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Abstract. Automatic strategy synthesis for a given control objective
can be used to generate correct-by-construction controllers of reactive
systems. The existing symbolic approach for continuous timed games
is a computationally hard task and current tools like UPPAAL TiGa
often scale poorly with the model complexity. We suggest an explicit
approach for strategy synthesis in the discrete-time setting and show that
even for systems with closed guards, the existence of a safety discrete-
time strategy does not imply the existence of a safety continuous-time
strategy and vice versa. Nevertheless, we prove that the answers to the
existence of discrete-time and continuous-time safety strategies coincide
on a practically motivated subclass of urgent controllers that either react
immediately after receiving an environmental input or wait with the
decision until a next event is triggered by the environment. We then
develop an on-the-fly synthesis algorithm for discrete timed-arc Petri net
games. The algorithm is implemented in our tool TAPAAL and based
on the experimental evidence, we discuss the advantages of our approach
compared to the symbolic continuous-time techniques.

1 Introduction

Formal methods and model checking techniques have been traditionally used
to verify whether a given system model complies with its specification. How-
ever, when we consider formal (game) models where both the controller and the
environment can make choices, the question now changes to finding a controller
strategy such that any behaviour under such a fixed strategy complies with the
given specification. The model checking approach can be used as a try-and-fail
technique to check whether a given controller is correct but automatic synthesis
of a controller correct-by-construction, as already proposed by Church [12,13],
is a more difficult problem as illustrated by the SYNTCOMP competition and
SYNT workshop [1]. This area has recently seen renewed interest, partly given
the rise in computational power that makes the synthesis feasible. We focus on
the family of timed systems, where for the model of timed automata [2] synthesis
has already been proposed [33] and implemented [4,11].

In the area of model checking, symbolic continuous-time on-the-fly methods
were ensuring the success of tools such as Kronos [9], UPPAAL [5], Tina [6]
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and Romeo [21], utilizing the zone abstraction approach [2] via the data struc-
ture DBM [16]. These symbolic techniques were recently employed in on-the-
fly algorithms [28] for synthesis of controllers for timed games [4,11,33]. While
these methods scale well for classical reachability, the limitation of symbolic
techniques is more apparent when used for liveness properties and for solving
timed games. We have shown that for reachability and liveness properties, the
discrete-time methods performing point-wise exploration of the state-space can
prove competitive on a wide range of problems [3], in particular in combination
with additional techniques as time-darts [25], constant-reducing approximation
techniques [7] and memory-preserving data structures as PTrie [24].

In this paper, we benefit from the recent advances in the discrete-time veri-
fication of timed systems and suggest an on-the-fly point-wise algorithm for the
synthesis of timed controllers relative to safety objectives (avoiding undesirable
behaviour). The algorithm is described for a novel game extension of the well-
studied timed-arc Petri net formalism [8,23] and we show that in the general
setting the existence of a controller for a safety objective in the discrete-time
setting does not imply the existence of such a controller in the continuous-time
setting and vice versa, not even for systems with closed guards—contrary to
the fact that continuous-time and discrete-time reachability problems coincide
for timed models [10], in particular also for timed-arc Petri nets [30]. However,
if we restrict ourselves to the practically relevant subclass of urgent controllers
that either react immediately to the environmental events or simply wait for
another occurrence of such an event, then we can use the discrete-time meth-
ods for checking the existence of a continuous-time safety controller on closed
timed-arc Petri nets. The algorithm for controller synthesis is implemented in the
tool TAPAAL [15], including the memory optimization technique via PTrie [24],
and the experimental data show a promising performance on a large data-set of
infinite job scheduling problems as well as on other examples.

Related Work. An on-the-fly algorithm for synthesizing continuous-time con-
trollers for both safety, reachability and time-optimal reachability for time
automata was proposed by Cassez et al. [11] and later implemented in the tool
UPPAAL TiGa [4]. This work is based on the symbolic verification techniques
invented by Alur and Dill [2] in combination with ideas on synthesis by Pnueli
et al. [33] and on-the-fly dependency graph algorithms suggested by Liu and
Smolka [28]. For timed games, abstraction refinement approaches have been
proposed and implemented by Peter et al. [31,32] and Finkbeiner and Peter
[19] as an attempt to speed up synthesis, while using the same underlying sym-
bolic representation as UPPAAL TiGa. These abstraction refinement methods
are complementary to the work presented here. Our work uses the formalism
of timed-arc Petri nets that has not been studied in this context before and we
rely on the methods with discrete interpretation of time as presented by Ander-
sen et al. [3]. As an additional contribution, we implement our solution in the
tool TAPAAL, utilizing memory reduction techniques by Jensen et al. [24], and
compare the performance of both discrete-time and continuous-time techniques.
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Fig. 1. A timed-arc Petri net game model of a harddisk

Control synthesis and supervisory control was also studied for the family of Petri
net models [17,18,34,36] but these works do not consider the timing aspects.

2 Motivating Example of Disk Operation Scheduling

We shall now provide an intuitive description of the timed-arc Petri net game
of disk operation scheduling in Fig. 1, modelling the scheduler of a mechanical
harddisk drive (left) and a number of read stream requests (right) that should be
fulfilled within a given deadline D. The net consists of places drawn as circles (the
dashed circle around the places R1, R2, R3 and Buffer simply means that these
places are shared between the two subnets) and transitions drawn as rectangles
that are either filled (controllable transitions) or framed only (environmental
transitions). Places can contain tokens (like the places R1 to R3 and the place
track1) and each token carries its own age. Initially all token ages are 0. The
net also contains arcs from places to transitions (input arcs) or transitions to
places (output arcs). The input arcs are further decorated with time intervals
restricting the ages of tokens that can be consumed along the arc. If the time
interval is missing, we assume the default [0,∞] interval not restricting the ages
of tokens in any way.

In the initial marking (token configuration) depicted in our example, the
two transitions connected by input arcs to the place track1 are enabled and
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the controller can decide to fire either of them. As the transitions contain a
white circle, they are urgent, meaning that time cannot pass as long at least
one urgent transition is enabled. Suppose now that the controller decides to fire
the transition on the left of the place track1. As a result of firing the transition,
the two tokens in R1 and track1 will be consumed and a new token of age 0
produced to the place W1. Tokens can be also transported via a pair of an input
and output transport arcs (not depicted in our example) that will transport the
token from the input to the output place while preserving its age.

In the new marking we just achieved, no transition is enabled due to the time
interval [1, 4] on the input arc of the environmental transition connected to the
place W1. However, after one time unit passes and the token in W1 becomes of
age 1, the transition becomes enabled and the environment may decide to fire it.
On the other hand, the place W1 also contains an age invariant ≤ 4, requiring
that the age of any token in that place may not exceed 4. Hence after age of the
token reaches 4, time cannot progress anymore and the environment is forced to
fire the transition, producing two fresh tokens into the places Buffer and track1.
Hence, reading the data from track 1 of the disk takes between 1 ms to 4 ms
(depending on the actual rotation of the disk) and it is the environment that
decides the actual duration of the reading operation.

The idea is that the disk has three tracks (positions of the reading head) and
at each track track i the controller has the choice of either reading the data from
the given track (assuming there is a reading request represented by a token in the
place Ri) or move the head to one of the neighbouring tracks (such a mechanical
move takes between 1 ms to 2 ms). The reading requests are produced by the
subnet on the right where the environment decides when to generate a reading
request in the interval between 6 ms to 10 ms. The number of tokens in the right
subnet represents the parallel reading streams. The net also contains inhibitor
arcs with a cirle-headed tip that prohibit the environmental transitions from
generating a reading request on a given track if there is already one. Finally, if
the reading request takes too long and the age of the token in Ri reaches the
age D, the environment has the option to place a token in the place Fail .

The control synthesis problem asks to find a strategy for firing the con-
trollable transitions that guarantees no failure, meaning that irrelevant of the
behaviour of the environment, the place Fail never becomes marked (safety con-
trol objective). The existence of such a control strategy depends on the cho-
sen value of D and the complexity of the controller synthesis problem can be
scaled by adding further tracks (in the subnet of the left) or allowing for more
parallel reading streams (in the subnet on the right). In what follows, we shall
describe how to automatically decide in the discrete-time setting (where time can
be increased only by nonnegative integer values) whether a controller strategy
exists. As the controllable transitions are urgent in our example, the existence of
such a discrete-time control strategy implies also the existence of a continuous-
time control strategy where the environment is free to fire transitions after an
arbitrary delay taken from the dense time domain.
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3 Definitions

Let N0 = N∪{0} and N
∞
0 = N0∪{∞}. Let R

≥0 be the set of all nonnegative real
numbers. A timed transition system (TTS) is a triple (S ,Act ,→) where S is the
set of states, Act is the set of actions and →⊆ S×(Act∪R

≥0)×S is the transition
relation written as s

a→ s′ whenever (s, a, s′) ∈ →. If a ∈ Act then we call it a
switch transition, if a ∈ R

≥0 we call it a delay transition. We also define the set
of well-formed closed time intervals as I def= {[a, b] | a ∈ N0, b ∈ N

∞
0 , a ≤ b} and

its subset I inv def= {[0, b] | b ∈ N
∞
0 } used in age invariants.

Definition 1 (Timed-Arc Petri Net). A timed-arc Petri net (TAPN) is a
9-tuple N = (P, T, Turg , IA,OA, g ,w ,Type, I ) where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– Turg ⊆ T is the set of urgent transitions,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA → I is a time constraint function assigning guards to input arcs such

that
• if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0,∞],

– w : IA ∪ OA → N is a function assigning weights to input and output arcs,
– Type : IA ∪ OA → Types is a type function assigning a type to all arcs

where Types = {Normal , Inhib} ∪ {Transportj | j ∈ N} such that
• if Type(z) = Inhib then z ∈ IA and g(z) = [0,∞],
• if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly one

(t, p′) ∈ OA such that Type((t, p′)) = Transportj,
• if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is exactly

one (p, t) ∈ IA such that Type((p, t)) = Transportj,
• if Type((p, t)) = Transportj = Type((t, p′)) then w((p, t)) = w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

Remark 1. Note that for transport arcs we assume that they come in pairs (for
each type Transportj) and that their weights match. Also for inhibitor arcs and
for input arcs to urgent transitions, we require that the guards are [0,∞]. This
restriction is important for some of the results presented in this paper and it also
guarantees that we can use DBM-based algorithms in the tool TAPAAL [15].

Before we give the formal semantics of the model, let us fix some notation.
Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be a TAPN. We denote by •x def= {y ∈
P ∪ T | (y, x) ∈ IA ∪ OA, Type((y, x)) 
= Inhib} the preset of a transition or a
place x. Similarly, the postset is defined as x• def= {y ∈ P ∪T | (x, y) ∈ (IA∪OA)}.
Let B(R≥0) be the set of all finite multisets over R

≥0. A marking M on N is
a function M : P −→ B(R≥0) where for every place p ∈ P and every token
x ∈ M(p) we have x ∈ I (p), in other words all tokens have to satisfy the age
invariants. The set of all markings in a net N is denoted by M(N).
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We write (p, x) to denote a token at a place p with the age x ∈ R
≥0. Then

M = {(p1, x1), (p2, x2), . . . , (pn, xn)} is a multiset representing a marking M
with n tokens of ages xi in places pi. We define the size of a marking as |M | =∑

p∈P |M(p)| where |M(p)| is the number of tokens located in the place p.

Definition 2 (Enabledness). Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be
a TAPN. We say that a transition t ∈ T is enabled in a marking M by the
multisets of tokens In = {(p, x1

p), (p, x2
p), . . . , (p, x

w((p,t))
p ) | p ∈ •t} ⊆ M and

Out = {(p′, x1
p′), (p′, x2

p′), . . . , (p′, xw((t,p′))
p′ ) | p′ ∈ t•} if

– for all input arcs except the inhibitor arcs, the tokens from In satisfy the age
guards of the arcs, i.e.

∀p ∈ •t. xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |M(p)| < w((p, t))

– for all input arcs and output arcs which constitute a transport arc, the age of
the input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj

⇒ (
xi

p = xi
p′ ∧ xi

p′ ∈ I (p′)
)
for 1 ≤ i ≤ w((p, t))

– for all normal output arcs, the age of the output token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′)) = Normal ⇒ xi
p′ = 0 for 1 ≤ i ≤ w((t, p′)).

A given TAPN N defines a TTS T (N) def= (M(N), T,→) where states are
the markings and the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can fire and produce the marking M ′ = (M � In) � Out where � is
the multiset sum operator and � is the multiset difference operator; we write
M

t→ M ′ for this switch transition.
– A time delay d ∈ R

≥0 is allowed in M if
• (x + d) ∈ I(p) for all p ∈ P and all x ∈ M(p), and
• if M

t→ M ′ for some t ∈ Turg then d = 0.
By delaying d time units in M we reach the marking M ′ defined as M ′(p) =
{x+ d | x ∈ M(p)} for all p ∈ P ; we write M

d→ M ′ for this delay transition.

Let →def=
⋃

t∈T
t→ ∪⋃

d∈R≥0
d→. By M

d,t→ M ′ we denote that there is a

marking M ′′ such that M
d→ M ′′ t→ M ′.

The semantics defined above in terms of timed transition systems is called
the continuous-time semantics. If we restrict the possible delay transitions to
take values only from nonnegative integers and the markings to be of the form
M : P −→ B(N0), we call it the discrete-time semantics.
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3.1 Timed-Arc Petri Net Game

We shall now extend the TAPN model into the game setting by partitioning the
set of transitions into the controllable and uncontrollable ones.

Definition 3 (Timed-Arc Petri Net Game). A Timed-Arc Petri Net Game
(TAPG) is a TAPN with its set of transitions T partitioned into the controller
Tctrl and environment Tenv sets.

Let G be a fixed TAPG. Recall that M(G) is the set of all markings over the
net G. A controller strategy for the game G is a function

σ : M(G) → M(G) ∪ {wait}
from markings to markings or the special symbol wait such that

– if σ(M) = wait then either M can delay forever (M d→ for all d ∈ R
≥0), or

there is d ∈ R
≥0 where M

d→ M ′ and for all d′′ ∈ R
≥0 for all t ∈ Tctrl we

have that if M ′ d′′
→ M ′′ then M ′′ t


→, and
– if σ(M) = M ′ then there is d ∈ R

≥0 and there is t ∈ Tctrl where M
d,t→ M ′.

Intuitively, a controller can in a given marking M either decide to wait indef-
initely (assuming that it is not forced by age invariants or urgency to perform
some controllable transition) or it can suggest a delay followed by a controllable
transition firing. The environment can in the marking M also propose to wait
(unless this is not possible due to age invariants or urgency) or suggest a delay
followed by firing of an uncontrollable transition. If both the controller and envi-
ronment propose transition firing, then the one preceding with a shorter delay
takes place. In the case where both the controller and the environment propose
the same delay followed by a transition firing, then any of these two firings can
(nondeterministically) happen. This intuition is formalized in the notion of plays
following a fixed controller strategy that summarize all possible executions for
any possible environment.

Let π = M1M2 . . . Mn . . . ∈ M(G)ω be an arbitrary finite or infinite sequence
of markings over G and let M be a marking. We define the concatenation of
M with π as M ◦ π = MM1 . . . Mn . . . and extend it to the sets of sequences
Π ⊆ M(G)ω so that M ◦ Π = {M ◦ π | π ∈ Π}.

Definition 4 (Plays According to the Strategy σ). Let G be a TAPG,
M a marking on G and σ a controller strategy for G. We define a function
Pσ : M(G) → 2M(G)ω

returning for a given marking M the set of all possible
plays starting from M under the strategy σ.

– If σ(M) = wait then Pσ(M) = {M ◦ Pσ(M ′) | d ∈ R
≥0, t ∈ Tenv , M

d,t→
M ′} ∪ X where X = {M} if M

d→ for all d ∈ R
≥0, or if there is d′ ∈ R

≥0

such that M
d′
→ M ′ and M ′ d′′


→ for any d′′ > 0 and M ′ t


→ for any t ∈ Tenv ,
otherwise X = ∅.
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– If σ(M) 
= wait then according to the definition of controller strategy we have

M
d,t→ σ(M) and we define Pσ(M) = {M ◦ Pσ(σ(M))} ∪ {M ◦ Pσ(M ′) | d′ ≤

d, t′ ∈ Tenv ,M
d′,t′
→ M ′}.

The first case says that the plays from the marking M where the controller
wants to wait consist either of the marking M followed by any play from a
marking M ′ that can be reached by the environment from M after some delay
and firing a transition from Tenv , or a finite sequence finishing the marking M
if it is the case that M can delay forever, or we can reach a deadlock where no
further delay is possible and no transition can fire.

The second case where the controller suggests a transition firing after some
delay, contains M concatenated with all possible plays from σ(M) and from
σ(M ′) for any M ′ that can be reached by the environment before or at the same
time the controller suggests to perform its move.

We can now define the safety objectives for TAPGs that are boolean expres-
sions over arithmetic predicates which observe the number of tokens in the dif-
ferent places of the net. Let ϕ be so a boolean combination of predicates of
the form e �� e where e:: = p | n | e + e | e − e | e ∗ e and where p ∈ P ,
��∈ {<,≤,=, 
=,≥, >} and n ∈ N0. The semantics of ϕ in a marking M is given
in the natural way, assuming that p stands for |M(p)| (the number of tokens in
the place p). We write M |= ϕ if ϕ evaluates in the marking M to true. We can
now state the safety synthesis problem.

Definition 5 (Safety Synthesis Problem). Given a marked TAPG G with
the initial marking M0 and a safety objective ϕ, decide if there is a controller
strategy σ such that

∀π ∈ Pσ(M0).∀M ∈ π.M |= ϕ. (1)

If Eq. (1) holds then we say that σ is a winning controller strategy for the objec-
tive ϕ.

4 Controller Synthesis in Continuous vs. Discrete Time

It is known that for classical TAPNs the continuous and discrete-time semantics
coincide up to reachability [30], which is what safety synthesis reduces to if the
set of controllable transitions is empty. Contrary to this, Fig. 2a and b show that
this does not hold in general for safety strategies.

For the game in Fig. 2a, there exists a strategy for the controller and the safety
objective Bad ≤ 0 but this is the case only in the continuous-time semantics as
the controller has to keep the age of the token in place P1 strictly below 1,
otherwise the environment can mark the place Bad by firing U1. However, if
the controller fires transition C1 without waiting, U2 becomes enabled and the
environment can again break the safety. Hence it is impossible to find a discrete-
time strategy as even the smallest possible delay of 1 time unit will enable
U1. However, if the controller waits an infinitesimal amount (in the continuous



Real-Time Strategy Synthesis for TAPN Games via Discretization 137

Fig. 2. Difference between continuous and discrete-time semantics

semantics) and fires C1, then U2 will not be enabled as the token in P2 aged
slightly. The controller can now fire C2 and repeat this strategy over and over
in order to keep the token in P1 from ever reaching the age of 1.

The counter example described before relies on Zeno behaviour, however,
this is not needed if we use transport arcs that do not reset the age of tokens
(depicted by arrows with diamond-headed tips), as demonstrated in Fig. 2c. Here
the only winning strategy for the controller to avoid marking the place Bad is
to delay some fraction and then fire T0. Any possible integer delay (1 or 0) will
enable the environment to fire U0 or U1 before the controller gets to fire T1.
Hence we get the following lemma.

Lemma 1. There is a TAPG and a safety objective where the controller has a
winning strategy in the continuous-time semantics but not in the discrete-time
semantics.

Figure 2b shows, on the other hand, that a safety strategy guaranteeing
Bad ≤ 0 exists only in the discrete-time semantics but not in the continuous-
time one where the environment can mark the place Bad by initially delaying
0.5 and then firing U0. This will produce a token in P1 which restricts the time
from progressing further and thus forces the controller to fire T3 as this is the
only enabled transition. On the other hand, in the discrete-time semantics the
environment can either fire U0 immediately but then T1 will be enabled, or it can
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wait (a minimum of one time unit), however then T2 will be enabled. Hence the
controller can in both cases avoid the firing of T3 in the discrete-time semantics.
This implies the following lemma.

Lemma 2. There is a TAPG and a safety objective where the controller has a
winning strategy in the discrete-time semantics but not in the continuous-time
semantics.

This indeed means that the continuous and discrete-time semantics are incom-
parable and it makes sense to consider both of them, depending on the concrete
application domain and the fact whether we consider discretized or continuous
time. Nevertheless, there is a practically relevant subclass of the problem where
we consider only urgent controllers and where the two semantics coincide. We
say that a given TAPG is with an urgent controller if all controllable transitions
are urgent, formally Tctrl ⊆ Turg .

Theorem 1. Let G be a TAPG with urgent controller and let ϕ be a safety
objective. There is a winning controller strategy for G and ϕ in the discrete-
time semantics iff there is a winning controller strategy for G and ϕ in the
continuous-time semantics.

Proof (Sketch). The existence of a winning controller strategy in the continuous-
time semantics clearly implies the existence of such a strategy also in the discrete-
time because here the environment is restricted to playing only integer delays
and the controller can always react to these according to the continuous-time
strategy that exists by our assumption. Because the controller is making only
urgent choices or waits for the next environmental move, all transitions happen
in the discrete-time points.

For the other direction, we prove the converse via the use of linear program-
ming as used e.g. in [30]. Assuming that the urgent controller does not have a
winning strategy in the continuous-time semantics, we will argue that the con-
troller does not have a winning strategy in the discrete-time semantics either.
Due to the assumption, we know that the environment can in any current mark-
ing choose a real-time delay and an uncontrollable transition in such a way that
irrelevant of what the controller chooses, it eventually reaches a marking vio-
lating the safety condition ϕ. Such an environmental strategy can be described
as a finite tree where nodes are markings, edges contain the information about
the delay and transition firing, the branching describes all controller choices and
each leaf of the tree is a marking that satisfies ¬ϕ. The existence of this envi-
ronmental strategy follows from the determinacy of the game that guarantees
that one of the players must have a winning strategy (to see this, we realize that
the environmental strategy contains only finite branches, all of them ending in
a marking satisfying ¬ϕ, and hence we have an instance of an open game that
is determined by the result of Gale and Stewart [20]—see also [22]).

As we assume that the environment can win in the continuous-time semantics,
the delays in the tree may be nonnegative real numbers (controller’s moves in
the tree are always with delay 0). Our aim is to show that there is another
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winning tree for the environment, however, with integer delays only. This can
be done by replacing the delays in the tree by variables and reformulating the
firing conditions of the transitions in the tree as a linear program. Surely, the
constraints in the linear program have, by our assumption, a nonnegative real
solution. Moreover, the constraint system uses only closed difference constraints
(nonstrictly bounding the difference of two variables from below or above) and we
can therefore reduce the linear program to a shortest-path problem with integer
weights only and this implies that an integer solution exists too [14]. This means
that there is a tree describing an environmental winning strategy using only
integer delays and hence the controller does not have a winning strategy in the
discrete-time setting. The technical details of the proof are provided in the full
version of the paper. ��

5 Discrete-Time Algorithm for Controller Synthesis

We shall now define the discrete-time algorithm for synthesizing controller strate-
gies for TAPGs. As the state-space of a TAPG is infinite in several aspects (the
number of tokens in reachable markings can be unbounded and even for bounded
nets the ages of tokens can be arbitrarily large), the question of deciding the
existence of a controller strategy is in general undecidable (already the classical
reachability is undecidable [35] for TAPNs).

We address the undecidability issue by enforcing a given constant k, bounding
the number of tokens in any marking reached by the controller strategy. This
means that instead of checking the safety objective ϕ, we verify instead the
safety objective ϕk = ϕ ∧ k ≥ ∑

p∈P p that at the same time ensures that the
total number of tokens is at most k. This will, together with the extrapolation
technique below, guarantee the termination of the algorithm.

5.1 Extrapolation of TAPGs

We shall now recall a few results from [3] that allow us to make finite abstractions
of bounded nets (in the discrete-time semantics). The theorems and lemmas in
the rest of this section hold also for continuous-time semantics, however, the
finiteness of the extrapolated state space is not guaranteed in this case.

Let G = (P, T, Tenv , Tctrl , Turg , IA,OA, g ,w ,Type, I ) be a TAPG. In [3] the
authors provide an algorithm for computing a function Cmax : P → (N0 ∪
{−1}) returning for each place p ∈ P the maximum constant associated to this
place, meaning that the ages of tokens in place p that are strictly greater than
Cmax(p) are irrelevant. The function Cmax(p) for a given place p is computed by
essentially taking the maximum constant appearing in any outgoing arc from p
and in the place invariant of p, where a special care has to be taken for places with
outgoing transport arcs (details are discussed in [3]). In particular, places where
Cmax(p) = −1 are the so-called untimed places where the age of tokens is not
relevant at all, implying that all the intervals on their outgoing arcs are [0,∞].
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Let M be a marking of G. We split it into two markings M> and M≤ where
M>(p) = {x ∈ M(p) | x > Cmax(p)} and M≤(p) = {x ∈ M(p) | x ≤ Cmax(p)}
for all places p ∈ P . Clearly, M = M> � M≤.

We say that two markings M and M ′ in the net G are equivalent, written
M ≡ M ′, if M≤ = M ′

≤ and for all p ∈ P we have |M>(p)| = |M ′
>(p)|. In other

words M and M ′ agree on the tokens with ages below the maximum constants
and have the same number of tokens above the maximum constant.

The relation ≡ is an equivalence relation and it is also a timed bisimulation
(see e.g. [27]) where delays and transition firings on one side can be matched by
exactly the same delays and transition firings on the other side and vice versa.

Theorem 2 ([3]). The relation ≡ is a timed bisimulation.

We can now define canonical representatives for each equivalence class of ≡.

Definition 6 (Cut). Let M be a marking. We define its canonical marking
cut(M) by cut(M)(p) = M≤(p) � {

Cmax(p) + 1, . . . ,Cmax(p) + 1
︸ ︷︷ ︸

|M>(p)| times

}
.

Lemma 3 ([3]). Let M , M1 and M2 be markings. Then (i) M ≡ cut(M), and
(ii) M1 ≡ M2 if and only if cut(M1) = cut(M2).

5.2 The Algorithm

After having introduced the extrapolation function cut and our enforcement of
the k-bound, we can now design an algorithm for computing a controller strategy
σ, provided such a strategy exists.

Algorithm 1 describes a discrete-time method to check if there is a controller
strategy or not. It is centered around four data structures: Waiting for storing
markings to be explored, Losing that contains marking where such a strategy
does not exist, Depend for maintaining the set of dependencies to be reinserted
to the waiting list whenever a marking is declared as losing, and Processed for
already processed markings. All markings in the algorithm are always consid-
ered modulo the cut extrapolation. The algorithm performs a forward search by
repeatedly selecting a marking M from Waiting and if it can determine that
the controller cannot win from this marking, then M gets inserted into the set
Losing while the dependencies of M are put to the set Waiting in order to back-
ward propagate this information. If the initial marking is ever inserted to the set
Losing , we can terminate and announce that a controller strategy does not exist.
If this is not the case and there are no more markings in the set Waiting , then
we terminate with success. In this case, it is also easy to construct the controller
strategy by making choices so that the set Losing is avoided.

Theorem 3 (Correctness). Algorithm 1 terminates and returns tt if and only
if there is a controller strategy for the safety objective ϕk = ϕ ∧ k ≥ ∑

p∈P p.
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Algorithm 1. Safety Synthesis Algorithm
Input: A TAPG G = (P, T, Tenv , Tctrl , Turg , IA,OA, g ,w ,Type, I ), initial

marking M0, a safety objective ϕ and a bound k.
Output: tt if there exists a controller strategy ensuring ϕ and not exceeding k

tokens in any intermediate marking, ff otherwise
1 begin
2 Waiting := Losing := Processed = ∅; ϕk = ϕ ∧ k ≥∑p∈P p;

3 M ← cut(M0); Depend [M ] ← ∅;
4 if M �|= ϕk then
5 Losing ← {M}
6 else
7 Waiting ← {M}
8 while Waiting �= ∅ ∧ cut(M0) �∈ Losing do
9 M ← pop(Waiting);

10 Succsenv := {cut(M ′) | t ∈ Tenv , M
t→ M ′};

11 Succsctrl := {cut(M ′) | t ∈ Tctrl , M
t→ M ′};

12 Succsdelay :=

⎧
⎨

⎩
∅ if M

1

�→
{cut(M ′)} if M

1→ M ′

13 if ∃M ′ ∈ Succsenv s.t. M ′ �|= ϕk ∨ M ′ ∈ Losing then
14 Losing ← Losing ∪ {M};
15 Waiting ← (Waiting ∪ Depend [M ]) \ Losing ;

16 else
17 if Succsctrl ∪ Succsdelay �= ∅ ∧ ∀M ′ ∈ Succsctrl ∪ Succsdelay.

M ′ �|= ϕk ∨ M ′ ∈ Losing then
18 Losing ← Losing ∪ {M};
19 Waiting ← (Waiting ∪ Depend [M ]) \ Losing ;

20 else
21 if M �∈ Processed then
22 foreach M ′ ∈ (Succsctrl ∪ Succsenv ∪ Succsdelay) do
23 if M ′ �∈ Losing ∧ M ′ |= ϕk then
24 Depend [M ′] ← Depend [M ′] ∪ {M};
25 Waiting ← Waiting ∪ {M ′};

26 Processed ← Processed ∪ {M};

27 return tt if cut(M0) �∈ Losing, else ff

6 Experiments

The discrete-time controller synthesis algorithm was implemented in the tool
TAPAAL [15] and we evaluate the performance of the implementation by com-
paring it to UPPAAL TiGa [4] version 0.18, the state-of-the-art continuous-time
model checker for timed games. The experiments were run on AMD Opteron
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Table 1. Time in seconds to find a controller strategy for the disk operation scheduling
for the smallest D where such a strategy exists.

1 Stream D = 133 D = 173 D = 213 D = 253 D = 293 D = 333 D = 373
Tracks 70 90 110 130 150 170 190

TAPAAL 30.14s 69.78s 128.58s 216.44s 316.71s 491.65s 665.34s
UPPAAL 36.41s 76.63s 193.37s 351.17s 509.46s 1022.83s 1604.04s

2 Streams D = 19 D = 27 D = 35 D = 43 D = 51 D = 59 D = 67
Tracks 6 8 10 12 14 16 18

TAPAAL 1.98s 7.34s 30.73s 101.92s 210.25s 398.00s 768.11s
UPPAAL 19.11s 93.46s 436.15s 1675.85s 3328.66s

3 Streams D = 17 D = 21 D = 25 D = 29 D = 35 D = 39 D = 43
Tracks 3 4 5 6 7 8 9

TAPAAL 2.20s 16.52s 72.41s 244.28s 885.60s (2132.71s)
UPPAAL 885.56s

6376 processor limited to using 16 GB of RAM1 and with one hour timeout
(denoted by �).

6.1 Disk Operation Scheduling

In the disk operation scheduling model presented in Sect. 2 we scale the problem
by changing the number of tracks and the number of simultaneous read streams.
A similar model using the timed automata formalism was created for UPPAAL
TiGa. We then ask whether a controller exists respecting a fixed deadline D for
all requests. For each instance of the problem, we report the computation time
for the smallest deadline D such that it is possible to synthesize a controller.
Notice that the disk operating scheduling game net has an urgent controller,
hence the discrete and continuous-time semantics coincide.

The results in Table 1 show that our algorithm scales considerably better
than TiGa (that suffers from the large fragmentation of zone federations) as the
number of tracks increases and it is significantly better when we add more read
streams (and hence increase the concurrency and consequently the number of
timed tokens/clocks).

6.2 Infinite Job Shop Scheduling

In our second experiment, infinite job shop scheduling, we consider the duration
probabilistic automata [29]. Kempf et al. [26] showed that “non-lazy” schedulers
are sufficient to guarantee optimality in this class of automata. Here non-lazy
means that the controller only chooses what to schedule at the moment when
a running task has just finished (the time of this event is determined by the

1 UPPAAL TiGa only exists in a 32 bit version, but for none of the tests the 4GB
limit was exceeded for UPPAAL TiGa.
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Table 2. Results for infinite scheduling of DPAs. The first row in each age-instance
is TAPAAL, the second line is UPPAAL TiGa. The format is (X) Y s where X the
number of solved instances (within 3600 s) out of 100 and Y is the median time needed
to solve the problem. The largest possible constant for each row is given as an upper
bound of the deadline D.

2 Processes/7-13 tokens

Max Age 10 Tasks 12 Tasks 14 Tasks 16 Tasks 18 Tasks

5 (100) 63s (100) 141s (100) 283s (100) 570s (100) 829s
D ≤ 144 (100) 100s (98) 413s (85) 1201s (35) (18)

10 (100) 318s (100) 882s (96) 1555s (65) 2911s (14)
D ≤ 288 (96) 221s (69) 1443s (43) (16) (1)

15 (99) 1054s (78) 2521s (19) (14) (2)
D ≤ 432 (87) 315s (60) 1960s (19) (8) (0)

20 (80) 2479s (22) (14) (3) (2)
D ≤ 576 (90) 554s (66) 2914s (34) (4) (1)

3 Processes/10-19 tokens

Max Age 2 Tasks 3 Tasks 4 Tasks 5 Tasks 6 Tasks

5 (100) 2s (100) 39s (99) 402s (66) 1884s (38)
D ≤ 57 (99) 16s (69) 1827s (4) (0) (0)

10 (100) 15s (97) 484s (47) (20) (6)
D ≤ 114 (98) 32s (52) 3338s (6) (0) (0)

15 (100) 51s (69) 1373s (28) (4) (0)
D ≤ 171 (98) 27s (50) (1) (0) (0)

4 Processes/13-25 tokens

Max Age 2 Tasks 3 Tasks 4 Tasks 5 Tasks 6 Tasks

5 (92) 215s (30) (7) (1) (0)
D ≤ 66 (3) (0) (0) (0) (0)

10 (60) 2286s (11) (2) (0) (0)
D ≤ 132 (0) (0) (0) (0) (0)

environment). We consider here a variant of this problem that should guarantee
an infinite (cyclic) scheduling where all processes that share various resources
and must meet their deadlines. The countdown of a process is started when
its first task is initiated and the process deadline is met if the process is able
to execute its last task within the deadline. After such a completed cycle, the
process starts from its initial configuration and the deadline-clock is restarted.
The task of the controller is now to find a schedule such that all processes always
meet their deadline. The problem can be modelled using urgent controller, so
the discrete and continuous-time semantics again coincide.

The problem is scaled by the number of parallel processes, number of tasks in
each processes and the size of constants used in guards (excepted the deadline D
that contains a considerably larger constant). For each set of scaling parameters,
we generated 100 random instances of the problem and report on the number of
cases where the tool answered the synthesis problem (within one hour deadline)
and if more than 50 instances were solved, we also compute the median of the
running time.
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The comparison with UPPAAL TiGa in Table 2 shows a similar trend as in
the previous experiment. Our algorithm scales nicely as we increase the number
of tasks as well as the number of processes. This is due to the fact that the zone
fragmentation in TiGa increases with the number of parallel components and
more distinct guards. When scaling the size of constants, the performance of the
discrete-time method gets worse and eventually UPPAAL TiGa can solve more
instances.

7 Conclusion

We introduced timed-arc Petri net games and showed that for urgent controllers,
the discrete and continuous-time semantics coincide. The presented discrete-time
method for solving timed-arc Petri net games scales considerably better with the
growing size of problems, compared to the existing symbolic methods. On the
other hand, symbolic methods scale better with the size of the constants used in
the model. In the future work, we may try to compensate for this drawback by
using approximate techniques that “shrink” the constants to reasonable ranges
while still providing conclusive answers in many cases, as demonstrated for pure
reachability queries in [7]. Another future work includes the study of different
synthesis objectives, as well as the generation of continuous-time strategies from
discrete-time analysis techniques on the subclass of urgent controllers.
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