Skip to main content

Wnt/Sclerostin and the Relation with Vitamin D in Chronic Kidney Disease

  • Chapter
  • First Online:
Vitamin D in Chronic Kidney Disease

Abstract

The skeleton, while strong, isn’t made of static tissue. It is a highly dynamic organ that constantly undergoes changes and regeneration. A continuous change is taking place, as osteoclasts degrade bone and osteoblasts rebuild new bone. This ongoing skeletal adaptation is greatly influenced by the amount of mechanical strain that the skeleton senses as a result of everyday movement and physical activity. However, many burning questions were, at least until recently, without an answer. In particular, was how does the skeleton “feel” mechanical strain and maybe most importantly how does it turn this information into the act of making more or less bone?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poole KE, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19(13):1842–4.

    CAS  PubMed  Google Scholar 

  2. Robling AG, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.

    Article  CAS  PubMed  Google Scholar 

  3. Pelletier S, et al. The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol. 2013;8(5):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cejka D, et al. Renal elimination of sclerostin increases with declining kidney function. J Clin Endocrinol Metab. 2014;99(1):248–55.

    Article  CAS  PubMed  Google Scholar 

  5. Sabbagh Y, et al. Repression of osteocyte Wnt/beta-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012;27(8):1757–72.

    Article  CAS  PubMed  Google Scholar 

  6. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005;37(2):148–58.

    Article  CAS  PubMed  Google Scholar 

  7. Llach F, et al. Skeletal resistance to endogenous parathyroid hormone in patients with early renal failure. A possible cause for secondary hyperparathyroidism. J Clin Endocrinol Metab. 1975;41(2):339–45.

    Article  CAS  PubMed  Google Scholar 

  8. Padhi D, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  9. Kanbay M, et al. Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients. J Clin Endocrinol Metab. 2014;99(10):E1854–61.

    Article  CAS  PubMed  Google Scholar 

  10. Atkins GJ, et al. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res. 2011;26(7):1425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asamiya Y, et al. Associations between the levels of sclerostin, phosphate, and fibroblast growth factor-23 and treatment with vitamin D in hemodialysis patients with low intact PTH level. Osteoporos Int. 2015;26(3):1017–28.

    Article  CAS  PubMed  Google Scholar 

  12. de Oliveira RA, et al. Peritoneal dialysis per se is a risk factor for sclerostin-associated adynamic bone disease. Kidney Int. 2015;87(5):1039–45.

    Article  PubMed  Google Scholar 

  13. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;(113):S1–130.

    Google Scholar 

  14. Bonani M, et al. Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press Res. 2014;39(4):230–9.

    Article  CAS  PubMed  Google Scholar 

  15. Haas MH. The risk of death in patients with a high coronary calcification score: does it include predialysis patients? Kidney Int. 2010;77(12):1057–9.

    Article  PubMed  Google Scholar 

  16. Viaene L, et al. Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis? Nephrol Dial Transplant. 2013;28(12):3024–30.

    Article  CAS  PubMed  Google Scholar 

  17. Hampson G, et al. The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone. 2013;56(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  18. Didangelos A, et al. Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach. Mol Cell Proteomics. 2011;10(8):M111.008128.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang CY, et al. Circulating Wnt/beta-catenin signalling inhibitors and uraemic vascular calcifications. Nephrol Dial Transplant. 2015;30(8):1356–63.

    Article  PubMed  Google Scholar 

  20. Drechsler C, et al. High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: results from the NECOSAD study. Nephrol Dial Transplant. 2015;30(2):288–93.

    Article  PubMed  Google Scholar 

  21. Delanaye P, et al. Clinical and biological determinants of sclerostin plasma concentration in hemodialysis patients. Nephron Clin Pract. 2014;128(1–2):127–34.

    Article  CAS  PubMed  Google Scholar 

  22. Nowak A, et al. Sclerostin quo vadis? – is this a useful long-term mortality parameter in prevalent hemodialysis patients? Kidney Blood Press Res. 2015;40(3):266–76.

    Article  CAS  PubMed  Google Scholar 

  23. Suda T, et al. Vitamin D and bone. J Cell Biochem. 2003;88(2):259–66.

    Article  CAS  PubMed  Google Scholar 

  24. Atkins GJ, et al. RANKL expression is related to the differentiation state of human osteoblasts. J Bone Miner Res. 2003;18(6):1088–98.

    Article  CAS  PubMed  Google Scholar 

  25. Matsumoto T, et al. Stimulation by 1,25-dihydroxyvitamin D3 of in vitro mineralization induced by osteoblast-like MC3T3-E1 cells. Bone. 1991;12(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  26. Wijenayaka AR, et al. 1alpha,25-dihydroxyvitamin D3 stimulates human SOST gene expression and sclerostin secretion. Mol Cell Endocrinol. 2015;413:157–67.

    Article  CAS  PubMed  Google Scholar 

  27. Menon VB, et al. Expression of fibroblast growth factor 23, vitamin D receptor, and sclerostin in bone tissue from hypercalciuric stone formers. Clin J Am Soc Nephrol. 2014;9(7):1263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cidem M, et al. Serum sclerostin is decreased following vitamin D treatment in young vitamin D-deficient female adults. Rheumatol Int. 2015;35(10):1739–42.

    Article  CAS  PubMed  Google Scholar 

  29. Moe SM, et al. Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy. J Bone Miner Res. 2015;30(3):499–509.

    Article  PubMed  Google Scholar 

  30. Fang Y, et al. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol. 2014;25(8):1760–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qureshi AR, et al. Increased circulating sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int. 2015;88:1356–64.

    Google Scholar 

  32. Claes KJ, et al. Sclerostin: Another vascular calcification inhibitor? J Clin Endocrinol Metab. 2013;98:3221–8.

    Google Scholar 

  33. Desjardins L, et al. Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol Ther. 2014;10:463–70.

    Google Scholar 

  34. Balci M, et al. Sclerostin as a new key player in arteriovenous fistula calcification. Herz. 2015;40:289–97.

    Google Scholar 

  35. Pelletier S, et al. Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos Int. 2015;26:2165–74.

    Google Scholar 

  36. Kim KI, et al. A novel biomarker of coronary atherosclerosis: serum DKK1 concentration correlates with coronary artery calcification and atherosclerotic plaques. J Korean Med Sci. 2011;26:

    Google Scholar 

  37. Goncalves FL, et al. Serum sclerostin is an independent predictor of mortality in hemodialysis patients. BMC Nephrol. 2014;15:190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mugurel Apetrii MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Apetrii, M., Covic, A. (2016). Wnt/Sclerostin and the Relation with Vitamin D in Chronic Kidney Disease. In: Ureña Torres, P., Cozzolino, M., Vervloet, M. (eds) Vitamin D in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-32507-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32507-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32505-7

  • Online ISBN: 978-3-319-32507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics