
4Solving Ordinary Differential Equations

Differential equations constitute one of the most powerful mathematical tools to
understand and predict the behavior of dynamical systems in nature, engineering,
and society. A dynamical system is some system with some state, usually expressed
by a set of variables, that evolves in time. For example, an oscillating pendulum,
the spreading of a disease, and the weather are examples of dynamical systems. We
can use basic laws of physics, or plain intuition, to express mathematical rules that
govern the evolution of the system in time. These rules take the form of differential
equations. You are probably well experienced with equations, at least equations like
axCb D 0 or ax2CbxCc D 0. Such equations are known as algebraic equations,
and the unknown is a number. The unknown in a differential equation is a function,
and a differential equation will almost always involve this function and one or more
derivatives of the function. For example, f 0.x/ D f .x/ is a simple differential
equation (asking if there is any function f such that it equals its derivative – you
might remember that ex is a candidate).

The present chapter starts with explaining how easy it is to solve both single
(scalar) first-order ordinary differential equations and systems of first-order differ-
ential equations by the Forward Euler method. We demonstrate all the mathematical
and programming details through two specific applications: population growth and
spreading of diseases.

Then we turn to a physical application: oscillating mechanical systems, which
arise in a wide range of engineering situations. The differential equation is now of
second order, and the Forward Euler method does not perform well. This observa-
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96 4 Solving Ordinary Differential Equations

tion motivates the need for other solution methods, and we derive the Euler-Cromer
scheme1, the 2nd- and 4th-order Runge-Kutta schemes, as well as a finite difference
scheme (the latter to handle the second-order differential equation directly without
reformulating it as a first-order system). The presentation starts with undamped
free oscillations and then treats general oscillatory systems with possibly nonlinear
damping, nonlinear spring forces, and arbitrary external excitation. Besides de-
veloping programs from scratch, we also demonstrate how to access ready-made
implementations of more advanced differential equation solvers in Python.

As we progress with more advanced methods, we develop more sophisticated
and reusable programs, and in particular, we incorporate good testing strategies so
that we bring solid evidence to correct computations. Consequently, the beginning
with population growth and disease modeling examples has a very gentle learning
curve, while that curve gets significantly steeper towards the end of the treatment
of differential equations for oscillatory systems.

4.1 Population Growth

Our first taste of differential equations regards modeling the growth of some pop-
ulation, such as a cell culture, an animal population, or a human population. The
ideas even extend trivially to growth of money in a bank. Let N.t/ be the number
of individuals in the population at time t . How can we predict the evolution of N.t/

in time? Below we shall derive a differential equation whose solution is N.t/. The
equation reads

N 0.t/ D rN.t/; (4.1)

where r is a number. Note that although N is an integer in real life, we model N as
a real-valued function. We are forced to do this because the solution of differential
equations are (normally continuous) real-valued functions. An integer-valued N.t/

in the model would lead to a lot of mathematical difficulties.
With a bit of guessing, you may realize that N.t/ D Cert , where C is any

number. To make this solution unique, we need to fix C , done by prescribing the
value of N at some time, usually t D 0. Say N.0/ is given as N0. Then N.t/ D
N0e

rt .
In general, a differential equation model consists of a differential equation, such

as (4.1) and an initial condition, such as N.0/ D N0. With a known initial con-
dition, the differential equation can be solved for the unknown function and the
solution is unique.

It is, of course, very seldom that we can find the solution of a differential equa-
tion as easy as in this example. Normally, one has to apply certain mathematical
methods, but these can only handle some of the simplest differential equations.
However, we can easily deal with almost any differential equation by applying nu-
merical methods and a bit of programming. This is exactly the topic of the present
chapter.

1 The term scheme is used as synonym for method or computational recipe, especially in the con-
text of numerical methods for differential equations.
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4.1.1 Derivation of theModel

It can be instructive to show how an equation like (4.1) arises. Consider some
population of (say) an animal species and let N.t/ be the number of individuals
in a certain spatial region, e.g. an island. We are not concerned with the spatial
distribution of the animals, just the number of them in some spatial area where
there is no exchange of individuals with other spatial areas. During a time interval
�t , some animals will die and some new will be born. The number of deaths and
births are expected to be proportional to N . For example, if there are twice as many
individuals, we expect them to get twice as many newborns. In a time interval �t ,
the net growth of the population will be

N.t C �t/ � N.t/ D NbN.t/ � NdN.t/;

where NbN.t/ is the number of newborns and NdN.t/ is the number of deaths. If
we double �t , we expect the proportionality constants Nb and Nd to double too, so it
makes sense to think of Nb and Nd as proportional to �t and “factor out” �t . That
is, we introduce b D Nb=�t and d D Nd=�t to be proportionality constants for
newborns and deaths independent of �t . Also, we introduce r D b � d , which is
the net rate of growth of the population per time unit. Our model then becomes

N.t C �t/ � N.t/ D �t rN.t/ : (4.2)

Equation (4.2) is actually a computational model. Given N.t/, we can advance
the population size by

N.t C �t/ D N.t/ C �t rN.t/ :

This is called a difference equation. If we know N.t/ for some t , e.g., N.0/ D N0,
we can compute

N.�t/ D N0 C �t rN0;

N.2�t/ D N.�t/ C �t rN.�t/;

N.3�t/ D N.2�t/ C �t rN.2�t/;

:::

N..k C 1/�t/ D N.k�t/ C �t rN.k�t/;

where k is some arbitrary integer. A computer program can easily compute N..k C
1/�t/ for us with the aid of a little loop.

Warning
Observe that the computational formula cannot be started unless we have an
initial condition!

The solution of N 0 D rN is N D Cert for any constant C , and the initial
condition is needed to fix C so the solution becomes unique. However, from
a mathematical point of view, knowing N.t/ at any point t is sufficient as initial
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condition. Numerically, we more literally need an initial condition: we need to
know a starting value at the left end of the interval in order to get the computa-
tional formula going.

In fact, we do not need a computer since we see a repetitive pattern when doing
hand calculations, which leads us to a mathematical formula for N..k C 1/�t/, :

N..k C 1/�t/ D N.k�t/ C �t rN.k�t/ D N.k�t/.1 C �t r/

D N..k � 1/�t/.1 C �t r/2

:::

D N0.1 C �t r/kC1 :

Rather than using (4.2) as a computational model directly, there is a strong tra-
dition for deriving a differential equation from this difference equation. The idea is
to consider a very small time interval �t and look at the instantaneous growth as
this time interval is shrunk to an infinitesimally small size. In mathematical terms,
it means that we let �t ! 0. As (4.2) stands, letting �t ! 0 will just produce an
equation 0 D 0, so we have to divide by �t and then take the limit:

lim
�t!0

N.t C �t/ � N.t/

�t
D rN.t/ :

The term on the left-hand side is actually the definition of the derivative N 0.t/, so
we have

N 0.t/ D rN.t/;

which is the corresponding differential equation.
There is nothing in our derivation that forces the parameter r to be constant –

it can change with time due to, e.g., seasonal changes or more permanent environ-
mental changes.

Detour: Exact mathematical solution
If you have taken a course on mathematical solution methods for differential
equations, you may want to recap how an equation likeN 0 D rN orN 0 D r.t/N

is solved. The method of separation of variables is the most convenient solution
strategy in this case:

N 0 D rN

dN

dt
D rN

dN

N
D rdt

NZ

N0

dN

N
D

tZ

0

rdt
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lnN � lnN0 D
tZ

0

r.t/dt

N D N0 exp

0
@

tZ

0

r.t/dt

1
A;

which for constant r results in N D N0e
rt . Note that exp .t/ is the same as et .

As will be described later, r must in more realistic models depend on N . The
method of separation of variables then requires to integrate

R N

N0
N=r.N /dN ,

which quickly becomes non-trivial for many choices of r.N /. The only gener-
ally applicable solution approach is therefore a numerical method.

4.1.2 Numerical Solution

There is a huge collection of numerical methods for problems like (4.2), and in
general any equation of the form u0 D f .u; t/, where u.t/ is the unknown function
in the problem, and f is some known formula of u and optionally t . For example,
f .u; t/ D ru in (4.2). We will first present a simple finite difference method solving
u0 D f .u; t/. The idea is four-fold:

1. Introduce a mesh in time with Nt C1 points t0; t1; : : : ; tNt
. We seek the unknown

u at the mesh points tn, and introduce un as the numerical approximation to
u.tn/, see Fig. 4.1.

2. Assume that the differential equation is valid at the mesh points.
3. Approximate derivatives by finite differences, see Fig. 4.2.
4. Formulate a computational algorithm that can compute a new value un based on

previously computed values ui , i < n.

An example will illustrate the steps. First, we introduce the mesh, and very
often the mesh is uniform, meaning that the spacing between points tn and tnC1 is
constant. This property implies that

tn D n�t; n D 0; 1; : : : ; Nt :

Second, the differential equation is supposed to hold at the mesh points. Note that
this is an approximation, because the differential equation is originally valid at all
real values of t . We can express this property mathematically as

u0.tn/ D f .un; tn/; n D 0; 1; : : : ; Nt :

For example, with our model equation u0 D ru, we have the special case

u0.tn/ D run; n D 0; 1; : : : ; Nt ;

or
u0.tn/ D r.tn/un; n D 0; 1; : : : ; Nt ;

if r depends explicitly on t .
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Fig. 4.1 Mesh in time with corresponding discrete values (unknowns)

Fig. 4.2 Illustration of a forward difference approximation to the derivative

Third, derivatives are to be replaced by finite differences. To this end, we need
to know specific formulas for how derivatives can be approximated by finite dif-
ferences. One simple possibility is to use the definition of the derivative from any
calculus book,

u0.t/ D lim
�t!0

u.t C �t/ � u.t/

�t
:

At an arbitrary mesh point tn this definition can be written as

u0.tn/ D lim
�t!0

unC1 � un

�t
:
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Instead of going to the limit �t ! 0 we can use a small �t , which yields a com-
putable approximation to u0.tn/:

u0.tn/ � unC1 � un

�t
:

This is known as a forward difference since we go forward in time (unC1) to collect
information in u to estimate the derivative. Figure 4.2 illustrates the idea. The error
of the forward difference is proportional to �t (often written as O.�t/, but we will
not use this notation in the present book).

We can now plug in the forward difference in our differential equation sampled
at the arbitrary mesh point tn:

unC1 � un

�t
D f .un; tn/; (4.3)

or with f .u; t/ D ru in our special model problem for population growth,

unC1 � un

�t
D run : (4.4)

If r depends on time, we insert r.tn/ D rn for r in this latter equation.
The fourth step is to derive a computational algorithm. Looking at (4.3), we

realize that if un should be known, we can easily solve with respect to unC1 to get
a formula for u at the next time level tnC1:

unC1 D un C �tf .un; tn/ : (4.5)

Provided we have a known starting value, u0 D U0, we can use (4.5) to advance the
solution by first computing u1 from u0, then u2 from u1, u3 from u2, and so forth.

Such an algorithm is called a numerical scheme for the differential equation and
often written compactly as

unC1 D un C �tf .un; tn/; u0 D U0; n D 0; 1; : : : ; Nt � 1 : (4.6)

This scheme is known as the Forward Euler scheme, also called Euler’s method.
In our special population growth model, we have

unC1 D un C �t run; u0 D U0; n D 0; 1; : : : ; Nt � 1 : (4.7)

We may also write this model using the problem-specific symbol N instead of the
generic u function:

N nC1 D N n C �t rN n; N 0 D N0; n D 0; 1; : : : ; Nt � 1 : (4.8)

The observant reader will realize that (4.8) is nothing but the computational
model (4.2) arising directly in the model derivation. The formula (4.8) arises,
however, from a detour via a differential equation and a numerical method for the
differential equation. This looks rather unnecessary! The reason why we bother to
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Fig. 4.3 The numerical solution at points can be extended by linear segments between the mesh
points

derive the differential equation model and then discretize it by a numerical method
is simply that the discretization can be done in many ways, and we can create
(much) more accurate and more computationally efficient methods than (4.8) or
(4.6). This can be useful in many problems! Nevertheless, the Forward Euler
scheme is intuitive and widely applicable, at least when �t is chosen to be small.

The numerical solution between the mesh points
Our numerical method computes the unknown function u at discrete mesh points
t1; t2; : : : ; tNt

. What if we want to evaluate the numerical solution between the
mesh points? The most natural choice is to assume a linear variation between
the mesh points, see Fig. 4.3. This is compatible with the fact that when we plot
the array u0; u1; : : : versus t0; t1; : : :, a straight line is drawn between the discrete
points.

4.1.3 Programming the Forward Euler Scheme; the Special Case

Let us compute (4.8) in a program. The input variables are N0, �t , r , and Nt . Note
that we need to compute Nt C 1 new values N 1; : : : ; N Nt C1. A total of Nt C 2

values are needed in an array representation of N n, n D 0; : : : ; Nt C 1.
Our first version of this program is as simple as possible:

N_0 = input(’Give initial population size N_0: ’)

r = input(’Give net growth rate r: ’)

dt = input(’Give time step size: ’)

N_t = input(’Give number of steps: ’)

from numpy import linspace, zeros

t = linspace(0, (N_t+1)*dt, N_t+2)

N = zeros(N_t+2)



4.1 Population Growth 103

N[0] = N_0

for n in range(N_t+1):

N[n+1] = N[n] + r*dt*N[n]

import matplotlib.pyplot as plt

numerical_sol = ’bo’ if N_t < 70 else ’b-’

plt.plot(t, N, numerical_sol, t, N_0*exp(r*t), ’r-’)

plt.legend([’numerical’, ’exact’], loc=’upper left’)

plt.xlabel(’t’); plt.ylabel(’N(t)’)

filestem = ’growth1_%dsteps’ % N_t

plt.savefig(’%s.png’ % filestem); plt.savefig(’%s.pdf’ % filestem)

The complete code above resides in the file growth1.py.
Let us demonstrate a simulation where we start with 100 animals, a net growth

rate of 10 percent (0.1) per time unit, which can be one month, and t 2 Œ0; 20�

months. We may first try �t of half a month (0.5), which implies Nt D 40 (or to
be absolutely precise, the last time point to be computed according to our set-up
above is tNt C1 D 20:5). Figure 4.4 shows the results. The solid line is the exact
solution, while the circles are the computed numerical solution. The discrepancy is
clearly visible. What if we make �t 10 times smaller? The result is displayed in
Fig. 4.5, where we now use a solid line also for the numerical solution (otherwise,
400 circles would look very cluttered, so the program has a test on how to display
the numerical solution, either as circles or a solid line). We can hardly distinguish
the exact and the numerical solution. The computing time is also a fraction of
a second on a laptop, so it appears that the Forward Euler method is sufficiently
accurate for practical purposes. (This is not always true for large, complicated
simulation models in engineering, so more sophisticated methods may be needed.)

Fig. 4.4 Evolution of a population computed with time step 0.5 month

https://github.com/hplgit/prog4comp/tree/master/src/py/growth1.py
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Fig. 4.5 Evolution of a population computed with time step 0.05 month

It is also of interest to see what happens if we increase �t to 2 months. The
results in Fig. 4.6 indicate that this is an inaccurate computation.

Fig. 4.6 Evolution of a population computed with time step 2 months
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4.1.4 Understanding the Forward Euler Method

The good thing about the Forward Euler method is that it gives an understanding
of what a differential equation is and a geometrical picture of how to construct the
solution. The first idea is that we have already computed the solution up to some
time point tn. The second idea is that we want to progress the solution from tn to
tnC1 as a straight line.

We know that the line must go through the solution at tn, i.e., the point .tn; un/.
The differential equation tells us the slope of the line: u0.tn/ D f .un; tn/ D run.
That is, the differential equation gives a direct formula for the further direction of
the solution curve. We can say that the differential equation expresses how the
system (u) undergoes changes at a point.

There is a general formula for a straight line y D ax C b with slope a that goes
through the point .x0; y0/: y D a.x � x0/ C y0. Using this formula adapted to the
present case, and evaluating the formula for tnC1, results in

unC1 D run.tnC1 � tn/ C un D un C �t run;

which is nothing but the Forward Euler formula. You are now encouraged to do Ex-
ercise 4.1 to become more familiar with the geometric interpretation of the Forward
Euler method.

4.1.5 Programming the Forward Euler Scheme; the General Case

Our previous program was just a flat main program tailored to a special differential
equation. When programming mathematics, it is always good to consider a (large)
class of problems and making a Python function to solve any problem that fits into
the class. More specifically, we will make software for the class of differential
equation problems of the form

u0.t/ D f .u; t/; u D U0; t 2 Œ0; T �;

for some given function f , and numbers U0 and T . We also take the opportunity
to illustrate what is commonly called a demo function. As the name implies, the
purpose of such a function is solely to demonstrate how the function works (not
to be confused with a test function, which does verification by use of assert).
The Python function calculating the solution must take f , U0, �t , and T as in-
put, find the corresponding Nt , compute the solution, and return an array with
u0; u1; : : : ; uNt and an array with t0; t1; : : : ; tNt

. The Forward Euler scheme reads

unC1 D un C �tf .un; tn/; n D 0; : : : ; Nt � 1 :

The corresponding program may now take the form (file ode_FE.py):

https://github.com/hplgit/prog4comp/tree/master/src/py/ode_FE.py
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from numpy import linspace, zeros, exp

import matplotlib.pyplot as plt

def ode_FE(f, U_0, dt, T):

N_t = int(round(float(T)/dt))

u = zeros(N_t+1)

t = linspace(0, N_t*dt, len(u))

u[0] = U_0

for n in range(N_t):

u[n+1] = u[n] + dt*f(u[n], t[n])

return u, t

def demo_population_growth():

"""Test case: u’=r*u, u(0)=100."""

def f(u, t):

return 0.1*u

u, t = ode_FE(f=f, U_0=100, dt=0.5, T=20)

plt.plot(t, u, t, 100*exp(0.1*t))

plt.show()

if __name__ == ’__main__’:

demo_population_growth()

This program file, called ode_FE.py, is a reusable piece of code with a general
ode_FE function that can solve any differential equation u0 D f .u; t/ and a demo
function for the special case u0 D 0:1u, u.0/ D 100. Observe that the call to the
demo function is placed in a test block. This implies that the call is not active if
ode_FE is imported as a module in another program, but active if ode_FE.py is run
as a program.

The solution should be identical to what the growth1.pyprogram produces with
the same parameter settings (r D 0:1, N0 D 100). This feature can easily be tested
by inserting a print statement, but a much better, automated verification is suggested
in Exercise 4.1. You are strongly encouraged to take a “break” and do that exercise
now.

Remark on the use of u as variable
In the ode_FE program, the variable u is used in different contexts. Inside the
ode_FE function, u is an array, but in the f(u,t) function, as exemplified in the
demo_population_growth function, the argument u is a number. Typically,
we call f (in ode_FE) with the u argument as one element of the array u in the
ode_FE function: u[n].

4.1.6 Making the Population GrowthModel More Realistic

Exponential growth of a population according the model N 0 D rN , with exponen-
tial solution N D N0ert , is unrealistic in the long run because the resources needed
to feed the population are finite. At some point there will not be enough resources
and the growth will decline. A common model taking this effect into account as-
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sumes that r depends on the size of the population, N :

N.t C �t/ � N.t/ D r.N.t//N.t/ :

The corresponding differential equation becomes

N 0 D r.N /N :

The reader is strongly encouraged to repeat the steps in the derivation of the Forward
Euler scheme and establish that we get

N nC1 D N n C �t r.N n/N n;

which computes as easy as for a constant r , since r.N n/ is known when computing
N nC1. Alternatively, one can use the Forward Euler formula for the general problem
u0 D f .u; t/ and use f .u; t/ D r.u/u and replace u by N .

The simplest choice of r.N / is a linear function, starting with some growth value
Nr and declining until the population has reached its maximum, M , according to the
available resources:

r.N / D Nr.1 � N=M / :

In the beginning, N � M and we will have exponential growth e Nrt , but as N

increases, r.N / decreases, and when N reaches M , r.N / D 0 so there is now
more growth and the population remains at N.t/ D M . This linear choice of r.N /

gives rise to a model that is called the logistic model. The parameter M is known
as the carrying capacity of the population.

Let us run the logistic model with aid of the ode_FE function in the ode_FE
module. We choose N.0/ D 100, �t D 0:5 month, T D 60 months, r D 0:1,
and M D 500. The complete program, called logistic.py, is basically a call to
ode_FE:

from ode_FE import ode_FE

import matplotlib.pyplot as plt

for dt, T in zip((0.5, 20), (60, 100)):

u, t = ode_FE(f=lambda u, t: 0.1*(1 - u/500.)*u, \

U_0=100, dt=dt, T=T)

plt.figure() # Make separate figures for each pass in the loop

plt.plot(t, u, ’b-’)

plt.xlabel(’t’); plt.ylabel(’N(t)’)

plt.savefig(’tmp_%g.png’ % dt); plt.savefig(’tmp_%g.pdf’ % dt)

Figure 4.7 shows the resulting curve. We see that the population stabilizes
around M D 500 individuals. A corresponding exponential growth would reach
N0e

rt D 100e0:1�60 � 40;300 individuals!
It is always interesting to see what happens with large �t values. We may set

�t D 20 and T D 100. Now the solution, seen in Fig. 4.8, oscillates and is
hence qualitatively wrong, because one can prove that the exact solution of the
differential equation is monotone. (However, there is a corresponding difference

https://github.com/hplgit/prog4comp/tree/master/src/py/logistic.py
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Fig. 4.7 Logistic growth of a population

Fig. 4.8 Logistic growth with large time step

equation model, NnC1 D rNn.1 � Nn=M /, which allows oscillatory solutions and
those are observed in animal populations. The problem with large �t is that it
just leads to wrong mathematics – and two wrongs don’t make a right in terms of
a relevant model.)
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Remark on the world population
The number of people on the planet2 follows the model N 0 D r.t/N , where the
net reproduction r.t/ varies with time and has decreased since its top in 1990.
The current world value of r is 1.2%, and it is difficult to predict future values3.
At the moment, the predictions of the world population point to a growth to 9.6
billion before declining.

This example shows the limitation of a differential equation model: we need
to know all input parameters, including r.t/, in order to predict the future. It is
seldom the case that we know all input parameters. Sometimes knowledge of the
solution from measurements can help estimate missing input parameters.

4.1.7 Verification: Exact Linear Solution of the Discrete Equations

How can we verify that the programming of an ODE model is correct? The best
method is to find a problem where there are no unknown numerical approximation
errors, because we can then compare the exact solution of the problem with the re-
sult produced by our implementation and expect the difference to be within a very
small tolerance. We shall base a unit test on this idea and implement a correspond-
ing test function (see Sect. 3.4.4) for automatic verification of our implementation.

It appears that most numerical methods for ODEs will exactly reproduce a solu-
tion u that is linear in t . We may therefore set u D at C b and choose any f whose
derivative is a. The choice f .u; t/ D a is very simple, but we may add anything
that is zero, e.g.,

f .u; t/ D a C .u � .at C b//m:

This is a valid f .u; t/ for any a, b, and m. The corresponding ODE looks highly
non-trivial, however:

u0 D a C .u � .at C b//m:

Using the general ode_FE function in ode_FE.py, we may write a proper test
function as follows (in file test_ode_FE_exact_linear.py):

def test_ode_FE():

"""Test that a linear u(t)=a*t+b is exactly reproduced."""

def exact_solution(t):

return a*t + b

def f(u, t): # ODE

return a + (u - exact_solution(t))**m

a = 4

b = -1

m = 6

2 http://en.wikipedia.org/wiki/Population_growth
3 http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Populations.html

http://en.wikipedia.org/wiki/Population_growth
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Populations.html
https://github.com/hplgit/prog4comp/tree/master/src/py/ode_FE.py
https://github.com/hplgit/prog4comp/tree/master/src/py/test_ode_FE_exact_linear.py
http://en.wikipedia.org/wiki/Population_growth
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Populations.html
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dt = 0.5

T = 20.0

u, t = ode_FE(f, exact_solution(0), dt, T)

diff = abs(exact_solution(t) - u).max()

tol = 1E-15 # Tolerance for float comparison

success = diff < tol

assert success

Recall that test functions should start with the name test_, have no arguments, and
formulate the test as a boolean expression success that is True if the test passes
and False if it fails. Test functions should make the test as assert success (here
success can also be a boolean expression as in assert diff < tol).

Observe that we cannot compare diff to zero, which is what we mathematically
expect, because diff is a floating-point variable that most likely contains small
rounding errors. Therefore, we must compare diff to zero with a tolerance, here
10�15.

You are encouraged to do Exercise 4.2 where the goal is to make a test function
for a verification based on comparison with hand-calculated results for a few time
steps.

4.2 Spreading of Diseases

Our aim with this section is to show in detail how one can apply mathematics and
programming to investigate spreading of diseases. The mathematical model is now
a system of three differential equations with three unknown functions. To derive
such a model, we can use mainly intuition, so no specific background knowledge of
diseases is required.

4.2.1 Spreading of a Flu

Imagine a boarding school out in the country side. This school is a small and closed
society. Suddenly, one or more of the pupils get a flu. We expect that the flu may
spread quite effectively or die out. The question is how many of the pupils and
the school’s staff will be affected. Some quite simple mathematics can help us to
achieve insight into the dynamics of how the disease spreads.

Let the mathematical function S.t/ count how many individuals, at time t , that
have the possibility to get infected. Here, t may count hours or days, for instance.
These individuals make up a category called susceptibles, labeled as S. Another
category, I, consists of the individuals that are infected. Let I.t/ count how many
there are in category I at time t . An individual having recovered from the disease
is assumed to gain immunity. There is also a small possibility that an infected will
die. In either case, the individual is moved from the I category to a category we call
the removed category, labeled with R. We let R.t/ count the number of individuals
in the R category at time t . Those who enter the R category, cannot leave this
category.
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To summarize, the spreading of this disease is essentially the dynamics of mov-
ing individuals from the S to the I and then to the R category:

We can use mathematics to more precisely describe the exchange between the
categories. The fundamental idea is to describe the changes that take place during
a small time interval, denoted by �t .

Our disease model is often referred to as a compartment model, where quantities
are shuffled between compartments (here a synonym for categories) according to
some rules. The rules express changes in a small time interval �t , and from these
changes we can let �t go to zero and obtain derivatives. The resulting equations
then go from difference equations (with finite �t) to differential equations (�t !
0).

We introduce a uniform mesh in time, tn D n�t , n D 0; : : : ; Nt , and seek S

at the mesh points. The numerical approximation to S at time tn is denoted by Sn.
Similarly, we seek the unknown values of I.t/ and R.t/ at the mesh points and
introduce a similar notation I n and Rn for the approximations to the exact values
I.tn/ and R.tn/.

In the time interval �t we know that some people will be infected, so S will de-
crease. We shall soon argue by mathematics that there will be ˇ�tSI new infected
individuals in this time interval, where ˇ is a parameter reflecting how easy people
get infected during a time interval of unit length. If the loss in S is ˇ�tSI , we have
that the change in S is

SnC1 � Sn D �ˇ�tSnI n : (4.9)

Dividing by �t and letting �t ! 0, makes the left-hand side approach S 0.tn/ such
that we obtain a differential equation

S 0 D �ˇSI : (4.10)

The reasoning in going from the difference equation (4.9) to the differential equa-
tion (4.10) follows exactly the steps explained in Sect. 4.1.1.

Before proceeding with how I and R develops in time, let us explain the formula
ˇ�tSI . We have S susceptibles and I infected people. These can make up SI

pairs. Now, suppose that during a time interval T wemeasure that m actual pairwise
meetings do occur among n theoretically possible pairings of people from the S
and I categories. The probability that people meet in pairs during a time T is (by
the empirical frequency definition of probability) equal to m=n, i.e., the number
of successes divided by the number of possible outcomes. From such statistics we
normally derive quantities expressed per unit time, i.e., here we want the probability
per unit time, �, which is found from dividing by T : � D m=.nT /.

Given the probability �, the expected number of meetings per time interval of
SI possible pairs of people is (from basic statistics) �SI . During a time interval
�t , there will be �SI�t expected number of meetings between susceptibles and
infected people such that the virus may spread. Only a fraction of the ��tSI
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meetings are effective in the sense that the susceptible actually becomes infected.
Counting that m people get infected in n such pairwise meetings (say 5 are infected
from 1000 meetings), we can estimate the probability of being infected as p D
m=n. The expected number of individuals in the S category that in a time interval
�t catch the virus and get infected is then p��tSI . Introducing a new constant
ˇ D p� to save some writing, we arrive at the formula ˇ�tSI .

The value of ˇ must be known in order to predict the future with the disease
model. One possibility is to estimate p and � from their meanings in the derivation
above. Alternatively, we can observe an “experiment” where there are S0 suscepti-
bles and I0 infected at some point in time. During a time interval T we count that N

susceptibles have become infected. Using (4.9) as a rough approximation of how S

has developed during time T (and now T is not necessarily small, but we use (4.9)
anyway), we get

N D ˇTS0I0 ) ˇ D N

TS0I0

: (4.11)

We need an additional equation to describe the evolution of I.t/. Such an equa-
tion is easy to establish by noting that the loss in the S category is a corresponding
gain in the I category. More precisely,

I nC1 � I n D ˇ�tSnI n : (4.12)

However, there is also a loss in the I category because people recover from the
disease. Suppose that we can measure that m out of n individuals recover in a time
period T (say 10 of 40 sick people recover during a day: m D 10, n D 40, T D
24 h). Now, � D m=.nT / is the probability that one individual recovers in a unit
time interval. Then (on average) ��tI infected will recover in a time interval �t .
This quantity represents a loss in the I category and a gain in the R category. We
can therefore write the total change in the I category as

I nC1 � I n D ˇ�tSnI n � ��tI n : (4.13)

The change in the R category is simple: there is always an increase from the I
category:

RnC1 � Rn D ��tI n : (4.14)

Since there is no loss in the R category (people are either recovered and immune,
or dead), we are done with the modeling of this category. In fact, we do not strictly
need the equation (4.14) for R, but extensions of the model later will need an equa-
tion for R.

Dividing by �t in (4.13) and (4.14) and letting �t ! 0, results in the corre-
sponding differential equations

I 0 D ˇSI � �I; (4.15)

and
R0 D �I : (4.16)

To summarize, we have derived difference equations (4.9)–(4.14), and alternative
differential equations (4.15)–(4.16). For reference, we list the complete set of the
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three difference equations:

SnC1 D Sn � ˇ�tSnI n; (4.17)

I nC1 D I n C ˇ�tSnI n � ��tI n; (4.18)

RnC1 D Rn C ��tI n : (4.19)

Note that we have isolated the new unknown quantities SnC1, I nC1, and RnC1 on
the left-hand side, such that these can readily be computed if Sn, I n, and Rn are
known. To get such a procedure started, we need to know S0, I 0, R0. Obviously,
we also need to have values for the parameters ˇ and � .

We also list the system of three differential equations:

S 0 D �ˇSI; (4.20)

I 0 D ˇSI � �I; (4.21)

R0 D �I : (4.22)

This differential equation model (and also its discrete counterpart above) is known
as an SIR model. The input data to the differential equation model consist of the
parameters ˇ and � as well as the initial conditions S.0/ D S0, I.0/ D I0, and
R.0/ D R0.

4.2.2 A Forward Euler Method for the Differential Equation System

Let us apply the same principles as we did in Sect. 4.1.2 to discretize the differential
equation system by the Forward Euler method. We already have a time mesh and
time-discrete quantities Sn, I n, Rn, n D 0; : : : ; Nt . The three differential equations
are assumed to be valid at the mesh points. At the point tn we then have

S 0.tn/ D �ˇS.tn/I.tn/; (4.23)

I 0.tn/ D ˇS.tn/I.tn/ � �I.tn/; (4.24)

R0.tn/ D �I.tn/; (4.25)

for n D 0; 1; : : : ; Nt . This is an approximation since the differential equations are
originally valid at all times t (usually in some finite interval Œ0; T �). Using forward
finite differences for the derivatives results in an additional approximation,

SnC1 � Sn

�t
D �ˇSnI n; (4.26)

I nC1 � I n

�t
D ˇSnI n � �I n; (4.27)

RnC1 � Rn

�t
D �I n : (4.28)

As we see, these equations are identical to the difference equations that naturally
arise in the derivation of the model. However, other numerical methods than the
Forward Euler scheme will result in slightly different difference equations.
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4.2.3 Programming the Numerical Method; the Special Case

The computation of (4.26)–(4.28) can be readily made in a computer program
SIR1.py:

from numpy import zeros, linspace

import matplotlib.pyplot as plt

# Time unit: 1 h

beta = 10./(40*8*24)

gamma = 3./(15*24)

dt = 0.1 # 6 min

D = 30 # Simulate for D days

N_t = int(D*24/dt) # Corresponding no of hours

t = linspace(0, N_t*dt, N_t+1)

S = zeros(N_t+1)

I = zeros(N_t+1)

R = zeros(N_t+1)

# Initial condition

S[0] = 50

I[0] = 1

R[0] = 0

# Step equations forward in time

for n in range(N_t):

S[n+1] = S[n] - dt*beta*S[n]*I[n]

I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*gamma*I[n]

R[n+1] = R[n] + dt*gamma*I[n]

fig = plt.figure()

l1, l2, l3 = plt.plot(t, S, t, I, t, R)

fig.legend((l1, l2, l3), (’S’, ’I’, ’R’), ’upper left’)

plt.xlabel(’hours’)

plt.show()

plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)

This program was written to investigate the spreading of a flu at the mentioned
boarding school, and the reasoning for the specific choices ˇ and � goes as follows.
At some other school where the disease has already spread, it was observed that in
the beginning of a day there were 40 susceptibles and 8 infected, while the numbers
were 30 and 18, respectively, 24 hours later. Using 1 h as time unit, we then have
from (4.11) that ˇ D 10=.40 � 8 � 24/. Among 15 infected, it was observed that
3 recovered during a day, giving � D 3=.15 � 24/. Applying these parameters to
a new case where there is one infected initially and 50 susceptibles, gives the graphs
in Fig. 4.9. These graphs are just straight lines between the values at times ti D i�t

as computed by the program. We observe that S reduces as I and R grows. After
about 30 days everyone has become ill and recovered again.

We can experiment with ˇ and � to see whether we get an outbreak of the disease
or not. Imagine that a “wash your hands” campaign was successful and that the
other school in this case experienced a reduction of ˇ by a factor of 5. With this

https://github.com/hplgit/prog4comp/tree/master/src/py/SIR1.py
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Fig. 4.9 Natural evolution of a flu at a boarding school

lower ˇ the disease spreads very slowly so we simulate for 60 days. The curves
appear in Fig. 4.10.

Fig. 4.10 Small outbreak of a flu at a boarding school (ˇ is much smaller than in Fig. 4.9)



116 4 Solving Ordinary Differential Equations

4.2.4 Outbreak or Not

Looking at the equation for I , it is clear that we must have ˇSI � �I > 0 for I to
increase. When we start the simulation it means that

ˇS.0/I.0/ � �I.0/ > 0;

or simpler
ˇS.0/

�
> 1 (4.29)

to increase the number of infected people and accelerate the spreading of the dis-
ease. You can run the SIR1.py programwith a smaller ˇ such that (4.29) is violated
and observe that there is no outbreak.

The power of mathematical modeling
The reader should notice our careful use of words in the previous paragraphs.
We started out with modeling a very specific case, namely the spreading of a flu
among pupils and staff at a boarding school. With purpose we exchanged words
like pupils and flu with more neutral and general words like individuals and
disease, respectively. Phrased equivalently, we raised the abstraction level by
moving from a specific case (flu at a boarding school) to a more general case
(disease in a closed society). Very often, when developing mathematical mod-
els, we start with a specific example and see, through the modeling, that what is
going on of essence in this example also will take place in many similar prob-
lem settings. We try to incorporate this generalization in the model so that the
model has a much wider application area than what we aimed at in the begin-
ning. This is the very power of mathematical modeling: by solving one specific
case we have often developed more generic tools that can readily be applied to
solve seemingly different problems. The next sections will give substance to this
assertion.

4.2.5 Abstract Problem and Notation

When we had a specific differential equation with one unknown, we quickly turned
to an abstract differential equation written in the generic form u0 D f .u; t/. We re-
fer to such a problem as a scalar ODE. A specific equation corresponds to a specific
choice of the formula f .u; t/ involving u and (optionally) t .

It is advantageous to also write a system of differential equations in the same
abstract notation,

u0 D f .u; t/;

but this time it is understood that u is a vector of functions and f is also vector. We
say that u0 D f .u; t/ is a vector ODE or system of ODEs in this case. For the SIR
model we introduce the two 3-vectors, one for the unknowns,

u D .S.t/; I.t/; R.t//;
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and one for the right-hand side functions,

f .u; t/ D .�ˇSI; ˇSI � �I; �I / :

The equation u0 D f .u; t/ means setting the two vectors equal, i.e., the components
must be pairwise equal. Since u0 D .S 0; I 0; R0/, we get that u0 D f implies

S 0 D �ˇSI;

I 0 D ˇSI � �I;

R0 D �I :

The generalized short notation u0 D f .u; t/ is very handy since we can derive
numerical methods and implement software for this abstract system and in a par-
ticular application just identify the formulas in the f vector, implement these, and
call functionality that solves the differential equation system.

4.2.6 Programming the Numerical Method; the General Case

In Python code, the Forward Euler step

unC1 D un C �tf .un; tn/;

being a scalar or a vector equation, can be coded as

u[n+1] = u[n] + dt*f(u[n], t[n])

both in the scalar and vector case. In the vector case, u[n] is a one-dimensional
numpy array of length m C 1 holding the mathematical quantity un, and the Python
function fmust return a numpy array of length m C 1. Then the expression u[n] +
dt*f(u[n], t[n]) is an array plus a scalar times an array.

For all this to work, the complete numerical solution must be represented by
a two-dimensional array, created by u = zeros((N_t+1, m+1)). The first index
counts the time points and the second the components of the solution vector at one
time point. That is, u[n,i] corresponds to the mathematical quantity un

i . When we
use only one index, as in u[n], this is the same as u[n,:] and picks out all the com-
ponents in the solution at the time point with index n. Then the assignment u[n+1]
= ... becomes correct because it is actually an in-place assignment u[n+1, :]
= .... The nice feature of these facts is that the same piece of Python code works
for both a scalar ODE and a system of ODEs!

The ode_FE function for the vector ODE is placed in the file ode_system_FE.
py and was written as follows:

from numpy import linspace, zeros, asarray

import matplotlib.pyplot as plt

def ode_FE(f, U_0, dt, T):

N_t = int(round(float(T)/dt))

https://github.com/hplgit/prog4comp/tree/master/src/py/ode_system_FE.py
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# Ensure that any list/tuple returned from f_ is wrapped as array

f_ = lambda u, t: asarray(f(u, t))

u = zeros((N_t+1, len(U_0)))

t = linspace(0, N_t*dt, len(u))

u[0] = U_0

for n in range(N_t):

u[n+1] = u[n] + dt*f_(u[n], t[n])

return u, t

The line f_ = lambda ... needs an explanation. For a user, who just needs to
define the f in the ODE system, it is convenient to insert the various mathematical
expressions on the right-hand sides in a list and return that list. Obviously, we
could demand the user to convert the list to a numpy array, but it is so easy to do
a general such conversion in the ode_FE function as well. To make sure that the
result from f is indeed an array that can be used for array computing in the formula
u[n] + dt*f(u[n], t[n]), we introduce a new function f_ that calls the user’s
f and sends the results through the numpy function asarray, which ensures that its
argument is converted to a numpy array (if it is not already an array).

Note also the extra parenthesis required when calling zeros with two indices.
Let us show how the previous SIR model can be solved using the new general

ode_FE that can solve any vector ODE. The user’s f(u, t) function takes a vector
u, with three components corresponding to S , I , and R as argument, along with the
current time point t[n], and must return the values of the formulas of the right-hand
sides in the vector ODE. An appropriate implementation is

def f(u, t):

S, I, R = u

return [-beta*S*I, beta*S*I - gamma*I, gamma*I]

Note that the S, I, and R values correspond to Sn, I n, and Rn. These values are then
just inserted in the various formulas in the vector ODE. Here we collect the values
in a list since the ode_FE function will anyway wrap this list in an array. We could,
of course, returned an array instead:

def f(u, t):

S, I, R = u

return array([-beta*S*I, beta*S*I - gamma*I, gamma*I])

The list version looks a bit nicer, so that is why we prefer a list and rather introduce
f_ = lambda u, t: asarray(f(u,t)) in the general ode_FE function.

We can now show a function that runs the previous SIR example, while using
the generic ode_FE function:

def demo_SIR():

"""Test case using a SIR model."""

def f(u, t):

S, I, R = u

return [-beta*S*I, beta*S*I - gamma*I, gamma*I]
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beta = 10./(40*8*24)

gamma = 3./(15*24)

dt = 0.1 # 6 min

D = 30 # Simulate for D days

N_t = int(D*24/dt) # Corresponding no of hours

T = dt*N_t # End time

U_0 = [50, 1, 0]

u, t = ode_FE(f, U_0, dt, T)

S = u[:,0]

I = u[:,1]

R = u[:,2]

fig = plt.figure()

l1, l2, l3 = plt.plot(t, S, t, I, t, R)

fig.legend((l1, l2, l3), (’S’, ’I’, ’R’), ’lower right’)

plt.xlabel(’hours’)

plt.show()

# Consistency check:

N = S[0] + I[0] + R[0]

eps = 1E-12 # Tolerance for comparing real numbers

for n in range(len(S)):

SIR_sum = S[n] + I[n] + R[n]

if abs(SIR_sum - N) > eps:

print ’*** consistency check failed: S+I+R=%g != %g’ %\

(SIR_sum, N)

if __name__ == ’__main__’:

demo_SIR()

Recall that the u returned from ode_FE contains all components (S , I , R) in the
solution vector at all time points. We therefore need to extract the S , I , and R

values in separate arrays for further analysis and easy plotting.
Another key feature of this higher-quality code is the consistency check. By

adding the three differential equations in the SIR model, we realize that S 0 C I 0 C
R0 D 0, which means that S CI CR D const. We can check that this relation holds
by comparing Sn C I n C Rn to the sum of the initial conditions. The check is not
a full-fledged verification, but it is a much better than doing nothing and hoping that
the computation is correct. Exercise 4.5 suggests another method for controlling the
quality of the numerical solution.

4.2.7 Time-Restricted Immunity

Let us now assume that immunity after the disease only lasts for some certain time
period. This means that there is transport from the R state to the S state:
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Modeling the loss of immunity is very similar to modeling recovery from the
disease: the amount of people losing immunity is proportional to the amount of
recovered patients and the length of the time interval �t . We can therefore write
the loss in the R category as ���tR in time �t , where ��1 is the typical time it
takes to lose immunity. The loss in R.t/ is a gain in S.t/. The “budgets” for the
categories therefore become

SnC1 D Sn � ˇ�tSnI n C ��tRn; (4.30)

I nC1 D I n C ˇ�tSnI n � ��tI n; (4.31)

RnC1 D Rn C ��tI n � ��tRn : (4.32)

Dividing by �t and letting �t ! 0 gives the differential equation system

S 0 D �ˇSI C �R; (4.33)

I 0 D ˇSI � �I; (4.34)

R0 D �I � �R : (4.35)

This system can be solved by the same methods as we demonstrated for the original
SIR model. Only one modification in the program is necessary: adding nu*R[n] to
the S[n+1] update and subtracting the same quantity in the R[n+1] update:

for n in range(N_t):

S[n+1] = S[n] - dt*beta*S[n]*I[n] + dt*nu*R[n]

I[n+1] = I[n] + dt*beta*S[n]*I[n] - dt*gamma*I[n]

R[n+1] = R[n] + dt*gamma*I[n] - dt*nu*R[n]

The modified code is found in the file SIR2.py.
Setting ��1 to 50 days, reducing ˇ by a factor of 4 compared to the previous

example (ˇ D 0:00033), and simulating for 300 days gives an oscillatory behavior
in the categories, as depicted in Fig. 4.11. It is easy now to play around and study
how the parameters affect the spreading of the disease. For example, making the
disease slightly more effective (increase ˇ to 0.00043) and increasing the average
time to loss of immunity to 90 days lead to other oscillations, see Fig. 4.12.

4.2.8 Incorporating Vaccination

We can extend the model to also include vaccination. To this end, it can be useful
to track those who are vaccinated and those who are not. So, we introduce a fourth
category, V, for those who have taken a successful vaccination. Furthermore, we
assume that in a time interval �t , a fraction p�t of the S category is subject to
a successful vaccination. This means that in the time �t , p�tS people leave from
the S to the V category. Since the vaccinated ones cannot get the disease, there is no
impact on the I or R categories. We can visualize the categories, and the movement
between them, as
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Fig. 4.11 Including loss of immunity

Fig. 4.12 Increasing ˇ and reducing � compared to Fig. 4.11
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The new, extended differential equations with the V quantity become

S 0 D �ˇSI C �R � pS; (4.36)

V 0 D pS; (4.37)

I 0 D ˇSI � �I; (4.38)

R0 D �I � �R : (4.39)

We shall refer to this model as the SIRV model.
The new equation for V 0 poses no difficulties when it comes to the numerical

method. In a Forward Euler scheme we simply add an update

V nC1 D V n C p�tSn :

The program needs to store V.t/ in an additional array V, and the plotting command
must be extended with more arguments to plot V versus t as well. The complete
code is found in the file SIRV1.py.

Using p D 0:0005 and p D 0:0001 as values for the vaccine efficiency pa-
rameter, the effect of vaccination is seen in Fig. 4.13 (other parameters are as in
Fig. 4.11).

Fig. 4.13 The effect of vaccination: p D 0:0005 (left) and p D 0:0001 (right)
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4.2.9 Discontinuous Coefficients: A Vaccination Campaign

What about modeling a vaccination campaign? Imagine that six days after the out-
break of the disease, the local health station launches a vaccination campaign. They
reach out to many people, say 10 times as efficiently as in the previous (constant
vaccination) case. If the campaign lasts for 10 days we can write

p.t/ D
(

0:005; 6 � 24 � t � 15 � 24;

0; otherwise

Note that we must multiply the t value by 24 because t is measured in hours, not
days. In the differential equation system, pS.t/ must be replaced by p.t/S.t/, and
in this case we get a differential equation system with a term that is discontinu-
ous. This is usually quite a challenge in mathematics, but as long as we solve the
equations numerically in a program, a discontinuous coefficient is easy to treat.

There are two ways to implement the discontinuous coefficient p.t/: through
a function and through an array. The function approach is perhaps the easiest:

def p(t):

return 0.005 if (6*24 <= t <= 15*24) else 0

In the code for updating the arrays S and V we get a term p(t[n])*S[n].
We can also let p.t/ be an array filled with correct values prior to the simulation.

Then we need to allocate an array p of length N_t+1 and find the indices corre-
sponding to the time period between 6 and 15 days. These indices are found from
the time point divided by �t . That is,

p = zeros(N_t+1)

start_index = 6*24/dt

stop_index = 15*24/dt

p[start_index:stop_index] = 0.005

The p.t/S.t/ term in the updating formulas for S and V simply becomes
p[n]*S[n]. The file SIRV2.py contains a program based on filling an array p.

The effect of a vaccination campaign is illustrated in Fig. 4.14. All the data are
as in Fig. 4.13 (left), except that p is ten times stronger for a period of 10 days and
p D 0 elsewhere.
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Fig. 4.14 The effect of a vaccination campaign

4.3 Oscillating One-Dimensional Systems

Numerous engineering constructions and devices contain materials that act like
springs. Such springs give rise to oscillations, and controlling oscillations is a key
engineering task. We shall now learn to simulate oscillating systems.

As always, we start with the simplest meaningful mathematical model, which
for oscillations is a second-order differential equation:

u00.t/ C !2u.t/ D 0; (4.40)

where ! is a given physical parameter. Equation (4.40) models a one-dimensional
system oscillating without damping (i.e., with negligible damping). One-dimen-
sional here means that some motion takes place along one dimension only in some
coordinate system. Along with (4.40) we need the two initial conditions u.0/ and
u0.0/.

4.3.1 Derivation of a Simple Model

Many engineering systems undergo oscillations, and differential equations consti-
tute the key tool to understand, predict, and control the oscillations. We start with
the simplest possible model that captures the essential dynamics of an oscillating
system. Some body with mass m is attached to a spring and moves along a line
without friction, see Fig. 4.15 for a sketch (rolling wheels indicate “no friction”).
When the spring is stretched (or compressed), the spring force pulls (or pushes) the
body back and work “against” the motion. More precisely, let x.t/ be the position
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Fig. 4.15 Sketch of a one-dimensional, oscillating dynamic system (without friction)

of the body on the x axis, along which the body moves. The spring is not stretched
when x D 0, so the force is zero, and x D 0 is hence the equilibrium position of
the body. The spring force is �kx, where k is a constant to be measured. We as-
sume that there are no other forces (e.g., no friction). Newton’s 2nd law of motion
F D ma then has F D �kx and a D Rx,

� kx D m Rx; (4.41)

which can be rewritten as
Rx C !2x D 0; (4.42)

by introducing ! D p
k=m (which is very common).

Equation (4.42) is a second-order differential equation, and therefore we need
two initial conditions, one on the position x.0/ and one on the velocity x0.0/. Here
we choose the body to be at rest, but moved away from its equilibrium position:

x.0/ D X0; x0.0/ D 0 :

The exact solution of (4.42) with these initial conditions is x.t/ D X0 cos!t . This
can easily be verified by substituting into (4.42) and checking the initial conditions.
The solution tells that such a spring-mass system oscillates back and forth as de-
scribed by a cosine curve.

The differential equation (4.42) appears in numerous other contexts. A classical
example is a simple pendulum that oscillates back and forth. Physics books derive,
from Newton’s second law of motion, that

mL� 00 C mg sin � D 0;

where m is the mass of the body at the end of a pendulum with length L, g is the
acceleration of gravity, and � is the angle the pendulum makes with the vertical.
Considering small angles � , sin � � � , and we get (4.42) with x D � , ! D p

g=L,
x.0/ D �, and x0.0/ D 0, if � is the initial angle and the pendulum is at rest at
t D 0.
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4.3.2 Numerical Solution

We have not looked at numerical methods for handling second-order derivatives,
and such methods are an option, but we know how to solve first-order differential
equations and even systems of first-order equations. With a little, yet very common,
trick we can rewrite (4.42) as a first-order system of two differential equations. We
introduce u D x and v D x0 D u0 as two new unknown functions. The two
corresponding equations arise from the definition v D u0 and the original equation
(4.42):

u0 D v; (4.43)

v0 D �!2u : (4.44)

(Notice that we can use u00 D v0 to remove the second-order derivative from New-
ton’s 2nd law.)

We can now apply the Forward Euler method to (4.43)–(4.44), exactly as we did
in Sect. 4.2.2:

unC1 � un

�t
D vn; (4.45)

vnC1 � vn

�t
D �!2un; (4.46)

resulting in the computational scheme

unC1 D un C �t vn; (4.47)

vnC1 D vn � �t !2un : (4.48)

4.3.3 Programming the Numerical Method; the Special Case

A simple program for (4.47)–(4.48) follows the same ideas as in Sect. 4.2.3:

from numpy import zeros, linspace, pi, cos, array

import matplotlib.pyplot as plt

omega = 2

P = 2*pi/omega

dt = P/20

T = 3*P

N_t = int(round(T/dt))

t = linspace(0, N_t*dt, N_t+1)

u = zeros(N_t+1)

v = zeros(N_t+1)

# Initial condition

X_0 = 2

u[0] = X_0

v[0] = 0
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# Step equations forward in time

for n in range(N_t):

u[n+1] = u[n] + dt*v[n]

v[n+1] = v[n] - dt*omega**2*u[n]

fig = plt.figure()

l1, l2 = plt.plot(t, u, ’b-’, t, X_0*cos(omega*t), ’r--’)

fig.legend((l1, l2), (’numerical’, ’exact’), ’upper left’)

plt.xlabel(’t’)

plt.show()

plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)

(See file osc_FE.py.)
Since we already know the exact solution as u.t/ D X0 cos!t , we have reasoned

as follows to find an appropriate simulation interval Œ0; T � and also howmany points
we should choose. The solution has a period P D 2	=!. (The period P is the time
difference between two peaks of the u.t/ � cos!t curve.) Simulating for three
periods of the cosine function, T D 3P , and choosing �t such that there are 20
intervals per period gives �t D P=20 and a total of Nt D T=�t intervals. The rest
of the program is a straightforward coding of the Forward Euler scheme.

Figure 4.16 shows a comparison between the numerical solution and the exact
solution of the differential equation. To our surprise, the numerical solution looks
wrong. Is this discrepancy due to a programming error or a problem with the For-
ward Euler method?

First of all, even before trying to run the program, you should sit down and
compute two steps in the time loop with a calculator so you have some intermediate
results to compare with. Using X0 D 2, dt D 0:157079632679, and ! D 2, we

Fig. 4.16 Simulation of an oscillating system

https://github.com/hplgit/prog4comp/tree/master/src/py/osc_FE.py
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get u1 D 2, v1 D �1:25663706, u2 D 1:80260791, and v2 D �2:51327412. Such
calculations show that the program is seemingly correct. (Later, we can use such
values to construct a unit test and a corresponding test function.)

The next step is to reduce the discretization parameter �t and see if the results
become more accurate. Figure 4.17 shows the numerical and exact solution for
the cases �t D P=40; P=160; P=2000. The results clearly become better, and
the finest resolution gives graphs that cannot be visually distinguished. Neverthe-
less, the finest resolution involves 6000 computational intervals in total, which is
considered quite much. This is no problem on a modern laptop, however, as the
computations take just a fraction of a second.

Although 2000 intervals per oscillation period seem sufficient for an accurate
numerical solution, the lower right graph in Fig. 4.17 shows that if we increase the
simulation time, here to 20 periods, there is a little growth of the amplitude, which
becomes significant over time. The conclusion is that the Forward Euler method
has a fundamental problem with its growing amplitudes, and that a very small �t

is required to achieve satisfactory results. The longer the simulation is, the smaller
�t has to be. It is certainly time to look for more effective numerical methods!

Fig. 4.17 Simulation of an oscillating system with different time steps. Upper left: 40 steps per
oscillation period. Upper right: 160 steps per period. Lower left: 2000 steps per period. Lower
right: 2000 steps per period, but longer simulation
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4.3.4 AMagic Fix of the Numerical Method

In the Forward Euler scheme,

unC1 D un C �t vn;

vnC1 D vn � �t !2un;

we can replace un in the last equation by the recently computed value unC1 from
the first equation:

unC1 D un C �t vn; (4.49)

vnC1 D vn � �t !2unC1 : (4.50)

Before justifying this fix more mathematically, let us try it on the previous exam-
ple. The results appear in Fig. 4.18. We see that the amplitude does not grow, but the
phase is not entirely correct. After 40 periods (Fig. 4.18 right) we see a significant
difference between the numerical and the exact solution. Decreasing �t decreases
the error. For example, with 2000 intervals per period, we only see a small phase
error even after 50,000 periods (!). We can safely conclude that the fix results in an
excellent numerical method!

Let us interpret the adjusted schememathematically. First we order (4.49)–(4.50)
such that the difference approximations to derivatives become transparent:

unC1 � un

�t
D vn; (4.51)

vnC1 � vn

�t
D �!2unC1 : (4.52)

We interpret (4.51) as the differential equation sampled at mesh point tn, because
we have vn on the right-hand side. The left-hand side is then a forward difference or
Forward Euler approximation to the derivative u0, see Fig. 4.2. On the other hand,
we interpret (4.52) as the differential equation sampled at mesh point tnC1, since we

Fig. 4.18 Adjusted method: first three periods (left) and period 36–40 (right)
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have unC1 on the right-hand side. In this case, the difference approximation on the
left-hand side is a backward difference,

v0.tnC1/ � vnC1 � vn

�t
or v0.tn/ � vn � vn�1

�t
:

Figure 4.19 illustrates the backward difference. The error in the backward differ-
ence is proportional to �t , the same as for the forward difference (but the propor-
tionality constant in the error term has different sign). The resulting discretization
method for (4.52) is often referred to as a Backward Euler scheme.

To summarize, using a forward difference for the first equation and a backward
difference for the second equation results in a much better method than just using
forward differences in both equations.

The standard way of expressing this scheme in physics is to change the order of
the equations,

v0 D �!2u; (4.53)

u0 D v; (4.54)

and apply a forward difference to (4.53) and a backward difference to (4.54):

vnC1 D vn � �t !2un; (4.55)

unC1 D un C �t vnC1 : (4.56)

That is, first the velocity v is updated and then the position u, using the most re-
cently computed velocity. There is no difference between (4.55)–(4.56) and (4.49)–
(4.50) with respect to accuracy, so the order of the original differential equations
does not matter. The scheme (4.55)–(4.56) goes under the names Semi-implicit
Euler4 or Euler-Cromer. The implementation of (4.55)–(4.56) is found in the file
osc_EC.py. The core of the code goes like

Fig. 4.19 Illustration of a backward difference approximation to the derivative

4 http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
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u = zeros(N_t+1)

v = zeros(N_t+1)

# Initial condition

u[0] = 2

v[0] = 0

# Step equations forward in time

for n in range(N_t):

v[n+1] = v[n] - dt*omega**2*u[n]

u[n+1] = u[n] + dt*v[n+1]

4.3.5 The 2nd-Order Runge-Kutta Method (or Heun’s Method)

A very popular method for solving scalar and vector ODEs of first order is the
2nd-order Runge-Kutta method (RK2), also known as Heun’s method. The idea,
first thinking of a scalar ODE, is to form a centered difference approximation to the
derivative between two time points:

u0.tn C 1

2
�t/ � unC1 � un

�t
:

The centered difference formula is visualized in Fig. 4.20. The error in the centered
difference is proportional to �t2, one order higher than the forward and backward
differences, which means that if we halve �t , the error is more effectively reduced
in the centered difference since it is reduced by a factor of four rather than two.

The problem with such a centered scheme for the general ODE u0 D f .u; t/ is
that we get

unC1 � un

�t
D f .unC 1

2 ; tnC 1
2
/;

which leads to difficulties since we do not know what unC 1
2 is. However, we can

approximate the value of f between two time levels by the arithmetic average of

Fig. 4.20 Illustration of a centered difference approximation to the derivative
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the values at tn and tnC1:

f .unC 1
2 ; tnC 1

2
/ � 1

2
.f .un; tn/ C f .unC1; tnC1// :

This results in

unC1 � un

�t
D 1

2
.f .un; tn/ C f .unC1; tnC1//;

which in general is a nonlinear algebraic equation for unC1 if f .u; t/ is not a lin-
ear function of u. To deal with the unknown term f .unC1; tnC1/, without solving
nonlinear equations, we can approximate or predict unC1 using a Forward Euler
step:

unC1 D un C �tf .un; tn/ :

This reasoning gives rise to the method

u� D un C �tf .un; tn/; (4.57)

unC1 D un C �t

2
.f .un; tn/ C f .u�; tnC1// : (4.58)

The scheme applies to both scalar and vector ODEs.
For an oscillating system with f D .v; �!2u/ the file osc_Heun.py imple-

ments this method. The demo function in that file runs the simulation for 10 periods
with 20 time steps per period. The corresponding numerical and exact solutions are
shown in Fig. 4.21. We see that the amplitude grows, but not as much as for the
Forward Euler method. However, the Euler-Cromer method is much better!

We should add that in problems where the Forward Euler method gives sat-
isfactory approximations, such as growth/decay problems or the SIR model, the
2nd-order Runge-Kutta method or Heun’s method, usually works considerably bet-
ter and produces greater accuracy for the same computational cost. It is therefore
a very valuable method to be aware of, although it cannot compete with the Euler-
Cromer scheme for oscillation problems. The derivation of the RK2/Heun scheme
is also good general training in “numerical thinking”.

4.3.6 Software for Solving ODEs

There is a jungle of methods for solving ODEs, and it would be nice to have
easy access to implementations of a wide range of methods, especially the sophis-
ticated and complicated adaptive methods that adjust �t automatically to obtain
a prescribed accuracy. The Python package Odespy5 gives easy access to a lot of
numerical methods for ODEs.

The simplest possible example on using Odespy is to solve u0 D u, u.0/ D 2,
for 100 time steps until t D 4:

5 https://github.com/hplgit/odespy

https://github.com/hplgit/odespy
https://github.com/hplgit/odespy
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Fig. 4.21 Simulation of 10 periods of oscillations by Heun’s method

import odespy

def f(u, t):

return u

method = odespy.Heun # or, e.g., odespy.ForwardEuler

solver = method(f)

solver.set_initial_condition(2)

time_points = np.linspace(0, 4, 101)

u, t = solver.solve(time_points)

In other words, you define your right-hand side function f(u, t), initialize an
Odespy solver object, set the initial condition, compute a collection of time points
where you want the solution, and ask for the solution. The returned arrays u and t
can be plotted directly: plot(t, u).

A nice feature of Odespy is that problem parameters can be arguments to the
user’s f(u, t) function. For example, if our ODE problem is u0 D �au C b, with
two problem parameters a and b, we may write our f function as

def f(u, t, a, b):

return -a*u + b

The extra, problem-dependent arguments a and b can be transferred to this function
if we collect their values in a list or tuple when creating the Odespy solver and use
the f_args argument:
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a = 2

b = 1

solver = method(f, f_args=[a, b])

This is a good feature because problem parameters must otherwise be global vari-
ables – now they can be arguments in our right-hand side function in a natural way.
Exercise 4.16 asks you to make a complete implementation of this problem and plot
the solution.

Using Odespy to solve oscillation ODEs like u00 C !2u D 0, reformulated as
a system u0 D v and v0 D �!2u, is done as follows. We specify a given number
of time steps per period and compute the associated time steps and end time of the
simulation (T), given a number of periods to simulate:

import odespy

# Define the ODE system

# u’ = v

# v’ = -omega**2*u

def f(sol, t, omega=2):

u, v = sol

return [v, -omega**2*u]

# Set and compute problem dependent parameters

omega = 2

X_0 = 1

number_of_periods = 40

time_intervals_per_period = 20

from numpy import pi, linspace, cos

P = 2*pi/omega # length of one period

dt = P/time_intervals_per_period # time step

T = number_of_periods*P # final simulation time

# Create Odespy solver object

odespy_method = odespy.RK2

solver = odespy_method(f, f_args=[omega])

# The initial condition for the system is collected in a list

solver.set_initial_condition([X_0, 0])

# Compute the desired time points where we want the solution

N_t = int(round(T/dt)) # no of time intervals

time_points = linspace(0, T, N_t+1)

# Solve the ODE problem

sol, t = solver.solve(time_points)

# Note: sol contains both displacement and velocity

# Extract original variables

u = sol[:,0]

v = sol[:,1]

The last two statements are important since our two functions u and v in the ODE
system are packed together in one array inside the Odespy solver. The solution



4.3 Oscillating One-Dimensional Systems 135

of the ODE system is returned as a two-dimensional array where the first column
(sol[:,0]) stores u and the second (sol[:,1]) stores v. Plotting u and v is
a matter of running plot(t, u, t, v).

Remark
In the right-hand side function we write f(sol, t, omega) instead of f(u,
t, omega) to indicate that the solution sent to f is a solution at time t where
the values of u and v are packed together: sol = [u, v]. We might well use u
as argument:

def f(u, t, omega=2):

u, v = u

return [v, -omega**2*u]

This just means that we redefine the name u inside the function to mean the
solution at time t for the first component of the ODE system.

To switch to another numerical method, just substitute RK2 by the proper name
of the desired method. Typing pydoc odespy in the terminal window brings up
a list of all the implemented methods. This very simple way of choosing a method
suggests an obvious extension of the code above: we can define a list of methods,
run all methods, and compare their u curves in a plot. As Odespy also contains
the Euler-Cromer scheme, we rewrite the system with v0 D �!2u as the first ODE
and u0 D v as the second ODE, because this is the standard choice when using the
Euler-Cromer method (also in Odespy):

def f(u, t, omega=2):

v, u = u

return [-omega**2*u, v]

This change of equations also affects the initial condition: the first component is
zero and second is X_0 so we need to pass the list [0, X_0] to solver.set_
initial_condition.

The code osc_odespy.py contains the details:

def compare(odespy_methods,

omega,

X_0,

number_of_periods,

time_intervals_per_period=20):

from numpy import pi, linspace, cos

P = 2*pi/omega # length of one period

dt = P/time_intervals_per_period

T = number_of_periods*P

https://github.com/hplgit/prog4comp/tree/master/src/py/osc_odespy.py
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# If odespy_methods is not a list, but just the name of

# a single Odespy solver, we wrap that name in a list

# so we always have odespy_methods as a list

if type(odespy_methods) != type([]):

odespy_methods = [odespy_methods]

# Make a list of solver objects

solvers = [method(f, f_args=[omega]) for method in

odespy_methods]

for solver in solvers:

solver.set_initial_condition([0, X_0])

# Compute the time points where we want the solution

dt = float(dt) # avoid integer division

N_t = int(round(T/dt))

time_points = linspace(0, N_t*dt, N_t+1)

legends = []

for solver in solvers:

sol, t = solver.solve(time_points)

v = sol[:,0]

u = sol[:,1]

# Plot only the last p periods

p = 6

m = p*time_intervals_per_period # no time steps to plot

plot(t[-m:], u[-m:])

hold(’on’)

legends.append(solver.name())

xlabel(’t’)

# Plot exact solution too

plot(t[-m:], X_0*cos(omega*t)[-m:], ’k--’)

legends.append(’exact’)

legend(legends, loc=’lower left’)

axis([t[-m], t[-1], -2*X_0, 2*X_0])

title(’Simulation of %d periods with %d intervals per period’

% (number_of_periods, time_intervals_per_period))

savefig(’tmp.pdf’); savefig(’tmp.png’)

show()

A new feature in this code is the ability to plot only the last p periods, which allows
us to perform long time simulations and watch the end results without a cluttered
plot with too many periods. The syntax t[-m:] plots the last m elements in t
(a negative index in Python arrays/lists counts from the end).

We may compare Heun’s method (or equivalently the RK2 method) with the
Euler-Cromer scheme:

compare(odespy_methods=[odespy.Heun, odespy.EulerCromer],

omega=2, X_0=2, number_of_periods=20,

time_intervals_per_period=20)

Figure 4.22 shows how Heun’s method (the blue line with small disks) has consid-
erable error in both amplitude and phase already after 14–20 periods (upper left),
but using three times as many time steps makes the curves almost equal (upper
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Fig. 4.22 Illustration of the impact of resolution (time steps per period) and length of simulation

right). However, after 194–200 periods the errors have grown (lower left), but can
be sufficiently reduced by halving the time step (lower right).

With all the methods in Odespy at hand, it is now easy to start exploring other
methods, such as backward differences instead of the forward differences used in
the Forward Euler scheme. Exercise 4.17 addresses that problem.

Odespy contains quite sophisticated adaptive methods where the user is “guar-
anteed” to get a solution with prescribed accuracy. There is no mathematical guar-
antee, but the error will for most cases not deviate significantly from the user’s
tolerance that reflects the accuracy. A very popular method of this type is the
Runge-Kutta-Fehlberg method, which runs a 4th-order Runge-Kutta method and
uses a 5th-order Runge-Kutta method to estimate the error so that �t can be ad-
justed to keep the error below a tolerance. This method is also widely known as
ode45, because that is the name of the function implementing the method in Mat-
lab. We can easily test the Runge-Kutta-Fehlberg method as soon as we know the
corresponding Odespy name, which is RKFehlberg:

compare(odespy_methods=[odespy.EulerCromer, odespy.RKFehlberg],

omega=2, X_0=2, number_of_periods=200,

time_intervals_per_period=40)
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Fig. 4.23 Comparison of the Runge-Kutta-Fehlberg adaptive method against the Euler-Cromer
scheme for a long time simulation (200 periods)

Note that the time_intervals_per_period argument refers to the time points
where we want the solution. These points are also the ones used for numerical
computations in the odespy.EulerCromer solver, while the odespy.RKFehlberg
solver will use an unknown set of time points since the time intervals are adjusted
as the method runs. One can easily look at the points actually used by the method as
these are available as an array solver.t_all (but plotting or examining the points
requires modifications inside the comparemethod).

Figure 4.23 shows a computational example where the Runge-Kutta-Fehlberg
method is clearly superior to the Euler-Cromer scheme in long time simulations, but
the comparison is not really fair because the Runge-Kutta-Fehlberg method applies
about twice as many time steps in this computation and performs much more work
per time step. It is quite a complicated task to compare two so different methods
in a fair way so that the computational work versus accuracy is scientifically well
reported.

4.3.7 The 4th-Order Runge-Kutta Method

The 4th-order Runge-Kutta method (RK4) is clearly the most widely used method
to solve ODEs. Its power comes from high accuracy even with not so small time
steps.
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Fig. 4.24 The last 10 of 40 periods of oscillations by the 4th-order Runge-Kutta method

The algorithm We first just state the four-stage algorithm:

unC1 D un C �t

6

�
f n C 2 Of nC 1

2 C 2 Qf nC 1
2 C Nf nC1

�
; (4.59)

where

Of nC 1
2 D f

�
un C 1

2
�tf n; tnC 1

2

�
; (4.60)

Qf nC 1
2 D f

�
un C 1

2
�t Of nC 1

2 ; tnC 1
2

�
; (4.61)

Nf nC1 D f
�
un C �t Qf nC 1

2 ; tnC1

�
: (4.62)

Application We can run the same simulation as in Figs. 4.16, 4.18, and 4.21, for 40
periods. The 10 last periods are shown in Fig. 4.24. The results look as impressive
as those of the Euler-Cromer method.

Implementation The stages in the 4th-order Runge-Kutta method can easily be
implemented as a modification of the osc_Heun.py code. Alternatively, one can
use the osc_odespy.py code by just providing the argument odespy_methods=
[odespy.RK4] to the compare function.

Derivation The derivation of the 4th-order Runge-Kutta method can be presented
in a pedagogical way that brings many fundamental elements of numerical dis-
cretization techniques together and that illustrates many aspects of “numerical
thinking” when constructing approximate solution methods.
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We start with integrating the general ODE u0 D f .u; t/ over a time step, from tn
to tnC1,

u.tnC1/ � u.tn/ D
tnC1Z

tn

f .u.t/; t/dt :

The goal of the computation is u.tnC1/ (unC1), while u.tn/ (un) is the most recently
known value of u. The challenge with the integral is that the integrand involves the
unknown u between tn and tnC1.

The integral can be approximated by the famous Simpson’s rule6:

tnC1Z

tn

f .u.t/; t/dt � �t

6

�
f n C 4f nC 1

2 C f nC1
�

:

The problem with this formula is that we do not know f nC 1
2 D f .unC 1

2 ; tnC 1
2
/

and f nC1 D .unC1; tnC1/ as only un is available and only f n can then readily be
computed.

To proceed, the idea is to use various approximations for f nC 1
2 and f nC1 based

on using well-known schemes for the ODE in the intervals Œtn; tnC 1
2
� and Œtn; tnC1�.

Let us split the integral into four terms:

tnC1Z

tn

f .u.t/; t/dt � �t

6

�
f n C 2 Of nC 1

2 C 2 Qf nC 1
2 C Nf nC1

�
;

where Of nC 1
2 , Qf nC 1

2 , and Nf nC1 are approximations to f nC 1
2 and f nC1 that can uti-

lize already computed quantities. For Of nC 1
2 we can simply apply an approximation

to unC 1
2 based on a Forward Euler step of size 1

2
�t :

Of nC 1
2 D f

�
un C 1

2
�tf n; tnC 1

2

�
(4.63)

This formula provides a prediction of f nC 1
2 , so we can for Qf nC 1

2 try a Backward
Euler method to approximate unC 1

2 :

Qf nC 1
2 D f

�
un C 1

2
�t Of nC 1

2 ; tnC 1
2

�
: (4.64)

With Qf nC 1
2 as an approximation to f nC 1

2 , we can for the final term Nf nC1 use
a midpoint method (or central difference, also called a Crank-Nicolson method) to
approximate unC1:

Nf nC1 D f .un C �t Of nC 1
2 ; tnC1/ : (4.65)

We have now used the Forward and Backward Euler methods as well as the cen-
tered difference approximation in the context of Simpson’s rule. The hope is that

6 http://en.wikipedia.org/wiki/Simpson’s_rule

http://en.wikipedia.org/wiki/Simpson's_rule
http://en.wikipedia.org/wiki/Simpson's_rule
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the combination of these methods yields an overall time-stepping scheme from tn
to tnC1 that is much more accurate than the individual steps which have errors pro-
portional to �t and �t2. This is indeed true: the numerical error goes in fact like
C�t4 for a constant C , which means that the error approaches zero very quickly as
we reduce the time step size, compared to the Forward Euler method (error � �t),
the Euler-Cromer method (error � �t) or the 2nd-order Runge-Kutta, or Heun’s,
method (error � �t2).

Note that the 4th-order Runge-Kutta method is fully explicit so there is never
any need to solve linear or nonlinear algebraic equations, regardless of what f

looks like. However, the stability is conditional and depends on f . There is a large
family of implicit Runge-Kutta methods that are unconditionally stable, but require
solution of algebraic equations involving f at each time step. The Odespy package
has support for a lot of sophisticated explicit Runge-Kutta methods, but not yet
implicit Runge-Kutta methods.

4.3.8 More Effects: Damping, Nonlinearity, and External Forces

Our model problem u00 C !2u D 0 is the simplest possible mathematical model for
oscillating systems. Nevertheless, this model makes strong demands to numerical
methods, as we have seen, and is very useful as a benchmark for evaluating the
performance of numerical methods.

Real-life applications involve more physical effects, which lead to a differential
equation with more terms and also more complicated terms. Typically, one has
a damping force f .u0/ and a spring force s.u/. Both these forces may depend non-
linearly on their argument, u0 or u. In addition, environmental forces F.t/ may act
on the system. For example, the classical pendulum has a nonlinear “spring” or
restoring force s.u/ � sin.u/, and air resistance on the pendulum leads to a damp-
ing force f .u0/ � ju0ju0. Examples on environmental forces include shaking of the
ground (e.g., due to an earthquake) as well as forces from waves and wind.

With three types of forces on the system: F , f , and s, the sum of forces is written
F.t/ � f .u0/ � s.u/. Note the minus sign in front of f and s, which indicates
that these functions are defined such that they represent forces acting against the
motion. For example, springs attached to the wheels in a car are combined with
effective dampers, each providing a damping force f .u0/ D bu0 that acts against
the spring velocity u0. The corresponding physical force is then �f : �bu0, which
points downwards when the spring is being stretched (and u0 points upwards), while
�f acts upwards when the spring is being compressed (and u0 points downwards).

Figure 4.25 shows an example of a mass m attached to a potentially nonlinear
spring and dashpot, and subject to an environmental force F.t/. Nevertheless, our
general model can equally well be a pendulum as in Fig. 4.26 with s.u/ D mg sin �

and f . Pu/ D 1
2
CDA% P� j P� j (where CD D 0:4, A is the cross sectional area of the

body, and % is the density of air).
Newton’s second law for the system can be written with the mass times acceler-

ation on the left-hand side and the forces on the right-hand side:

mu00 D F.t/ � f .u0/ � s.u/ :
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Fig. 4.25 General oscillating system

Fig. 4.26 A pendulum with
forces

This equation is, however, more commonly reordered to

mu00 C f .u0/ C s.u/ D F.t/ : (4.66)

Because the differential equation is of second order, due to the term u00, we need
two initial conditions:

u.0/ D U0; u0.0/ D V0 : (4.67)

Note that with the choices f .u0/ D 0, s.u/ D ku, and F.t/ D 0 we recover the
original ODE u00 C !2u D 0 with ! D p

k=m.
How can we solve (4.66)? As for the simple ODE u00 C !2u D 0, we start by

rewriting the second-order ODE as a system of two first-order ODEs:

v0 D 1

m
.F.t/ � s.u/ � f .v// ; (4.68)

u0 D v : (4.69)

The initial conditions become u.0/ D U0 and v.0/ D V0.
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Any method for a system of first-order ODEs can be used to solve for u.t/ and
v.t/.

The Euler-Cromer scheme An attractive choice from an implementational, ac-
curacy, and efficiency point of view is the Euler-Cromer scheme where we take
a forward difference in (4.68) and a backward difference in (4.69):

vnC1 � vn

�t
D 1

m
.F.tn/ � s.un/ � f .vn// ; (4.70)

unC1 � un

�t
D vnC1; (4.71)

We can easily solve for the new unknowns vnC1 and unC1:

vnC1 D vn C �t

m
.F.tn/ � s.un/ � f .vn// ; (4.72)

unC1 D un C �tvnC1 : (4.73)

Remark on the ordering of the ODEs
The ordering of the ODEs in the ODE system is important for the extended
model (4.68)–(4.69). Imagine that we write the equation for u0 first and then the
one for v0. The Euler-Cromer method would then first use a forward difference
for unC1 and then a backward difference for vnC1. The latter would lead to
a nonlinear algebraic equation for vnC1,

vnC1 C �t

m
f .vnC1/ D vn C �t

m

�
F.tnC1/ � s.unC1/

�
;

if f .v/ is a nonlinear function of v. This would require a numerical method for
nonlinear algebraic equations to find vnC1, while updating vnC1 through a for-
ward difference gives an equation for vnC1 that is linear and trivial to solve by
hand.

The file osc_EC_general.pyhas a function EulerCromer that implements this
method:

def EulerCromer(f, s, F, m, T, U_0, V_0, dt):

from numpy import zeros, linspace

N_t = int(round(T/dt))

print ’N_t:’, N_t

t = linspace(0, N_t*dt, N_t+1)

u = zeros(N_t+1)

v = zeros(N_t+1)

# Initial condition

u[0] = U_0

v[0] = V_0

https://github.com/hplgit/prog4comp/tree/master/src/py/osc_EC_general.py
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# Step equations forward in time

for n in range(N_t):

v[n+1] = v[n] + dt*(1./m)*(F(t[n]) - f(v[n]) - s(u[n]))

u[n+1] = u[n] + dt*v[n+1]

return u, v, t

The 4-th order Runge-Kutta method The RK4 method just evaluates the right-
hand side of the ODE system,

.
1

m
.F.t/ � s.u/ � f .v// ; v/

for known values of u, v, and t , so the method is very simple to use regardless of
how the functions s.u/ and f .v/ are chosen.

4.3.9 Illustration of Linear Damping

We consider an engineering system with a linear spring, s.u/ D kx, and a viscous
damper, where the damping force is proportional to u0, f .u0/ D bu0, for some
constant b > 0. This choice may model the vertical spring system in a car (but
engineers often like to illustrate such a system by a horizontal moving mass like
the one depicted in Fig. 4.25). We may choose simple values for the constants to
illustrate basic effects of damping (and later excitations). Choosing the oscillations
to be the simple u.t/ D cos t function in the undamped case, we may set m D 1,
k D 1, b D 0:3, U0 D 1, V0 D 0. The following function implements this case:

def linear_damping():

b = 0.3

f = lambda v: b*v

s = lambda u: k*u

F = lambda t: 0

m = 1

k = 1

U_0 = 1

V_0 = 0

T = 12*pi

dt = T/5000.

u, v, t = EulerCromer(f=f, s=s, F=F, m=m, T=T,

U_0=U_0, V_0=V_0, dt=dt)

plot_u(u, t)

The plot_u function is a collection of plot statements for plotting u.t/, or a part
of it. Figure 4.27 shows the effect of the bu0 term: we have oscillations with (an
approximate) period 2	 , as expected, but the amplitude is efficiently damped.

Remark about working with a scaled problem
Instead of setting b D 0:3 and m D k D U0 D 1 as fairly “unlikely” physical
values, it would be better to scale the equation mu00 Cbu0 Cku D 0. This means



4.3 Oscillating One-Dimensional Systems 145

Fig. 4.27 Effect of linear damping

that we introduce dimensionless independent and dependent variables:

Nt D t

tc
; Nu D u

uc

;

where tc and uc are characteristic sizes of time and displacement, respectively,
such that Nt and Nu have their typical size around unity. In the present problem,
we can choose uc D U0 and tc D p

m=k. This gives the following scaled (or
dimensionless) problem for the dimensionless quantity Nu.Nt /:

d 2 Nu
d Nt2

C ˇ
d Nu
d Nt C Nu D 0; Nu.0/ D 1; Nu0.0/ D 0; ˇ D bp

mk
:

The striking fact is that there is only one physical parameter in this problem:
the dimensionless number ˇ. Solving this problem corresponds to solving the
original problem (with dimensions) with the parameters m D k D U0 D 1 and
b D ˇ. However, solving the dimensionless problem is more general: if we have
a solution Nu.Nt I ˇ/, we can find the physical solution of a range of problems since

u.t/ D U0 Nu
�
t
p

k=mI ˇ
�

:

As long as ˇ is fixed, we can find u for any U0, k, and m from the above for-
mula! In this way, a time consuming simulation can be done only once, but still
provide many solutions. This demonstrates the power of working with scaled or
dimensionless problems.
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4.3.10 Illustration of Linear Damping with Sinusoidal Excitation

We now extend the previous example to also involve some external oscillating force
on the system: F.t/ D A sin.wt/. Driving a car on a road with sinusoidal bumps
might give such an external excitation on the spring system in the car (w is related
to the velocity of the car).

With A D 0:5 and w D 3,

from math import pi, sin

w = 3

A = 0.5

F = lambda t: A*sin(w*t)

we get the graph in Fig. 4.28. The striking difference from Fig. 4.27 is that the
oscillations start out as a damped cos t signal without much influence of the external
force, but then the free oscillations of the undamped system (cos t) u00 C u D 0

die out and the external force 0:5 sin.3t/ induces oscillations with a shorter period
2	=3. You are encouraged to play around with a larger A and switch from a sine to
a cosine in F and observe the effects. If you look this up in a physics book, you can
find exact analytical solutions to the differential equation problem in these cases.

A particularly interesting case arises when the excitation force has the same fre-
quency as the free oscillations of the undamped system, i.e., F.t/ D A sin t . With
the same amplitude A D 0:5, but a smaller damping b D 0:1, the oscillations in
Fig. 4.28 becomes qualitatively very different as the amplitude grows significantly
larger over some periods. This phenomenon is called resonance and is exemplified
in Fig. 4.29. Removing the damping results in an amplitude that grows linearly in
time.

Fig. 4.28 Effect of linear damping in combination with a sinusoidal external force
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Fig. 4.29 Excitation force that causes resonance

4.3.11 Spring-Mass Systemwith Sliding Friction

A body with mass m is attached to a spring with stiffness k while sliding on a plane
surface. The body is also subject to a friction force f .u0/ due to the contact between
the body and the plane. Figure 4.30 depicts the situation. The friction force f .u0/
can be modeled by Coulomb friction:

f .u0/ D

8̂
<
:̂

��mg; u0 < 0;

�mg; u0 > 0;

0; u0 D 0

where � is the friction coefficient, and mg is the normal force on the surface where
the body slides. This formula can also be written as f .u0/ D �mg sign.u0/, pro-

Fig. 4.30 Sketch of a one-dimensional, oscillating dynamic system subject to sliding friction and
a spring force
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vided the signum function sign.x/ is defined to be zero for x D 0 (numpy.sign has
this property). To check that the signs in the definition of f are right, recall that the
actual physical force is �f and this is positive (i.e., f < 0) when it works against
the body moving with velocity u0 < 0.

The nonlinear spring force is taken as

s.u/ D �k˛�1 tanh.˛u/;

which is approximately �ku for small u, but stabilizes at ˙k=˛ for large ˙˛u.
Here is a plot with k D 1000 and u 2 Œ�0:1; 0:1� for three ˛ values:

If there is no external excitation force acting on the body, we have the equation
of motion

mu00 C �mg sign.u0/ C k˛�1 tanh.˛u/ D 0 :

Let us simulate a situation where a body of mass 1 kg slides on a surface with
� D 0:4, while attached to a spring with stiffness k D 1000 kg=s2. The initial
displacement of the body is 10 cm, and the ˛ parameter in s.u/ is set to 60 1/m.
Using the EulerCromer function from the osc_EC_general code, we can write
a function sliding_friction for solving this problem:

def sliding_friction():

from numpy import tanh, sign

f = lambda v: mu*m*g*sign(v)

alpha = 60.0

s = lambda u: k/alpha*tanh(alpha*u)

F = lambda t: 0

g = 9.81

mu = 0.4

m = 1

k = 1000
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Fig. 4.31 Effect of nonlinear (left) and linear (right) spring on sliding friction

U_0 = 0.1

V_0 = 0

T = 2

dt = T/5000.

u, v, t = EulerCromer(f=f, s=s, F=F, m=m, T=T,

U_0=U_0, V_0=V_0, dt=dt)

plot_u(u, t)

Running the sliding_friction function gives us the results in Fig. 4.31 with
s.u/ D k˛�1 tanh.˛u/ (left) and the linearized version s.u/ D ku (right).

4.3.12 A finite Difference Method; Undamped, Linear Case

We shall now address numerical methods for the second-order ODE

u00 C !2u D 0; u.0/ D U0; u0.0/ D 0; t 2 .0; T �;

without rewriting the ODE as a system of first-order ODEs. The primary motivation
for “yet another solution method” is that the discretization principles result in a very
good scheme, and more importantly, the thinking around the discretization can be
reused when solving partial differential equations.

The main idea of this numerical method is to approximate the second-order
derivative u00 by a finite difference. While there are several choices of difference
approximations to first-order derivatives, there is one dominating formula for the
second-order derivative:

u00.tn/ � unC1 � 2un C un�1

�t2
: (4.74)

The error in this approximation is proportional to �t2. Letting the ODE be valid at
some arbitrary time point tn,

u00.tn/ C !2u.tn/ D 0;
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we just insert the approximation (4.74) to get

unC1 � 2un C un�1

�t2
D �!2un : (4.75)

We now assume that un�1 and un are already computed and that unC1 is the new
unknown. Solving with respect to unC1 gives

unC1 D 2un � un�1 � �t2!2un : (4.76)

A major problem arises when we want to start the scheme. We know that u0 D
U0, but applying (4.76) for n D 0 to compute u1 leads to

u1 D 2u0 � u�1 � �t2!2u0; (4.77)

where we do not know u�1. The initial condition u0.0/ D 0 can help us to eliminate
u�1 - and this condition must anyway be incorporated in some way. To this end, we
discretize u0.0/ D 0 by a centered difference,

u0.0/ � u1 � u�1

2�t
D 0 :

It follows that u�1 D u1, and we can use this relation to eliminate u�1 in (4.77):

u1 D u0 � 1

2
�t2!2u0 : (4.78)

With u0 D U0 and u1 computed from (4.78), we can compute u2, u3, and so forth
from (4.76). Exercise 4.19 asks you to explore how the steps above are modified in
case we have a nonzero initial condition u0.0/ D V0.

Remark on a simpler method for computing u1

We could approximate the initial condition u0.0/ by a forward difference:

u0.0/ � u1 � u0

�t
D 0;

leading to u1 D u0. Then we can use (4.76) for the coming time steps. How-
ever, this forward difference has an error proportional to �t , while the centered
difference we used has an error proportional to �t2, which is compatible with
the accuracy (error goes like �t2) used in the discretization of the differential
equation.

The method for the second-order ODE described above goes under the name
Störmer’s method or Verlet integration7. It turns out that this method is mathemat-
ically equivalent with the Euler-Cromer scheme (!). Or more precisely, the general
formula (4.76) is equivalent with the Euler-Cromer formula, but the scheme for the

7 http://en.wikipedia.org/wiki/Verlet_integration

http://en.wikipedia.org/wiki/Verlet_integration
http://en.wikipedia.org/wiki/Verlet_integration
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first time level (4.78) implements the initial condition u0.0/ slightly more accurately
than what is naturally done in the Euler-Cromer scheme. The latter will do

v1 D v0 � �t!2u0; u1 D u0 C �tv1 D u0 � �t2!2u0;

which differs from u1 in (4.78) by an amount 1
2
�t2!2u0.

Because of the equivalence of (4.76) with the Euler-Cromer scheme, the numer-
ical results will have the same nice properties such as a constant amplitude. There
will be a phase error as in the Euler-Cromer scheme, but this error is effectively
reduced by reducing �t , as already demonstrated.

The implementation of (4.78) and (4.76) is straightforward in a function (file
osc_2nd_order.py):

from numpy import zeros, linspace

def osc_2nd_order(U_0, omega, dt, T):

"""

Solve u’’ + omega**2*u = 0 for t in (0,T], u(0)=U_0 and u’(0)=0,

by a central finite difference method with time step dt.

"""

dt = float(dt)

Nt = int(round(T/dt))

u = zeros(Nt+1)

t = linspace(0, Nt*dt, Nt+1)

u[0] = U_0

u[1] = u[0] - 0.5*dt**2*omega**2*u[0]

for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*omega**2*u[n]

return u, t

4.3.13 A Finite Difference Method; Linear Damping

A key issue is how to generalize the scheme from Sect. 4.3.12 to a differential
equation with more terms. We start with the case of a linear damping term f .u0/ D
bu0, a possibly nonlinear spring force s.u/, and an excitation force F.t/:

mu00 C bu0 C s.u/ D F.t/; u.0/ D U0; u0.0/ D 0; t 2 .0; T � : (4.79)

We need to find the appropriate difference approximation to u0 in the bu0 term.
A good choice is the centered difference

u0.tn/ � unC1 � un�1

2�t
: (4.80)

Sampling the equation at a time point tn,

mu00.tn/ C bu0.tn/ C s.un/ D F.tn/;

https://github.com/hplgit/prog4comp/tree/master/src/py/osc_2nd_order.py
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and inserting the finite difference approximations to u00 and u0 results in

m
unC1 � 2un C un�1

�t2
C b

unC1 � un�1

2�t
C s.un/ D F n; (4.81)

where F n is a short notation for F.tn/. Equation (4.81) is linear in the unknown
unC1, so we can easily solve for this quantity:

unC1 D
�

2mun C
�

b

2
�t � m

�
un�1 C �t2.F n � s.un//

� �
m C b

2
�t

��1

:

(4.82)
As in the case without damping, we need to derive a special formula for u1. The

initial condition u0.0/ D 0 implies also now that u�1 D u1, and with (4.82) for
n D 0, we get

u1 D u0 C �t2

2m
.F 0 � s.u0// : (4.83)

In the more general case with a nonlinear damping term f .u0/,

mu00 C f .u0/ C s.u/ D F.t/;

we get

m
unC1 � 2un C un�1

�t2
C f

�
unC1 � un�1

2�t

�
C s.un/ D F n;

which is a nonlinear algebraic equation for unC1 that must be solved by numerical
methods. A much more convenient scheme arises from using a backward difference
for u0,

u0.tn/ � un � un�1

�t
;

because the damping term will then be known, involving only un and un�1, and we
can easily solve for unC1.

The downside of the backward difference compared to the centered difference
(4.80) is that it reduces the order of the accuracy in the overall scheme from �t2

to �t . In fact, the Euler-Cromer scheme evaluates a nonlinear damping term as
f .vn/when computing vnC1, and this is equivalent to using the backward difference
above. Consequently, the convenience of the Euler-Cromer scheme for nonlinear
damping comes at a cost of lowering the overall accuracy of the scheme from sec-
ond to first order in �t . Using the same trick in the finite difference scheme for
the second-order differential equation, i.e., using the backward difference in f .u0/,
makes this scheme equally convenient and accurate as the Euler-Cromer scheme in
the general nonlinear case mu00 C f .u0/ C s.u/ D F .
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4.4 Exercises

Exercise 4.1: Geometric construction of the Forward Euler method
Section 4.1.4 describes a geometric interpretation of the Forward Euler method.
This exercise will demonstrate the geometric construction of the solution in detail.
Consider the differential equation u0 D u with u.0/ D 1. We use time steps �t D
1.

a) Start at t D 0 and draw a straight line with slope u0.0/ D u.0/ D 1. Go one
time step forward to t D �t and mark the solution point on the line.

b) Draw a straight line through the solution point .�t; u1/ with slope u0.�t/ D u1.
Go one time step forward to t D 2�t and mark the solution point on the line.

c) Draw a straight line through the solution point .2�t; u2/ with slope u0.2�t/ D
u2. Go one time step forward to t D 3�t and mark the solution point on the
line.

d) Set up the Forward Euler scheme for the problem u0 D u. Calculate u1, u2, and
u3. Check that the numbers are the same as obtained in a)-c).

Filename: ForwardEuler_geometric_solution.py.

Exercise 4.2: Make test functions for the Forward Euler method
The purpose of this exercise is to make a file test_ode_FE.py that makes use of
the ode_FE function in the file ode_FE.py and automatically verifies the imple-
mentation of ode_FE.

a) The solution computed by hand in Exercise 4.1 can be used as a reference so-
lution. Make a function test_ode_FE_1() that calls ode_FE to compute three
time steps in the problem u0 D u, u.0/ D 1, and compare the three values u1,
u2, and u3 with the values obtained in Exercise 4.1.

b) The test in a) can be made more general using the fact that if f is linear in u and
does not depend on t , i.e., we have u0 D ru, for some constant r , the Forward
Euler method has a closed form solution as outlined in Sect. 4.1.1: un D U0.1C
r�t/n. Use this result to construct a test function test_ode_FE_2() that runs
a number of steps in ode_FE and compares the computed solution with the listed
formula for un.

Filename: test_ode_FE.py.

Exercise 4.3: Implement and evaluate Heun’s method

a) A 2nd-order Runge-Kutta method, also known has Heun’s method, is derived in
Sect. 4.3.5. Make a function ode_Heun(f, U_0, dt, T) (as a counterpart to
ode_FE(f, U_0, dt, T) in ode_FE.py) for solving a scalar ODE problem
u0 D f .u; t/, u.0/ D U0, t 2 .0; T �, with this method using a time step size
�t .

b) Solve the simple ODE problem u0 D u, u.0/ D 1, by the ode_Heun and the
ode_FE function. Make a plot that compares Heun’s method and the Forward
Euler method with the exact solution u.t/ D et for t 2 Œ0; 6�. Use a time step
�t D 0:5.
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c) For the case in b), find through experimentation the largest value of �t where
the exact solution and the numerical solution by Heun’s method cannot be dis-
tinguished visually. It is of interest to see how far off the curve the Forward
Euler method is when Heun’s method can be regarded as “exact” (for visual
purposes).

Filename: ode_Heun.py.

Exercise 4.4: Find an appropriate time step; logistic model
Compute the numerical solution of the logistic equation for a set of repeatedly
halved time steps: �tk D 2�k�t , k D 0; 1; : : :. Plot the solutions correspond-
ing to the last two time steps �tk and �tk�1 in the same plot. Continue doing this
until you cannot visually distinguish the two curves in the plot. Then one has found
a sufficiently small time step.

Hint Extend the logistic.py file. Introduce a loop over k, write out �tk , and
ask the user if the loop is to be continued.
Filename: logistic_dt.py.

Exercise 4.5: Find an appropriate time step; SIR model
Repeat Exercise 4.4 for the SIR model.

Hint Import the ode_FE function from the ode_system_FE module and make
a modified demo_SIR function that has a loop over repeatedly halved time steps.
Plot S , I , and R versus time for the two last time step sizes in the same plot.
Filename: SIR_dt.py.

Exercise 4.6: Model an adaptive vaccination campaign
In the SIRV model with time-dependent vaccination from Sect. 4.2.9, we want to
test the effect of an adaptive vaccination campaign where vaccination is offered as
long as half of the population is not vaccinated. The campaign starts after � days.
That is, p D p0 if V < 1

2
.S0 C I 0/ and t > � days, otherwise p D 0.

Demonstrate the effect of this vaccination policy: choose ˇ, � , and � as in
Sect. 4.2.9, set p D 0:001, � D 10 days, and simulate for 200 days.

Hint This discontinuous p.t/ function is easiest implemented as a Python function
containing the indicated if test. You may use the file SIRV1.py as starting point,
but note that it implements a time-dependent p.t/ via an array.
Filename: SIRV_p_adapt.py.

Exercise 4.7: Make a SIRV model with time-limited effect of vaccination
We consider the SIRV model from Sect. 4.2.8, but now the effect of vaccination is
time-limited. After a characteristic period of time, 	 , the vaccination is no more
effective and individuals are consequently moved from the V to the S category and
can be infected again. Mathematically, this can be modeled as an average leakage
�	�1V from the V category to the S category (i.e., a gain 	�1V in the latter).
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Write up the complete model, implement it, and rerun the case from Sect. 4.2.8
with various choices of parameters to illustrate various effects.
Filename: SIRV1_V2S.py.

Exercise 4.8: Refactor a flat program
Consider the file osc_FE.py implementing the Forward Euler method for the os-
cillating system model (4.43)–(4.44). The osc_FE.py is what we often refer to as
a flat program, meaning that it is just one main program with no functions. To eas-
ily reuse the numerical computations in other contexts, place the part that produces
the numerical solution (allocation of arrays, initializing the arrays at time zero, and
the time loop) in a function osc_FE(X_0, omega, dt, T), which returns u, v,
t. Place the particular computational example in osc_FE.py in a function demo().
Construct the file osc_FE_func.py such that the osc_FE function can easily be
reused in other programs. In Python, this means that osc_FE_func.py is a module
that can be imported in other programs. The requirement of a module is that there
should be no main program, except in the test block. You must therefore call demo
from a test block (i.e., the block after if __name__ == ’__main__’).
Filename: osc_FE_func.py.

Exercise 4.9: Simulate oscillations by a general ODE solver
Solve the system (4.43)–(4.44) using the general solver ode_FE in the file ode_
system_FE.py described in Sect. 4.2.6. Program the ODE system and the call to
the ode_FE function in a separate file osc_ode_FE.py.

Equip this file with a test function that reads a file with correct u values and
compares these with those computed by the ode_FE function. To find correct u

values, modify the program osc_FE.py to dump the u array to file, run osc_FE.py,
and let the test function read the reference results from that file.
Filename: osc_ode_FE.py.

Exercise 4.10: Compute the energy in oscillations

a) Make a function osc_energy(u, v, omega) for returning the potential and
kinetic energy of an oscillating system described by (4.43)–(4.44). The potential
energy is taken as 1

2
!2u2 while the kinetic energy is 1

2
v2. (Note that these

expressions are not exactly the physical potential and kinetic energy, since these
would be 1

2
mv2 and 1

2
ku2 for a model mx00 C kx D 0.)

Place the osc_energy in a separate file osc_energy.py such that the function
can be called from other functions.

b) Add a call to osc_energy in the programs osc_FE.py and osc_EC.py and plot
the sum of the kinetic and potential energy. How does the total energy develop
for the Forward Euler and the Euler-Cromer schemes?

Filenames: osc_energy.py, osc_FE_energy.py, osc_EC_energy.py.
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Exercise 4.11: Use a Backward Euler scheme for population growth
We consider the ODE problem N 0.t/ D rN.t/, N.0/ D N0. At some time,
tn D n�t , we can approximate the derivative N 0.tn/ by a backward difference,
see Fig. 4.19:

N 0.tn/ � N.tn/ � N.tn � �t/

�t
D N n � N n�1

�t
;

which leads to
N n � N n�1

�t
D rN n ;

called the Backward Euler scheme.

a) Find an expression for the N n in terms of N n�1 and formulate an algorithm for
computing N n, n D 1; 2; : : : ; Nt .

b) Implement the algorithm in a) in a function growth_BE(N_0, dt, T) for solv-
ing N 0 D rN , N.0/ D N0, t 2 .0; T �, with time step �t (dt).

c) Implement the Forward Euler scheme in a function growth_FE(N_0, dt, T)
as described in b).

d) Compare visually the solution produced by the Forward and Backward Euler
schemes with the exact solution when r D 1 and T D 6. Make two plots, one
with �t D 0:5 and one with �t D 0:05.

Filename: growth_BE.py.

Exercise 4.12: Use a Crank-Nicolson scheme for population growth
It is recommended to do Exercise 4.11 prior to the present one. Here we look at the
same population growth model N 0.t/ D rN.t/, N.0/ D N0. The time derivative
N 0.t/ can be approximated by various types of finite differences. Exercise 4.11
considers a backward difference (Fig. 4.19), while Sect. 4.1.2 explained the forward
difference (Fig. 4.2). A centered difference is more accurate than a backward or
forward difference:

N 0.tn C 1

2
�t/ � N.tn C �t/ � N.tn/

�t
D N nC1 � N n

�t
:

This type of difference, applied at the point tnC 1
2

D tn C 1
2
�t , is illustrated geomet-

rically in Fig. 4.20.

a) Insert the finite difference approximation in the ODE N 0 D rN and solve for
the unknown N nC1, assuming N n is already computed and hence known. The
resulting computational scheme is often referred to as aCrank-Nicolson scheme.

b) Implement the algorithm in a) in a function growth_CN(N_0, dt, T) for solv-
ing N 0 D rN , N.0/ D N0, t 2 .0; T �, with time step �t (dt).
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c) Make plots for comparing the Crank-Nicolson scheme with the Forward and
Backward Euler schemes in the same test problem as in Exercise 4.11.

Filename: growth_CN.py.

Exercise 4.13: Understand finite differences via Taylor series
The Taylor series around a point x D a can for a function f .x/ be written

f .x/ D f .a/ C d

dx
f .a/.x � a/ C 1

2Š

d 2

dx2
f .a/.x � a/2

C 1

3Š

d 3

dx3
f .a/.x � a/3 C : : :

D
1X

iD0

1

iŠ

d i

dxi
f .a/.x � a/i :

For a function of time, as addressed in our ODE problems, we would use u instead
of f , t instead of x, and a time point tn instead of a:

u.t/ D u.tn/ C d

dt
u.tn/.t � tn/ C 1

2Š

d 2

dt2
u.tn/.t � tn/2

C 1

3Š

d 3

dt3
u.tn/.t � tn/3 C : : :

D
1X

iD0

1

iŠ

d i

dt i
u.tn/.t � tn/i :

a) A forward finite difference approximation to the derivative f 0.a/ reads

u0.tn/ � u.tn C �t/ � u.tn/

�t
:

We can justify this formula mathematically through Taylor series. Write up the
Taylor series for u.tn C �t/ (around t D tn, as given above), and then solve
the expression with respect to u0.tn/. Identify, on the right-hand side, the finite
difference approximation and an infinite series. This series is then the error in
the finite difference approximation. If �t is assumed small (i.e. �t << 1), �t

will be much larger than �t2, which will be much larger than �t3, and so on.
The leading order term in the series for the error, i.e., the error with the least
power of �t is a good approximation of the error. Identify this term.

b) Repeat a) for a backward difference:

u0.tn/ � u.tn/ � u.tn � �t/

�t
:

This time, write up the Taylor series for u.tn ��t/ around tn. Solve with respect
to u0.tn/, and identify the leading order term in the error. How is the error
compared to the forward difference?
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c) A centered difference approximation to the derivative, as explored in Exer-
cise 4.12, can be written

u0.tn C 1

2
�t/ � u.tn C �t/ � u.tn/

�t
:

Write up the Taylor series for u.tn/ around tn C 1
2
�t and the Taylor series for

u.tn C �t/ around tn C 1
2
�t . Subtract the two series, solve with respect to

u0.tn C 1
2
�t/, identify the finite difference approximation and the error terms on

the right-hand side, and write up the leading order error term. How is this term
compared to the ones for the forward and backward differences?

d) Can you use the leading order error terms in a)-c) to explain the visual observa-
tions in the numerical experiment in Exercise 4.12?

e) Find the leading order error term in the following standard finite difference ap-
proximation to the second-order derivative:

u00.tn/ � u.tn C �t/ � 2u.tn/ C u.tn � �t/

�t
:

Hint Express u.tn˙�t/ via Taylor series and insert them in the difference formula.
Filename: Taylor_differences.pdf.

Exercise 4.14: Use a Backward Euler scheme for oscillations
Consider (4.43)–(4.44)modeling an oscillating engineering system. This 2	2ODE
system can be solved by the Backward Euler scheme, which is based on discretizing
derivatives by collecting information backward in time. More specifically, u0.t/ is
approximated as

u0.t/ � u.t/ � u.t � �t/

�t
:

A general vector ODE u0 D f .u; t/, where u and f are vectors, can use this
approximation as follows:

un � un�1

�t
D f .un; tn/;

which leads to an equation for the new value un:

un � �tf .un; tn/ D un�1 :

For a general f , this is a system of nonlinear algebraic equations.
However, the ODE (4.43)–(4.44) is linear, so a Backward Euler scheme leads to

a system of two algebraic equations for two unknowns:

un � �tvn D un�1; (4.84)

vn C �t!2un D vn�1 : (4.85)
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a) Solve the system for un and vn.
b) Implement the found formulas for un and vn in a program for computing the

entire numerical solution of (4.43)–(4.44).
c) Run the program with a �t corresponding to 20 time steps per period of the

oscillations (see Sect. 4.3.3 for how to find such a �t). What do you observe?
Increase to 2000 time steps per period. How much does this improve the solu-
tion?

Filename: osc_BE.py.

Remarks While the Forward Euler method applied to oscillation problems u00 C
!2u D 0 gives growing amplitudes, the Backward Euler method leads to signifi-
cantly damped amplitudes.

Exercise 4.15: Use Heun’s method for the SIR model
Make a program that computes the solution of the SIR model from Sect. 4.2.1 both
by the Forward Euler method and by Heun’s method (or equivalently: the 2nd-order
Runge-Kutta method) from Sect. 4.3.5. Compare the two methods in the simulation
case from Sect. 4.2.3. Make two comparison plots, one for a large and one for
a small time step. Experiment to find what “large” and “small” should be: the large
one gives significant differences, while the small one lead to very similar curves.
Filename: SIR_Heun.py.

Exercise 4.16: Use Odespy to solve a simple ODE
Solve

u0 D �au C b; u.0/ D U0; t 2 .0; T �

by the Odespy software. Let the problem parameters a and b be arguments to the
right-hand side function that specifies the ODE to be solved. Plot the solution for
the case when a D 2, b D 1, T D 6=a, and we use 100 time intervals in Œ0; T �.
Filename: odespy_demo.py.

Exercise 4.17: Set up a Backward Euler scheme for oscillations
Write the ODE u00 C !2u D 0 as a system of two first-order ODEs and discretize
these with backward differences as illustrated in Fig. 4.19. The resulting method is
referred to as a Backward Euler scheme. Identify the matrix and right-hand side of
the linear system that has to be solved at each time level. Implement the method, ei-
ther from scratch yourself or using Odespy (the name is odespy.BackwardEuler).
Demonstrate that contrary to a Forward Euler scheme, the Backward Euler scheme
leads to significant non-physical damping. The figure below shows that even with
60 time steps per period, the results after a few periods are useless:
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Filename: osc_BE.py.

Exercise 4.18: Set up a Forward Euler scheme for nonlinear and damped
oscillations
Derive a Forward Euler method for the ODE system (4.68)–(4.69). Compare
the method with the Euler-Cromer scheme for the sliding friction problem from
Sect. 4.3.11:

1. Does the Forward Euler scheme give growing amplitudes?
2. Is the period of oscillation accurate?
3. What is the required time step size for the two methods to have visually coin-

ciding curves?

Filename: osc_FE_general.py.

Exercise 4.19: Discretize an initial condition
Assume that the initial condition on u0 is nonzero in the finite difference method
from Sect. 4.3.12: u0.0/ D V0. Derive the special formula for u1 in this case.
Filename: ic_with_V_0.pdf.
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