywords Counterparty risk · Funding · BSDE · Gaussian copula ·
Marshall–Olkin copula · Particles

1 Introduction

Counterparty risk is a major issue since the global credit crisis and the ongoing
European sovereign debt crisis. In a bilateral counterparty risk setup, counterparty
risk is valued as the so-called credit valuation adjustment (CVA), for the risk of
default of the counterparty, and debt valuation adjustment (DVA), for own default
risk. In such a setup, the classical assumption of a locally risk-free funding asset
used for both investing and unsecured borrowing is no longer sustainable. The proper
accounting of the funding costs of a position leads to the funding valuation adjustment
(FVA).Moreover, these adjustments are interdependent andmust be computed jointly
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through a global correction dubbed total valuation adjustment (TVA). The pricing
equation for the TVA is nonlinear due to the funding costs. It is posed over a random
time interval determined by the first default time of the two counterparties. To deal
with the corresponding backward stochastic differential equation (BSDE), a first
reduced-form modeling approach has been proposed in Crépey [3], under a rather
standard immersion hypothesis between a reference (or market) filtration and the full
model filtration progressively enlarged by the default times of the counterparties. This
basic immersion setup is fine for standard applications, such as counterparty risk on
interest rate derivatives. But it is too restrictive for situations of strong dependence
between the underlying exposure and the default risk of the two counterparties, such
as counterparty risk on credit derivatives, which involves strong adverse dependence,
called wrong-way risk (for some insights of related financial contexts, see Fujii
and Takahashi [11], Brigo et al. [2]). For this reason, an extended reduced-form
modeling approach has been recently developed in Crépey and Song [4–6]. With
credit derivatives, the problem is also very high-dimensional. From a numerical point
of view, for high-dimensional nonlinear problems, only purely forward simulation
schemes can be used. In Crépey and Song [6], the problem is addressed by the linear
Monte Carlo expansion with randomization of Fujii and Takahashi [9, 10].

In the present work, we assess another scheme, namely the marked branching
diffusion approach of Henry-Labordère [13], which we compare with the previous
one in terms of applicability and numerical behavior. This is done in two dynamic
copula models of portfolio credit risk: the dynamic Gaussian copula model and
the dynamic Marshall–Olkin model in which default dependence stems from joint
defaults.

The paper is organized as follows. Sections2 and 3 provide a summary of the
main pricing and TVA BSDEs that are derived in Crépey and Song [4–6]. Section4
exposes two nonlinear Monte Carlo schemes that can be considered for solving
these in high-dimensional models, such as the portfolio credit models of Sect. 5.
Comparative numerics in these models are presented in Sect. 6. Section7 concludes.

2 Prices

2.1 Setup

We consider a netted portfolio of OTC derivatives between two defaultable coun-
terparties, generally referred to as the contract between a bank, the perspective of
which is taken, and its counterparty. After having bought the contract from its coun-
terparty at time 0, the bank sets up a hedging, collateralization (or margining), and
funding portfolio. We call the funder of the bank a third party, possibly composed in
practice of several entities or devices, insuring funding of the bank’s strategy. The
funder, assumed default-free for simplicity, plays the role of lender/borrower of last
resort after the exhaustion of the internal sources of funding provided to the bank
through its hedge and collateral.
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For notational simplicity we assume no collateralization. All the numerical con-
siderations, our main focus in this work, can be readily extended to the case of
collateralized portfolios using the corresponding developments in Crépey and Song
[6]. Likewise, we assume hedging in the simplest sense of replication by the bank and
we consider the case of a fully securely funded hedge, so that the cost of the hedge
of the bank is exactly reflected by the wealth of its hedging and funding portfolio.

We consider a stochastic basis (Ω,GT ,G , Q), whereG = (Gt)t∈[0,T ] is interpreted
as a risk-neutral pricing model on the primary market of the instruments that are used
by the bank for hedging its TVA. The reference filtration F is a subfiltration of G
representing the counterparty risk-free filtration, not carrying any direct information
about the defaults of the two counterparties. The relation between these twofiltrations
will be pointed out in the condition (C) introduced later. We denote by:

• Et, the conditional expectation under Q given Gt ,
• r, the risk-free short rate process, with related discount factor βt = e− ∫ t0 rsds,
• T , the maturity of the contract,
• τb and τc, the default time of the bank and of the counterparty, modeled as G
stopping times with (G , Q) intensities γ b and γ c,

• τ = τb ∧ τc, the first-to-default time of the two counterparties, also a G stopping
time, with intensity γ such that max(γ b, γ c) ≤ γ ≤ γ b + γ c,

• τ̄ = τ ∧ T , the effective time horizon of our problem (there is no cashflow after
τ̄ ),

• D, the contractual dividend process,
• Δ = D − D−, the jump process of D.

2.2 Clean Price

We denote by P the reference (or clean) price of the contract ignoring counterparty
risk and assuming the position of the bank financed at the risk-free rate r, i.e. the G
conditional expectation of the future contractual cash-flows discounted at the risk-
free rate r. In particular,

βtPt = Et

[∫ τ̄

t
βsdDs + βτ̄Pτ̄

]

, ∀t ∈ [0, τ̄ ]. (1)

We also define Qt = Pt + 1{t=τ<T}Δτ , so that Qτ represents the clean value of the
contract inclusive of the promised dividend at default (if any)Δτ , which also belongs
to the “debt” of the counterparty to the bank (or vice versa depending on the sign
of Qτ ) in case of default of a party. Accordingly, at time τ (if < T ), the close-out
cash-flow of the counterparty to the bank is modeled as

R = 1{τ=τc}
(
RcQ

+
τ − Q−

τ

)− 1{τ=τb}
(
RbQ

−
τ − Q+

τ

)− 1{τb=τc}Qτ , (2)

where Rb and Rc are the recovery rates of the bank and of the counterparty to
each other.
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2.3 All-Inclusive Price

Let Π be the all-inclusive price of the contract for the bank, including the cost of
counterparty risk and funding costs. Since we assume a securely funded hedge (in
the sense of replication) and no collateralization, the amounts invested and funded
by the bank at time t are respectively given byΠ−

t andΠ+
t . The all-inclusive priceΠ

is the discounted conditional expectation of all effective future cash flows including
the contractual dividends before τ , the cost of funding the position prior to time τ

and the terminal cash flow at time τ . Hence,

βtΠt = Et

[∫ τ̄

t
βs1s<τdDs −

∫ τ̄

t
βsλ̄sΠ

+
s ds + βτ̄1τ<TR

]

, (3)

where λ̄ is the funding spread over r of the bank toward the external funder, i.e. the
bank borrows cash from its funder at rate r + λ̄ (and invests cash at the risk-free
rate r). Since the right hand side in (3) depends also on Π , (3) is in fact a backward
stochastic differential equation (BSDE). Consistent with the no arbitrage principle,
the gain process on the hedge is a Q martingale, which explains why it does not
appear in (3).

3 TVA BSDEs

The total valuation adjustment (TVA) process Θ is defined as

Θ = Q − Π. (4)

In this section we review the main TVA BSDEs that are derived in Crépey and Song
[4–6]. Three BSDEs are presented. These three equations are essentially equivalent
mathematically. However, depending on the underlying model, they are not always
amenable to the same numerical schemes or the numerical performance of a given
scheme may differ between them.

3.1 Full TVA BSDE

By taking the difference between (1) and (3), we obtain

βtΘt = Et

[∫ τ̄

t
βsfvas(Θs)ds + βτ̄1τ<Tξ

]

, ∀t ∈ [0, τ̄ ], (5)
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where fvat(ϑ) = λ̄t(Pt − ϑ)+ is the funding coefficient and where

ξ = Qτ − R = 1{τ=τc}(1 − Rc)(Pτ + Δτ)
+ − 1{τ=τb}(1 − Rb)(Pτ + Δτ)

− (6)

is the exposure at default of the bank. Equivalent to (5), the “full TVA BSDE” is
written as

Θt = Et

[∫ τ̄

t
fs(Θs)ds + 1τ<Tξ

]

, 0 ≤ t ≤ τ̄ , (I)

for the coefficient ft(ϑ) = fvat(ϑ) − rtϑ.

3.2 Partially Reduced TVA BSDE

Let ξ̂ be a G -predictable process, which exists by Corollary 3.23 2 in He et al. [12],
such that ξ̂τ = E[ξ |Gτ−] on τ < ∞ and let f̄ be the modified coefficient such that

f̄t(ϑ) + rtϑ = γt ξ̂t︸︷︷︸
cdvat

+ λ̄t(Pt − ϑ)+
︸ ︷︷ ︸

fvat(ϑ)

.
(7)

As easily shown (cf. [4, Lemma 2.2]), the full TVA BSDE (I) can be simplified into
the “partially reduced BSDE”

Θ̄t = Et

[∫ τ̄

t
f̄s(Θ̄s)ds

]

, 0 ≤ t ≤ τ̄ , (II)

in the sense that if Θ solves (I), then Θ̄ = Θ1[0,τ ) solves (II), while if Θ̄ solves (II),
then the process Θ defined as Θ̄ before τ̄ and Θτ̄ = 1τ<Tξ solves (I). Note that both
BSDEs (I) and (II) are (G , Q) BSDEs posed over the random time interval [0, τ̄ ],
but with the terminal condition ξ for (I) as opposed to a null terminal condition (and
a modified coefficient) for (II).

3.3 Fully Reduced TVA BSDE

Let
f̂t(ϑ) = f̄t(ϑ) − γtϑ = cdvat + fvat(ϑ) − (rt + γt)ϑ.
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Assume the following conditions, which are studied in Crépey and Song [4–6]:

Condition (C). There exist:

(C.1) a subfiltration F of G satisfying the usual conditions and such that F semi-
martingales stopped at τ are G semimartingales,

(C.2) a probability measure P equivalent to Q on FT such that any (F , P) local
martingale stopped at (τ−) is a (G , Q) local martingale on [0,T ],

(C.3) anF progressive “reduction” f̃t(ϑ) of f̂t(ϑ) such that
∫ ·
0 f̂t(ϑ)dt = ∫ ·

0 f̃t(ϑ)dt
on [0, τ̄ ].

Let Ẽt denote the conditional expectation under P given Ft . It is shown in Crépey
and Song [4–6]) that the full TVA BSDE (I) is equivalent to the following “fully
reduced BSDE”:

Θ̃t = Ẽt

[∫ T

t
f̃s(Θ̃s)ds

]

, t ∈ [0,T ], (III)

equivalent in the sense that if Θ solves (I), then the “F optional reduction” Θ̃ of Θ

(F optional process that coincides with Θ before τ ) solves (III), while if Θ̃ solves
(III), then Θ = Θ̃1[0,τ ) + 1[τ ]1τ<Tξ solves (I).

Moreover, under mild assumptions (see e.g. Crépey and Song [6, Theorem 4.1]),
one can easily check that f̄t(ϑ) in (7) (resp. f̃t(ϑ)) satisfies the classical BSDE
monotonicity assumption

(
f̄t(ϑ) − f̄t(ϑ

′)
)
(ϑ − ϑ ′) ≤ C(ϑ − ϑ ′)2

(and likewise for f̃ ), for some constant C. Hence, by classical BSDE results nicely
surveyed in Kruse and Popier [14, Sect. 2 (resp. 3)], the partially reduced TVABSDE
(II), hence the equivalent full TVA BSDE (I) (resp. the fully reduced BSDE (III)), is
well-posed in the space of (G , Q) (resp. (F , P)) square integrable solutions, where
well-posedness includes existence, uniqueness, comparison and BSDE standard esti-
mates.

3.4 Marked Default Time Setup

In order to be able to compute γ ξ̂ in f̄ , we assume that τ is endowed with a mark e
in a finite set E, in the sense that

τ = min
e∈E τe, (8)
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where each τe is a stopping time with intensity γ e
t such that Q(τe �= τe′) = 1, e �= e′,

and
Gτ = Gτ− ∨ σ(ε),

where ε = argmine∈Eτe yields the “identity” of the mark. The role of the mark is
to convey some additional information about the default, e.g. to encode wrong-way
and gap risk features. The assumption of a finite set E in (8) ensures tractability of
the setup. In fact, by Lemma 5.1 in Crépey and Song [6], there exists G -predictable
processes P̃e

t and Δ̃e
t such that

Pτ = P̃e
τ and Δτ = Δ̃e

τ on the event {τ = τe}.

Assuming further that τb = mine∈Eb τe and τc = mine∈Ec τe, where E = Eb ∪ Ec (not
necessarily a disjoint union), one can then take on [0, τ̄ ]:

γt ξ̂t = (1 − Rc)
∑

e∈Ec

γ e
t

(
P̃e
t + Δ̃e

t

)+ − (1 − Rb)
∑

e∈Eb

γ e
t

(
P̃e
t + Δ̃e

t

)−
,

where the two terms have clear respective CVA and DVA interpretation. Hence, (7)
is rewritten, on [0, τ̄ ], as

f̄t(ϑ) + rtϑ = (1 − Rc)
∑

e∈Ec

γ e
t

(
P̃e
t + Δ̃e

t

)+

︸ ︷︷ ︸
CVA coefficient (cvat)

− (1 − Rb)
∑

e∈Eb

γ e
t

(
P̃e
t + Δ̃e

t

)−

︸ ︷︷ ︸
DVA coefficient (dvat)

+ λ̄t(Pt − ϑ)+
︸ ︷︷ ︸

FVA coefficient (fvat(ϑ))

.

(9)

If the functions P̃e
t and Δ̃e

t above not only exist, but can be computed explicitly (as
will be the case in the concrete models of Sects. 5.1 and 5.2), once stated in aMarkov
setup where

f̄t(ϑ) = f̄ (t,Xt, ϑ), t ∈ [0,T ], (10)

for some (G , Q) jump diffusion X, then the partially reduced TVA BSDE (II) can be
tackled numerically. Similarly, once stated in a Markov setup where

f̃t(ϑ) = f̃ (t, X̃t, ϑ), t ∈ [0,T ], (11)

for some (F , P) jump diffusion X̃, then the fully reduced TVA BSDE (III) can be
tackled numerically.
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4 TVA Numerical Schemes

4.1 Linear Approximation

Our first TVA approximation is obtained replacing Θs by 0 in the right hand side of
(I), i.e.

Θ0 ≈ E

[∫ τ̄

0
fs(0)ds + 1τ<Tξ

]

= E

[∫ τ̄

0
λ̄sP

+
s ds + 1τ<Tξ

]

. (12)

We then approximate the TVA by standard Monte-Carlo, with randomization of
the integral to reduce the computation time (at the cost of a small increase in the
variance). Hence, introducing an exponential time ζ of parameter μ, i.e. a random
variable with density φ(s) = 1s≥0 μ e−μs, we have

E

[∫ τ̄

0
fs(0)ds

]

= E

[∫ τ̄

0
φ(s)

1

μ
eμsfs(0)ds

]

= E

[

1ζ<τ̄

eμζ

μ
fζ (0)

]

. (13)

We can use the same technic for (II) and (III), which yields:

Θ0 = Θ̄0 ≈ E

[∫ τ̄

0
f̄s(0)ds

]

= E

[

1ζ<τ̄

eμζ

μ
f̄ζ (0)

]

, (14)

Θ0 = Θ̃0 ≈ Ẽ

[∫ T

0
f̃s(0)ds

]

= Ẽ

[

1ζ<T
eμζ

μ
f̃ζ (0)

]

. (15)

4.2 Linear Expansion and Interacting Particle
Implementation

Following Fujii and Takahashi [9, 10], we can introduce a perturbation parameter ε

and the following perturbed form of the fully reduced BSDE (III):

Θ̃ε
t = Ẽt

[∫ T

t
ε̃fs(Θ̃

ε
s )ds

]

, t ∈ [0,T ], (16)

where ε = 1 corresponds to the original BSDE (III). Suppose that the solution of
(16) can be expanded in a power series of ε:

Θ̃ε
t = Θ̃

(0)
t + εΘ̃

(1)
t + ε2Θ̃

(2)
t + ε3Θ̃

(3)
t + · · · . (17)
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The Taylor expansion of f at Θ̃(0) reads

f̃t(Θ̃
ε
t ) = f̃t(Θ̃

(0)
t ) + (εΘ̃

(1)
t + ε2Θ̃

(2)
t + · · · )∂ϑ f̃t(Θ̃

(0)
t )

+ 1

2
(εΘ̃

(1)
t + ε2Θ̃

(2)
t + · · · )2∂2

ϑ 2̃ ft(Θ̃
(0)
t ) + · · ·

Collecting the terms of the same order with respect to ε in (16), we obtain Θ̃
(0)
t = 0,

due to the null terminal condition of the fully reduced BSDE (III), and

Θ̃
(1)
t = Ẽt

[∫ T

t
f̃s(Θ̃

(0)
s )ds

]

,

Θ̃
(2)
t = Ẽt

[∫ T

t
Θ̃(1)

s ∂ϑ f̃s(Θ̃
(0)
s )ds

]

,

Θ̃
(3)
t = Ẽt

[∫ T

t
Θ̃(2)

s ∂ϑ f̃s(Θ̃
(0)
s )ds

]

,

(18)

where the third order term should contain another component based on ∂2
ϑ 2̃ f . But, in

our case, ∂2
ϑ 2̃ f involves a Dirac measure via the terms (Pt − ϑ)+ in fvat(ϑ), so that

we truncate the expansion to the term Θ̃
(3)
t as above. If the nonlinearity in (III) is

sub-dominant, one can expect to obtain a reasonable approximation of the original
equation by setting ε = 1 at the end of the calculation, i.e.

Θ̃0 ≈ Θ̃
(1)
0 + Θ̃

(2)
0 + Θ̃

(3)
0 .

Carrying out a Monte Carlo simulation by an Euler scheme for every time s in a
time grid and integrating to obtain Θ̃

(1)
0 would be quite heavy. Moreover, this would

become completely unpractical for the higher order terms that involve iterated (mul-
tivariate) time integrals. For these reasons, Fujii and Takahashi [10] have introduced
a particle interpretation to randomize and compute numerically the integrals in (18),
which we call the FT scheme. Let η1 be the interaction time of a particle drawn
independently as the first jump time of a Poisson process with an arbitrary intensity
μ > 0 starting from time t ≥ 0, i.e., η1 is a random variable with density

φ(t, s) = 1s≥t μ e−μ(s−t). (19)

From the first line in (18), we have

Θ̃
(1)
t = Ẽt

[∫ T

t
φ(t, s)

eμ(s−t)

μ
f̃s(Θ̃

(0)
s )ds

]

= Ẽt

[

1η1<T
eμ(η1−t)

μ
f̃η1(Θ̃

(0)
η1

)

]

. (20)

Similarly, the particle representation is available for the higher order. By applying
the same procedure as above, we obtain



62 S. Crépey and T.M. Nguyen

Θ̃
(2)
t = Ẽt

[

1η1<T Θ̃(1)
η1

eμ(η1−t)

μ
∂ϑ f̃η1(Θ̃

(0)
η1

)

]

,

where Θ̃(1)
η1

can be computed by (20). Therefore, by using the tower property of
conditional expectations, we obtain

Θ̃
(2)
t = Ẽt

[

1η2<T
eμ(η2−η1)

μ
f̃η2(Θ̃

(0)
η2

)
eμ(η1−t)

μ
∂ϑ f̃η1(Θ̃

(0)
η1

)

]

, (21)

where η1, η2 are the two consecutive interaction times of a particle randomly drawn
with intensity μ starting from t. Similarly, for the third order, we get

Θ̃
(3)
t = Ẽt

[

1η3<T
eμ(η3−η2)

μ
f̃η3(Θ̃

(0)
η3

)
eμ(η2−η1)

μ
∂ϑ f̃η2(Θ̃

(0)
η2

)
eμ(η1−t)

μ
∂ϑ f̃η1(Θ̃

(0)
η1

)

]

,

(22)

where η1, η2, η3 are consecutive interaction times of a particle randomly drawn with
intensity μ starting from t. In case t = 0, (20), (21) and (22) can be simplified as

Θ̃
(1)
0 = Ẽ

[

1ζ1<T
eμζ1

μ
f̃ζ1 (Θ̃

(0)
ζ1

)

]

Θ̃
(2)
0 = Ẽ

[

1ζ1+ζ2<T
eμζ1

μ
∂ϑ f̃ζ1 (Θ̃

(0)
ζ1

)
eμζ2

μ
f̃ζ1+ζ2 (Θ̃

(0)
ζ1+ζ2

)

]

Θ̃
(3)
0 = Ẽ

[

1ζ1+ζ2+ζ3<T
eμζ1

μ
∂ϑ f̃ζ1 (Θ̃

(0)
ζ1

)
eμζ2

μ
∂ϑ f̃ζ1+ζ2 (Θ̃

(0)
ζ1+ζ2

)
eμζ3

μ
f̃ζ1+ζ2+ζ3 (Θ̃

(0)
ζ1+ζ2+ζ3

)

]

(23)

where ζ1, ζ2, ζ3 are the elapsed time from the last interaction until the next interaction,
which are independent exponential random variables with parameter μ.

Note that the pricing model is originally defined with respect to the full stochastic
basis (G , Q). Even in the case where there exists a stochastic basis (F , Q) satisfying
the condition (C), (F , Q) simulation may be nontrivial. Lemma 8.1 in Crépey and
Song [6] allows us to reformulate the Q expectations in (23) as the following Q

expectations, with Θ̄(0) = 0:

Θ̃
(1)
0 = Θ̄

(1)
0 = E

[

1ζ1<τ̄

eμζ1

μ
f̄ζ1(Θ̄

(0)
ζ1

)

]

Θ̃
(2)
0 = Θ̄

(2)
0 = E

[

1ζ1+ζ2<τ̄

eμζ1

μ
∂ϑ f̄ζ1(Θ̄

(0)
ζ1

)
eμζ2

μ
f̄ζ1+ζ2(Θ̄

(0)
ζ1+ζ2

)

]

Θ̃
(3)
0 = Θ̄

(3)
0 = E

[
1ζ1+ζ2+ζ3<τ̄

eμζ1

μ
∂ϑ f̄ζ1(Θ̄

(0)
ζ1

)
eμζ2

μ
∂ϑ f̄ζ1+ζ2(Θ̄

(0)
ζ1+ζ2

)

× eμζ3

μ
f̄ζ1+ζ2+ζ3(Θ̄

(0)
ζ1+ζ2+ζ3

)
]
,

(24)
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which is nothing but the FT scheme applied to the partially reduced BSDE (II). The
tractability of the FT schemes (23) and (24) relies on the nullity of the terminal
condition of the related BSDEs (III) and (II), which implies that Θ̄(0) = Θ̃(0) = 0.
By contrast, an FT scheme would not be practical for the full TVA BSDE (5) with
terminal condition ξ �= 0. Also note that the first order in the FT scheme (23) (resp.
(24)) is nothing but the linear approximation (15) (resp. (14)).

4.3 Marked Branching Diffusion Approach

Based on an old idea of McKean [16], the solution u(t0, x0) to a PDE

∂tu + L u + μ(F(u) − u) = 0, u(T , x) = Ψ (x), (25)

where L is the infinitesimal generator of a strong Markov process X and F(y) =∑d
k=0 aky

k is a polynomial of order d, admits a probabilistic representation in terms
of a random tree T (branching diffusion). The tree starts from a single particle
(“trunk”) born from (t0, x0). Subsequently, every particle born from a node (t, x)
evolves independently according to the generator L of X until it dies at time t′ =
(t + ζ ) in a state x′, where ζ is an independent μ-exponential time (one for each
particle). Moreover, in dying, a particle gives birth to an independent number of
k′ new particles starting from the node (t′, x′), where k′ is drawn in the finite set
{0, 1, . . . , d} with some fixed probabilities p0, p1, . . . , pd . The marked branching
diffusion probabilistic representation reads

u(t0, x0) = Et0,x0

⎡

⎣
∏

{inner nodes (t,x,k) of T }

ak
pk

∏

{states x of particles alive at T}
Ψ (x)

⎤

⎦

= Et0,x0

[
d∏

k=0

(
ak
pk

)nk ν∏

l=1

Ψ (xl)

]

, (26)

where nk is the number of branching with k descendants up on (0,T) and ν is the
number of particles alive at T , with corresponding locations x1, . . . , xν .

The marked branching diffusion method of Henry-Labordère [13] for CVA com-
putations, dubbed PHL scheme henceforth, is based on the idea that, by approximat-
ing y+ by a well-chosen polynomial F(y), the solution to the PDE

∂tu + L u + μ(u+ − u) = 0, u(T , x) = Ψ (x), (27)

can be approximated by the solution to the PDE (25), hence by (26). We want to
apply this approach to solve the TVA BSDEs (I), (II) or (III) for which, instead
of fixing the approximating polynomial F(y) once for all in the simulations, we
need a state-dependent polynomial approximation to gt(y) = (Pt − y)+ (cf. (7)) in
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a suitable range for y. Moreover, (I) and (II) are BSDEs with random terminal time
τ̄ , equivalently written in a Markov setup as Cauchy–Dirichlet PDE problems, as
opposed to the pure Cauchy problem (27). Hence, some adaptation of the method is
required. We show how to do it for (II), after which we directly give the algorithm in
the similar case of (I) and in the more classical (pure Cauchy) case of (III). Assuming
τ given in terms of a (G , Q) Markov factor process X as τ = inf{t > 0 : Xt /∈ D}
for some domainD, the Cauchy–Dirichlet PDE used for approximating the partially
reduced BSDE (II) reads:

(∂t + A )ū + μ
(
F̄(ū) − ū

) = 0 on [0,T ] × D, ū(t, x) = 0 for t = T or x /∈ D,

(28)
where A is the generator of X and F̄t,x(y) =∑d

k=0 āk(t, x)y
k is such that

μ(F̄t,x(y) − y) ≈ f̄ (t, x, y), i.e. F̄t,x(y) ≈ f̄ (t, x, y)

μ
+ y. (29)

Specifically, in view of (9), one can set

F̄t,x(y) = 1

μ

(
cdva(t, x) + λ̄pol

(
P(t, x) − y

)− ry
)+ y =

d∑

k=0

āk(t, x)y
k, (30)

where pol(r) is a d-order polynomial approximation of r+ in a suitable range
for r. The marked branching diffusion probabilistic representation of ū(t0, x0) ∈ D
involves a random treeT made of nodes and “particles” between consecutive nodes
as follows. The tree starts from a single particle (trunk) born from the root (t0, x0).
Subsequently, every particle born from a node (t, x) evolves independently accord-
ing to the generator L of X until it dies at time t′ = (t + ζ ) in a state x′, where ζ

is an independent μ-exponential time. Moreover, in dying, if its position x′ at time
t′ lies in D, the particle gives birth to an independent number of k′ new particles
starting from the node (t′, x′), where k′ is drawn in the finite set {0, 1, . . . , d} with
some fixed probabilities p0, p1, . . . , pd . Figure1 describes such a random tree in case
d = 2. The first particle starts from the root (t0, x0) and dies at time t1, generating two
new particles. The first one dies at time t11 and generates a new particle, who dies at
time t111 > T without descendant. The second one dies at time t12 and generates two
new particles, where the first one dies at time t121 without descendant and the second
one dies at time t122 outside the domainD , hence also without descendant. The blue
points represent the inner nodes, the red points the outer nodes and the green points
the exit points of the tree out of the time–space domain [0,T ] × D .

The marked branching diffusion probabilistic representation of ū is written as

ū(t0, x0) = Et0,x0

⎡

⎢
⎣1T ⊂[0,T ]×D

∏

{inner nodes (t,x,k) of T }

āk(t, x)

pk

⎤

⎥
⎦ , (t0, x0) ∈ [0,T ] × D .

(31)
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Fig. 1 PHL random tree

Note that (31) is unformal at that stage, where we did not justify whether the PDE
(28) has a solution ū and in which sense. In fact, the following result could be used
for proving that the function ū defined in the first line is a viscosity solution to (28).

Proposition 1 Denoting by ū the function defined by the right hand side in (31)
(assuming integrability of the integrand on the domain [0,T ] × D), the process Yt =
ū(t,Xt), 0 ≤ t ≤ τ̄ , solves the BSDE associated with the Cauchy–Dirichlet PDE
(28), namely

Yt = Et

[∫ τ̄

t
μ
(
F̄s,Xs(Ys) − Ys

)
ds

]

, t ∈ [0, τ̄ ] (32)

(which, in view of (29), approximates the partially reduced BSDE (II), so that Y ≈ Θ̄

provided Y is square integrable).

Proof Let (t1, x1, k1) be the first branching point in the tree rooted at (0,X0) and
let T j denote k1 independent trees of the same kind rooted at (t1, x1). By using the
independence and the strong Markov property postulated for X, we obtain

ū(t,Xt) =
d∑

k1=0

Et,Xt

[

1t1<T pk1
ak1 (t1, x1)

pk1

×
k1∏

j=1

Et1,x1

⎡

⎢
⎣1T j⊂[0,T ]×D}

∏

{inner node (s,x,k) of T j}

ak(s, x)

pk

⎤

⎥
⎦

⎤

⎥
⎦

= Et,Xt

⎡

⎢
⎣1t1<T

d∑

k1=0

ak1 (t1, x1)
k1∏

j=1

Et1,x1

⎡

⎢
⎣1T j⊂[0,T ]×D

∏

{inner node (s,x,k) of T j}

ak(s, x)

pk

⎤

⎥
⎦

⎤

⎥
⎦

= Et,Xt

⎡

⎣1t1<T

d∑

k1=0

ak1 (t1, x1)
k1∏

j=1

ū(t1, x1)

⎤

⎦
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= Et,Xt

[
1t1<T F̄t1,x1 (ū(t,X

t1,x1
t ))

]

= Et,Xt

[∫ τ̄

t
μ(s)e− ∫ st μ(u)duF̄s,Xt,x

s
(ū(s,Xt,x

s ))ds

]

, 0 ≤ t ≤ τ̄ ,

i.e. Yt = ū(t,Xt) solves (32). �

If1τ<Tξ is given as a deterministic functionΨ (τ,Xτ ), then a similar approach (using
the same treeT ) can be applied to the full BSDE (I) in terms of the Cauchy–Dirichlet
PDE

(∂t + A )u + μ (F(u) − u) = 0 on [0,T ] × D, u(t, x) = Ψ (t, x) for t = T or x /∈ D,

(33)
where Ft,x(y) =∑d

k=0 ak(t, x)yk is such that

μ(Ft,x(y) − y) ≈ f (t, x, y), i.e. Ft,x(y) ≈ f (t, x, y)

μ
+ y.

This yields the approximation formula alternative to (31):

Θ0 ≈ E

⎡

⎣
∏

{inner node (t,x,k) of T }

ak(t, x)

pk

∏

{exit point (t,x) of T }
Ψ (t, x)

⎤

⎦ , (34)

where an exit point ofT means a point where a branch of the tree leaves for the first
time the time–space domain [0,T ] × D . Last, regarding the (F , Q) reduced BSDE
(III), assuming an (F , Q) Markov factor process X̃ with generator Ã and domain
D, we can apply a similar approach in terms of the Cauchy PDE

(∂t + Ã )̃u + μ
(
F̃t,x (̃u) − ũ

) = 0 on [0,T ] × D, ũ(t, x) = 0 for t = T or x /∈ D,

(35)
where F̃t,x(y) =∑d

k=0 ãk(t, x)y
k is such that

μ(F̃t,x(y) − y) ≈ f̃ (t, x, y), i.e. F̃t,x(y) ≈ f̃ (t, x, y)

μ
+ y.

We obtain

Θ0 = Θ̃0 ≈ Ẽ

⎡

⎣1T̃ ⊂[0,T ]×D

∏

inner node (t,x,k) of T̃

ãk(t, x)

pk

⎤

⎦ , (36)

where T̃ is the branching tree associated with the Cauchy PDE (35) (similar to T̃
but for the generator Ã ).



Nonlinear Monte Carlo Schemes for Counterparty Risk on Credit Derivatives 67

5 TVA Models for Credit Derivatives

Our goal is to apply the above approaches to TVA computations on credit derivatives
referencing the names inN� = {1, . . . , n}, for somepositive integern, traded between
the bank and the counterparty respectively labeled as −1 and 0. In this section we
briefly survey twomodels of the default times τi, i ∈ N = {−1, 0, 1, . . . , n}, that will
be used for that purpose with τb = τ−1 and τc = τ0, namely the dynamic Gaussian
copula (DGC) model and the dynamic Marshall–Olkin copula (DMO) model. For
more details the reader is referred to [8, Chaps. 7 and 8] and [6, Sects. 6 and 7].

5.1 Dynamic Gaussian Copula TVA Model

5.1.1 Model of Default Times

Let there be given a function ς(·) with unit L2 norm on R+ and a multivariate
Brownian motion B = (Bi)i∈N with pairwise constant correlation ρ ≥ 0 in its own
completed filtrationB = (Bt)t≥0. For each i ∈ N , let hi be a continuously differen-
tiable increasing function from R∗+ to R, with lim0 hi(s) = −∞ and lim+∞ hi(s) =
+∞, and let

τi = h−1
i

(
εi
)
, where εi =

∫ +∞

0
ς(u)dBi

u. (37)

Thus the (τi)i∈N follow the standard Gaussian copula model of Li [15], with corre-
lation parameter ρ and with marginal survival function Φ ◦ hi of τi, where Φ is the
standard normal survival function. In particular, these τi do not intersect each other.
In order to make the model dynamic as required by counterparty risk applications,
the model filtration G is given as the Brownian filtration B progressively enlarged
by the τi, i.e.

Gt = Bt ∨
∨

i∈N

(
σ(τi ∧ t) ∨ σ({τi > t})), ∀t ≥ 0, (38)

and the reference filtration F is given as B progressively enlarged by the default
times of the reference names, i.e.

Ft = Bt ∨
∨

i∈N�

(
σ(τi ∧ t) ∨ σ({τi > t})), ∀t ≥ 0. (39)

As shown in Sect. 6.2 of Crépey and Song [6], for the filtrations G andF as above,
there exists a (unique) probability measure P equivalent to Q such that the condition
(C) holds. For every i ∈ N , let

mi
t =
∫ t

0
ς(u)dBi

u, k
i
t = τi1{τi≤t},
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and let mt = (mi
t)i∈N , kt = (kit)i∈N , k̃t = (1i∈N�kit)i∈N . The couple Xt = (mt, kt)

(resp. X̃t = (mt, k̃t)) plays the role of a (G , Q) (resp. (F , P)) Markov factor process
in the dynamic Gaussian copula (DGC) model.

5.1.2 TVA Model

A DGC setup can be used as a TVA model for credit derivatives, with mark i =
−1, 0 and Eb = {−1}, Ec = {0}. Since there are no joint defaults in this model, it is
harmless to assume that the contract promises no cash-flow at τ , i.e.,Δτ = 0, so that
Qτ = Pτ . By [8, Propositions 7.3.1 p. 178 and 7.3.3 p. 181], in the case of vanilla
credit derivatives on the reference names, namely CDS contracts and CDO tranches
(cf. (47)), there exists a continuous, explicit function P̃i such that

Pτ = P̃i(τ, mτ , kτ−), (40)

or P̃i
τ in a shorthand notation, on the event {τ = τi}. Hence, (9) yields

f̄t(ϑ) + rtϑ = (1 − Rc)γ
0
t (P̃0

t )
+ − (1 − Rb)γ

−1
t (P̃−1

t )− + λ̄t(Pt − ϑ)+, ∀t ∈ [0, τ̄ ].

Assume that the processes r and λ̄ are given before τ as continuous functions of
(t,Xt), which also holds for P in the case of vanilla credit derivatives on names in
N . Then the coefficients f̄ and in turn f̃ are deterministically given in terms of the
corresponding factor processes as

f̄t(ϑ) = f̄ (t,Xt, ϑ), f̃t(ϑ) = f̃ (t, X̃t, ϑ),

so that we are in the Markovian setup where the FT and the PHL schemes are valid
and, in principle, applicable.

5.2 Dynamic Marshall–Olkin Copula TVA Model

The above dynamic Gaussian copula model allows dealing with TVA on CDS con-
tracts. But a Gaussian copula dependence structure is not rich enough for ensuring a
proper calibration to CDS andCDOquotes at the same time. If CDO tranches are also
present in a portfolio, a possible alternative is the following dynamicMarshall–Olkin
(DMO) copula model, also known as the “common shock” model.
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5.2.1 Model of Default Times

We define a familyY of “shocks”, i.e. subsets Y ⊆ N of obligors, usually consisting
of the singletons {−1}, {0}, {1}, . . . , {n}, and a few “common shocks” I1, I2, . . . , Im
representing simultaneous defaults. For Y ∈ Y , the shock time ηY is defined as an
i.i.d. exponential random variable with parameter γY . The default time of obligor i
in the common shock model is then defined as

τi = min
Y∈Y ,i∈Y

ηY . (41)

Example 1 Figure2 shows one possible default path in a common-shock model
with n = 3 and Y = {{−1}, {0}, {1}, {2}, {3}, {2, 3}, {0, 1, 2}, {−1, 0}}. The inner
oval shows which shocks happened and caused the observed default scenarios at
successive default times.

The full model filtration G is defined as

Gt =
∨

Y∈Y

(
σ(ηY ∧ t) ∨ σ({ηY > t})), ∀t ≥ 0.

Letting Y◦ = {Y ∈ Y ; −1, 0 /∈ Y}, the reference filtrationF is given as

Ft =
∨

Y∈Y◦

(
σ(ηY ∧ t) ∨ σ({ηY > t})), t ≥ 0.

t
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Fig. 2 One possible default path in the common-shock model with n = 3 and Y =
{{−1}, {0}, {1}, {2}, {3}, {2, 3}, {0, 1, 2}, {−1, 0}}
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As shown in Sect. 7.2 of Crépey and Song [6], in the DMO model with G and F
as above, the condition (C) holds for P = Q. Let JY = 1[0,ηY ). Similar to (m, k)

(resp. (m, k̃)) in the DGC model, the process

X = (JY )Y∈Y (resp. X̃ = (1Y∈Y◦J
Y )Y∈Y ) (42)

plays the role of a (G , Q) (resp. (F , Q)) Markov factor in the DMO model.

5.2.2 TVA Model

A DMO setup can be used as a TVA model for credit derivatives, with

Eb = Yb := {Y ∈ Y ; −1 ∈ Y}, Ec = Yc := {Y ∈ Y ; 0 ∈ Y}, E = Y• := Yb ∪ Yc

and
τb = τ−1 = min

Y∈Yb

ηY , τc = τ0 = min
Y∈Yc

ηY ,

hence
τ = min

Y∈Y•
ηY , γ = 1[0,τ )γ̃ with γ̃ =

∑

Y∈Y•

γY . (43)

By [8, Proposition 8.3.1 p. 205], in the case of CDS contracts and CDO tranches,
for every shock Y ∈ Y and process U = P or Δ, there exists a continuous, explicit
function ŨY such that

Uτ = ŨY (τ,Xτ−), (44)

or ŨY
τ in a shorthand notation, on the event {τ = ηY }. The coefficient f̄t(ϑ) in (9) is

then given, for t ∈ [0, τ̄ ], by

f̄t(ϑ) + rtϑ = (1 − Rc)
∑

Y∈Yc

γ Y
t

(
P̃Y
t + Δ̃Y

t

)+ − (1 − Rb)
∑

Y∈Yb

γ Y
t

(
P̃Y
t + Δ̃Y

t

)−

+ λ̄t(Pt − ϑ)+.

(45)
Assuming that the processes r and λ̄ are given before τ as continuous functions of
(t,Xt), which also holds for P in case of vanilla credit derivatives on the reference
names, then

f̄t(ϑ) = f̄ (t,Xt, ϑ), f̃t(ϑ) = f̄t(ϑ) − γ̃ ϑ = f̃ (t, X̃t, ϑ) (46)

(cf. (43)), so that we are again in a Markovian setup where the FT and the PHL
schemes are valid and, in principle, applicable.
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5.3 Strong Versus Weak Dynamic Copula Model

However, one peculiarity of the TVA BSDEs in our credit portfolio models is that,
even though full and reduced Markov structures have been identified, which is
required for justifying the validity of the FT and/or PHL numerical schemes, and the
corresponding generators A or Ã can be written explicitly, the Markov structures
are too heavy for being of any practical use in the numerics. Instead, fast and exact
simulation and clean pricing schemes are available based on the dynamic copula
structures.

Moreover, in the case of the DGC model, we lose the Gaussian copula structure
after a branching point in the PHL scheme. In fact, as visible in [8, Formula (7.7) p.
175], theDGCconditionalmultivariate survival probability function is stated in terms
of a ratio of Gaussian survival probability functions, which is explicit but does not
simplify into a single Gaussian survival probability function. It is only in the DMO
model that the conditional multivariate survival probability function, which arises
as a ratio of exponential survival probability functions (see [8, Formula (8.11) p.
197 and Sect. 8.2.1.1]), simplifies into a genuine exponential survival probability
function. Hence, the PHL scheme is not applicable in the DGC model.

The FT scheme based on (III) is not practical either because the Gaussian copula
structure is only under Q and, again, the (full or reduced) Markov structures are not
practical. In the end, the only practical scheme in the DGC model is the FT scheme
based on the partially reduced BSDE (II). Eventually, it is only in the DMO model
that the FT and the PHL schemes are both practical and can be compared numerically.

6 Numerics

For the numerical implementation,we consider stylizedCDScontracts andprotection
legs of CDO tranches corresponding to dividend processes of the respective form,
for 0 ≤ t ≤ T :

Di
t = ((1 − Ri)1t≥τi − Si(t ∧ τi)

)
Nomi

Dt =
((

(1 − R)
∑

j∈N
1t≥τj − (n + 2)a

)+ ∧ (n + 2)(b − a)
)
Nom, (47)

where all the recoveries Ri and R (resp. nominals Nomi and Nom) are set to 40%
(resp. to 100). The contractual spreads Si of the CDS contracts are set such that
the corresponding prices are equal to 0 at time 0. Protection legs of CDO tranches,
where the attachment and detachment points a and b are such that 0 ≤ a ≤ b ≤
100%, can also be seen as CDO tranches with upfront payment. Note that credit
derivatives traded as swaps or with upfront payment coexist since the crisis. Unless
stated otherwise, the following numerical values are used:
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r = 0,Rb = 1,Rc = 40%, λ̄ = 100 bp = 0.01, μ = 2

T
,m = 104.

6.1 Numerical Results in the DGC Model

First we consider DGC random times τi defined by (37), where the function hi
is chosen so that τi follows an exponential distribution with parameter γi (which
in practice can be calibrated to a related CDS spread or a suitable proxy). More
precisely, let Φ and Ψi be the survival functions of a standard normal distribution
and an exponential distribution with intensity γi. We choose hi = Φ−1 ◦ Ψi, so that
(cf. (37))

Q(τi≥t) = Q
(
Ψ −1
i (Φ (εi)) ≥t

) = Q

(
Φ (εi) ≤ Ψi(t)

)
= Ψi(t),

for Φ (εi) has a standard uniform distribution. Moreover, we use a function ς(·) in
(37) constant before a time horizon T̄ > T and null after T̄ , so that ς(0) = 1√

T̄
(given

the constraint that ν2(0) = ∫∞
0 ς2(s)ds = 1) and, for t ≤ T̄ ,

ν2(t) =
∫ ∞

t
ς2(s)ds = T̄ − t

T̄
, mi

t =
∫ t

0
ς(u)dBi

u = 1√
T̄
Bi
t,

∫ ∞

0
ς(u)dBi

u = 1√
T̄
Bi
T̄
.

In the case of the DGC model, the only practical TVA numerical scheme is the FT
scheme (24) based on the partially reduced BSDE (II), which can be described by
the following steps:

1. Draw a time ζ1 following an exponential law of parameter μ. If ζ1 < T , then
simulatemζ1 = ( 1√

T̄
Bi

ζ1
)l∈N ∼ N (0, ζ1

T̄
In(1, ρ)), where In(1, ρ) is a n × nmatrix

with diagonal equal to 1 and all off-diagonal entries equal to ρ, and go to Step 2.
Otherwise, go to Step 4.

2. Draw a second time ζ2, independent from ζ1, following an exponential law of
parameter μ. If ζ1 + ζ2 < T , then obtain the vector mζ1+ζ2 as mζ1 + (mζ1+ζ2 −
mζ1), where mζ1+ζ2 − mζ1 = ( 1√

T̄
(Bi

ζ1+ζ2
− Bi

ζ1
))l∈N ∼ N (0, ζ2

T̄
In(1, ρ)), and go

to Step 3. Otherwise, go to Step 4.
3. Draw a third time ζ3, independent from ζ1 and ζ2, following an exponen-

tial law of parameter μ. If ζ1 + ζ2 + ζ3 < T , then obtain the vector mζ1+ζ2+ζ3

as mζ1+ζ2 + (mζ1+ζ2+ζ3 − mζ1+ζ2), where mζ1+ζ2+ζ3 − mζ1+ζ2 = ( 1√
T̄
(Bi

ζ1+ζ2+ζ3
−

Bi
ζ1+ζ2

))l∈N ∼ N (0, ζ3
T̄
In(1, ρ)). Go to Step 4.
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4. Simulate the vector mT̄ from the last simulated vector mt (t = 0 by default) as
mt + (mT̄ − mt), where mT̄ − mt = ( 1√

T̄
(Bi

T̄
− Bi

t))i∈N ∼ N (0, T̄−t
T̄
In(1, ρ)).

Deduce (Bi
T̄
)i∈N , hence τi = Ψ −1

i ◦ Φ
(

1√
T̄
Bi
T̄

)
, i ∈ N , and in turn the vectors kζ1

(if ζ1 + ζ2 + ζ3 < T ), kζ1+ζ2 (if ζ1 + ζ2 < T ) and kζ1+ζ2+ζ3 (if ζ1 + ζ2 + ζ3 < T ).
5. Compute f̄ζ1 , f̄ζ1+ζ2 , and f̄ζ1+ζ2+ζ3 for the three orders of the FT scheme.

WeperformTVAcomputations onCDScontractswithmaturityT = 10 years, choos-
ing for that matter T̄ = T + 1 = 11 years, hence ς = 1[0,11]√

11
, for ρ = 0.6 unless oth-

erwise stated. Table1 displays the contractual spreads of the CDS contracts used in
these experiments. In Fig. 3, the left graph shows the TVA on a CDS on name 1,
computed in a DGC model with n = 1 by FT scheme of order 1 to 3, for different
levels of nonlinearity represented by the value of the unsecured borrowing spread
λ̄. The right graph shows similar results regarding a portfolio comprising one CDS
contract per name i = 1, . . . , 10. The time-0 clean value of the default leg of the
CDS in case n = 1, respectively the sum of the ten default legs in case n = 10, is
4.52, respectively 40.78 (of course P0 = 0 in both cases by definition of fair contrac-
tual spreads). Hence, in relative terms, the TVA numbers visible in Fig. 3 are quite
high, much greater for instance than in the cases of counterparty risk on interest rate
derivatives considered in Crépey et al. [7]. This is explained by the wrong-way risk
feature of the DGCmodel, namely, the default intensities of the surviving names and
the value of the CDS protection spike at defaults in this model. When λ̄ increases
(for λ̄ = 0 that’s a case of linear TVA where FT higher order terms equal 0), the
second (resp. third) FT term may represent in each case up to 5–10% of the first

Table 1 Time-0 bp CDS spreads of names −1 (the bank), 0 (the counterparty) and of the reference
names 1 to n used when n = 1 (left) and n = 10 (right)
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Fig. 3 Left DGC TVA on one CDS computed by FT scheme of order 1–3, for different levels of
nonlinearity (unsecured borrowing spread λ̄). Right similar results regarding the portfolio of CDS
contracts on ten names
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parameter ρ. Right similar results regarding a portfolio of CDS contracts on ten different names

3 6 9 12
1

2

3

4

5

6

7

8

9

Number of names

%
 r

el
 S

E

Relative standard error different dimensions

 

 

Order 1
Order 2
Order 3

0 0.01 0.02 0.03
1

2

3

4

5

6

7

8

λ̄

%
 r

el
 S

E

Relative standard error different borrowing spreads

 

 

Order 1
Order 2
Order 3

3 6 9 12
0

50

100

150

200

250

300

Number of names

C
P

U
 ti

m
e 

(s
)

CPU time different dimensions

 

 

Order 1
Order 2
Order 3

Fig. 5 Left the % relative standard errors of the different orders of the expansions do not explode
with the number of names (λ̄ = 100 bp). Middle the % relative standard errors of the different
orders of the expansions do not explode with the level of nonlinearity represented by the unsecured
borrowing spread λ̄ (n = 1). Right since FT terms are computed by purely forward Monte Carlo
schemes, their computation times are linear in the number of names (λ̄ = 100 bp)

(resp. second) FT term, from which we conclude that the first FT term can be used
as a first order linear estimate of the TVA, with a nonlinear correction that can be
estimated by the second FT term.

In Fig. 4, the left graph shows the TVA on one CDS computed by FT scheme of
order 3 as a function of the DGC correlation parameter ρ, with other parameters set
as before. The right graph shows the analogous results regarding the portfolio of ten
CDS contracts. In both cases, the TVA numbers increase (roughly linearly) with ρ,

including for high values of ρ, as desirable from the financial interpretation point of
view, whereas it has been noted in Brigo and Chourdakis [1] (see the blue curve in
Fig. 1 of the ssrn version of the paper) that for high levels of the correlation between
names, other models may show some pathological behaviors.

In Fig. 5, the left graph shows that the errors, in the sense of the relative standard
errors (% rel. SE), of the different orders of the FT scheme do not explode with the
dimension (number of credit names that underlie the CDS contracts). The middle
graph, produced with n = 1, shows that the errors do not explode with the level
of nonlinearity represented by the unsecured borrowing spread λ̄. Consistent with



Nonlinear Monte Carlo Schemes for Counterparty Risk on Credit Derivatives 75

the fact that the successive FT terms are computed by purely forward Monte Carlo
schemes, their computation times are essentially linear in the number of names, as
visible in the right graph.

To conclude this section,we compare the linear approximation (14) corresponding
to the first FT term in (24) (FT1 in Table2) with the linear approximations (12)–
(13) (LA in Table2). One can see from Table2 that the LA and FT1 estimates are
consistent (at least in the sense of their 95% confidence intervals, which always
intersect each other). But the LA standard errors are larger than the FT1 ones. In
fact, using the formula for the intensity γ of τ in FT1 can be viewed as a form of
variance reduction with respect to LA, where τ is simulated. Of course, for λ̄ �= 0
(case of the right tables where λ̄ = 3%), both linear approximations are biased as
compared with the complete FT estimate (with nonlinear correction, also shown in
Table2), particularly in the high dimensional case with 10 CDS contracts (see the
bottom panels in Table2). Figure6 completes these results by showing the LA, FT1

Table 2 LA, FT1 and FT estimates: 1 CDS (top) and 10 CDSs (bottom), with parameters λ̄ = 0%,
ρ = 0.8 (left) and λ̄ = 3%, ρ = 0.6 (right)
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Fig. 6 The % relative standard errors of the different schemes do not explode with the level of
nonlinearity represented by the unsecured borrowing spread λ̄. Left 1 CDS.Middle 10 CDSs. Right
the % relative standard errors of the different schemes (LA, FT1, FT in figures) do not explode with
the number of names (λ̄ = 100 bp, ρ = 0.6)
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and FT standard errors computed for different levels of nonlinearity and different
dimensions.

Summarizing, in the DGC model, the PHL is not practical. The FT scheme based
on the partially reduced TVA BSDE (II) gives an efficient way of estimating the
TVA. The nonlinear correction with respect to the linear approximations (14) or (15)
amounts up to 5% in relative terms, depending on the unsecured borrowing spread
λ̄.

6.2 Numerical Results in the DMO Model

In the DMO model, the FT scheme (18) for the fully reduced BSDE (23) can be
implemented through following steps:

1. Simulate the time ηY of each (individual or joint) shock following an independent
exponential law of parameter γY , Y ∈ Y , then retrieve the τi through the formula
(41).

2. Draw a time ζ1 following an exponential law of parameter μ. If ζ1 < T , compare
the default time of each name with ζ1 to obtain the reduced Markov factor X̃ζ1 as
of (42) and in turn f̃ζ1 as of (45)–(46), then go to Step 3. Otherwise stop.

3. Draw a second time ζ2 following an independent exponential law of parameterμ.
If ζ1 + ζ2 < T , compare the default time τi of each name with ζ1 + ζ2 to obtain
the Markov factor X̃ζ1+ζ2 and f̃ζ1+ζ2 then go to Step 4. Otherwise stop.

4. Draw a third time ζ3 following an independent exponential law of parameter μ.
If ζ1 + ζ2 + ζ3 < T , compare the default time of each name with ζ1 + ζ2 + ζ3 to
obtain the Markov factor X̃ζ1+ζ2+ζ3 and f̃ζ1+ζ2+ζ3 .

We can also consider the PHL scheme (31) based on the partially reduced BSDE
(II) with

D = {x = (xY )Y∈Y ∈ {0, 1}Y such that xY = 1 for Y ∈ Y•}.

To simulate the random treeT in (31), we follow the approach sketched before (31)
where, in order to evolveX according to the DMOgeneratorA during a time interval
ζ, a particle born from a node x = (jY )Y∈Y ∈ {0, 1}Y at time t, all one needs is, for
each Y such that jY = 1, draw an independent exponential random variable ηY of
parameter γY and then set x′ = (jY1[0,ηY )(ζ ))Y∈Y . Rephrasing in more algorithmic
terms:

1. To simulate the random tree T under the expectation in (31), we repeat the fol-
lowing step (generation of particles, or segments between consecutive nodes of
the tree) until a generation of particles dies without children:

For each node (t, x = (jY )Y∈Y , k) issued from the previous generation of particles
(starting with the root-node (0,X0, k = 1)), for each of the k new particles, indexed by
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l, issued from that node, simulate an independent exponential random variable ζl and
set

(t′l , x
′
l, k

′
l) = (t + ζl, (jY1[0,ηlY )(ζl))Y∈Y ,1x′

l∈Dνl),

where, for each l, theηlY are independent exponential-γY randomdraws and νl is an inde-
pendent draw in the finite set {0, 1, . . . , d}with some fixed probabilities p0, p1, . . . , pd .

2. To compute the random variable Φ under the expectation in (31), we loop over
the nodes of the tree T thus constructed (if T ⊂ [0,T ] × D, otherwise Φ = 0
in the first place) and we form the product in (31), where the āk(t, x) are retrieved
as in (30).

The PHL schemes (34) based on the full BSDE (I) or (36) based on the fully reduced
BSDE (III) can be implemented along similar lines.

We perform TVA computations in a DMO model with n = 120, for individual
shock intensities taken as γ{i} = 10−4 × (100 + i) (increasing from ∼100 bps to
220 bps as i increases from 1 to 120) and four nested groups of common shocks I1 ⊂
I2 ⊂ I3 ⊂ I4, respectively consisting of the riskiest 3, 9, 21 and 100% (i.e. all) names,
with respective shock intensities γI1 = 20 bp, γI2 = 10 bp, γI3 = 6.67 bp and γI4 = 5
bp. The counterparty (resp. the bank) is taken as the eleventh (resp. tenth) safest name
in the portfolio. In the model thus specified, we consider CDO tranches with upfront
payment, i.e. credit protection bought by the bank from the counterparty at time
0, with nominal 100 for each obligor, maturity T = 2 years and attachment (resp.
detachment) points are 0, 3 and 14% (resp. 3%, 14% and 100%). The respective
value of P0 (upfront payment) for the equity, mezzanine and senior tranche is 229.65,
5.68, and 2.99. Accordingly, the ranges of approximation chosen for pol(y) ≈ y+ in
the respective PHL schemes are 250, 200, and 10.We use polynomial approximation
of order d = 4 with (p0, p1, p2, p3, p4) = (0.5, 0.3, 0.1, 0.09, 0.01). We set μ = 0.1
in all PHL schemes and μ = 2/T = 0.2 in all FT schemes.
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Fig. 7 TVA on CDO tranches with 120 underlying names computed by FT scheme of order 1–3 for
different levels of nonlinearity (unsecured borrowingbasis λ̄).Left equity tranche.Middlemezzanine
tranche. Right senior tranche. Originally published in Crépey and Song [6]. Published with kind
permission of©Springer-Verlag Berlin Heidelberg 2016. All Rights Reserved. This figure is subject
to copyright protection and is not covered by a Creative Commmons License
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Table 3 FT, PHL, PHL and P̃HL schemes applied to the equity (top), mezzanine (middle), and
senior (bottom) tranche, for the parameters λ̄ = 0%, λIj = 60bp/j (left) or λ̄ = 3%, λIj = 20bp/j
(right)

Figure7 shows the TVA computed by the FT scheme (23) based on the fully
reduced BSDE (III), for different levels of nonlinearity (unsecured borrowing
basis λ̄). We observe that, in all cases, the third order term is negligible. Hence,
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published in Crépey and Song [6]. Published with kind permission of ©Springer-Verlag Berlin
Heidelberg 2016. All Rights Reserved. This figure is subject to copyright protection and is not
covered by a Creative Commmons License



Nonlinear Monte Carlo Schemes for Counterparty Risk on Credit Derivatives 79

0% 1% 2% 3%
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

λ̄

%
 r

el
 S

E
Relative SE of different tranches
with different borrowing spreads

 

 

eq
mezz
sen

0% 1% 2% 3%
3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

λ̄
%

 r
el

 S
E

Relative SE of different tranches
with different borrowing spreads

 

 

eq
mezz
sen

0% 1% 2% 3%
20

25

30

35

40

45

50

λ̄

%
 r

el
 S

E

Relative SE of different tranches
with different borrowing spreads

 

 

eq
mezz
sen

30 60 90 120
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of obligors

%
 r

el
 S

E

Relative SE of different tranches
with different dimensions

 

 

eq
mezz
sen

30 60 90 120
3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

Number of obligors

%
 r

el
 S

E

Relative SE of different tranches
with different dimensions

 

 

eq
mezz
sen

30 60 90 120
5

10

15

20

25

30

35

40

45

Number of obligors

%
 r

el
 S

E

Relative SE of different tranches
with different dimensions

 

 

eq
mezz
sen

Fig. 9 Bottom the % relative standard errors do not explode with the number of names
(λ̄ = 100 bp). Top the % relative standard errors do not explode with the level of nonlinearity
represented by the unsecured borrowing spread λ̄ (n = 120). Left FT scheme.Middle P̃HL scheme.
Right PHL scheme

in further FT computations, we only compute the orders 1 (linear part) and 2
(nonlinear correction) (Fig. 8). Table3 compares the results of the above FT scheme
(23) based on the fully reduced BSDE (III) with those of the PHL schemes (36)
based on (III) again (P̃HL in the tables), (31) based on the partially reduced BSDE
(II) (PHL in the tables) and (34) based on the full BSDE (I) (PHL in the tables),
for the three CDO tranches and two sets of parameters. The three PHL schemes are
of course slightly biased, but the first two, based on the BSDEs with null terminal
condition (III) or (II), exhibit much less variance than the third one, based on the
full BSDE with terminal condition ξ . This is also visible in Fig. 9 (note the different
scales of the y axes going from left to right in the picture), which also shows that, for
any of these schemes, the relative standard errors do not explode with the level of
nonlinearity or the number of reference names in the CDO (the results for the PHL
scheme are not shown on the figure as very similar to those of the P̃HL scheme). In
comparing the TVA values on the left and the right hand side of Table3, we see that
the intensities of the common shocks, which play a role similar to the correlation ρ

in the DGCmodel, have a more important impact on the higher tranches (mezzanine
and senior tranche), whereas the equity tranche is more sensitive to the level of the
unsecured borrowing spread λ̄.
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7 Conclusion

Under mild assumptions, three equivalent TVA BSDEs are available. The original
“full” BSDE (I) is stated with respect to the full model filtration G and the original
pricing measure Q. It does not involve the intensity γ of the counterparty first-to-
default time τ. The partially reduced BSDE (II) is also stated with respect to (G , Q)

but it involves both τ and γ . The fully reduced BSDE (III) is stated with respect to a
smaller “reference filtration” F and it only involves γ. Hence, in principle, the full
BSDE (I) should be preferred for models with a “simple” τ whereas the fully reduced
BSDE (III) should be preferred for models with a “simple” γ . But, in nonimmersive
setups, the fully reduced BSDE (III) is stated with respect to a modified probability
measure P. Even though switching from (G , Q) to (F , P) is transparent in terms of
the generator of related Markov factor processes, this can be an issue in situations
where the Markov structure is important in the theory to guarantee the validity of the
numerical schemes, but is not really practical from an implementation point of view.
This is for instance the casewith the credit portfoliomodels thatwe use for illustrative
purposes in our numerics, where theMarkov structure that emerges from the dynamic
copula model is too heavy and it is only the copula features that can be used in the
numerics—copula features under the original stochastic basis (G , Q), which do not
necessarily hold under a reduced basis (F , P) (especially when P �= Q). As for the
partially reduced BSDE (II), as compared with the full BSDE (I), its interest is its
null terminal condition, which is key for the FT scheme as recalled below. But of
course (II) can only be used when one has an explicit formula for γ .

For nonlinear and very high-dimensional problems such as counterparty risk on
credit derivatives, the only feasible numerical schemes are purely forward simu-
lation schemes, such as the linear Monte Carlo expansion of Fujii and Takahashi
[9, 10] or the branching particles scheme of Henry–Labordère [13], respectively
dubbed “FT scheme” and “PHL scheme” in the paper. In our setup, the PHL scheme
involves a nontrivial and rather sensitive fine-tuning for finding a polynomial in ϑ

that approximates the terms (Pt − ϑ)± in fvat(ϑ) in a suitable range for ϑ . This fine-
tuning requires a preliminary knowledge on the solution obtained by running another
approximation (linear approximation or FT scheme) in the first place. Another lim-
itation of the PHL scheme in our case is that it is more demanding than the FT
scheme in terms of the structural model properties that it requires. Namely, in our
credit portfolio problems, both aMarkov structure and a dynamic copula are required
for the PHL scheme. But, whereas a “weak” dynamic copula structure in the sense
of simulation and forward pricing by copula means is sufficient for the FT scheme,
a dynamic copula in the stronger sense that the copula structure is preserved in the
future is required in the case of the PHL scheme. This strong dynamic copula prop-
erty is satisfied by our common-shock model but not in the Gaussian copula model.
In conclusion, the FT schemes applied to the partially or fully reduced BSDEs (II)
or (III) (a null terminal condition is required so that the full BSDE (I) is not eligible
for this scheme) appear as the method of choice on these problems.
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An important message of the numerics is that, even for realistically high levels
of nonlinearity, i.e. an unsecured borrowing spread λ̄ = 3%, the third order FT
correction was always found negligible and the second order FT correction less than
5–10% of the first order, linear FT term. In conclusion, a first order FT term can
be used for obtaining “the best linear approximation” to our problem, whereas a
nonlinear correction, if wished, can be computed by a second order FT term.

Acknowledgements This research benefited from the support of the “Chair Markets in Transition”
under the aegis of Louis Bachelier laboratory, a joint initiative of École polytechnique, Université
d’Évry Val d’Essonne and Fédération Bancaire Française.
The KPMG Center of Excellence in Risk Management is acknowledged for organizing the confer-
ence “Challenges in Derivatives Markets - Fixed Income Modeling, Valuation Adjustments, Risk
Management, and Regulation”

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Com-
mons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Brigo,D., Chourdakis,K.: Counterparty risk for credit default swaps: impact of spread volatility
and default correlation. Int. J. Theor. Appl. Financ. 12(7), 1007–1026 (2008)

2. Brigo, D., Capponi, A., Pallavicini, A.: Arbitrage-free bilateral counterparty risk valuation
under collateralization and application to credit default swaps. Math. Financ. 24(1), 125–146
(2014)

3. Crépey, S.: Bilateral counterparty risk under funding constraints - Part II: CVA. Math. Financ.
25(1), 23–50 (2012)

4. Crépey, S., Song, S.: Invariant times. hal-01088940v1 (2014)
5. Crépey, S., Song, S.: BSDEs of counterparty risk. Stoch. Process. Appl. 125(8), 3023–3052

(2014)
6. Crépey, S., Song, S.: Counterparty risk and funding: immersion and beyond. Finance Stoch.

20(4), 901–930 (2016)
7. Crépey, S., Gerboud, R., Grbac, Z., Ngor, N.: Counterparty risk and funding: the four wings

of the TVA. Int. J. Theor. Appl. Financ. 16(2), 1350006(31 pp.) (2013)
8. Crépey, S., Bielecki, T.R., Brigo, D.: Counterparty Risk and Funding - A Tale of Two Puzzles.

Chapman and Hall/CRC Financial Mathematics Series. Chapman and Hall/CRC, Boca Raton
(2014)

9. Fujii, M., Takahashi, A.: Analytical approximation for non-linear FBSDEs with perturbation
scheme. Int. J. Theor. Appl. Financ. 15(5), 1250034(24) (2012)

10. Fujii, M., Takahashi, A.: Perturbative expansion of FBSDE in an incomplete market with
stochastic volatility. Q. J. Financ. 2(3), 1250015(24) (2012)

11. Fujii, M., Takahashi, A.: Collateralized credit default swaps and default dependence: implica-
tions for the central counterparties. J. Credit Risk 3(8), 97–113 (2012)

http://creativecommons.org/licenses/by/4.0/


82 S. Crépey and T.M. Nguyen

12. He, S.-W.,Wang, J.-G., Yan, J.-A.: Semimartingale Theory and Stochastic Calculus. CRCPress
Boca Raton (1992)

13. Henry-Labordère, P.: Cutting CVA’s complexity. Risk Mag. 25(7), 67–73 (2012)
14. Kruse, T., Popier, A.: BSDEs with jumps in a general filtration. arXiv:1412.4622 (2014)
15. Li, D.: On default correlation: a copula function approach. J. Fixed Income 9(4), 43–54 (2000)
16. McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-

Piskunov. Commun. Pure Appl. Math. 28(3), 323–331 (1975)

http://arxiv.org/abs/1412.4622

	Nonlinear Monte Carlo Schemes  for Counterparty Risk on Credit Derivatives
	1 Introduction
	2 Prices
	2.1 Setup
	2.2 Clean Price
	2.3 All-Inclusive Price

	3 TVA BSDEs
	3.1 Full TVA BSDE
	3.2 Partially Reduced TVA BSDE
	3.3 Fully Reduced TVA BSDE
	3.4 Marked Default Time Setup

	4 TVA Numerical Schemes
	4.1 Linear Approximation
	4.2 Linear Expansion and Interacting Particle Implementation
	4.3 Marked Branching Diffusion Approach

	5 TVA Models for Credit Derivatives 
	5.1 Dynamic Gaussian Copula TVA Model
	5.2 Dynamic Marshall--Olkin Copula TVA Model
	5.3 Strong Versus Weak Dynamic Copula Model

	6 Numerics
	6.1 Numerical Results in the DGC Model
	6.2 Numerical Results in the DMO Model

	7 Conclusion
	References


