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Abstract. This paper deals with the dynamics of discretizations of
isometries of Rn, and more precisely the density of the successive images
of Zn by the discretizations of a generic sequence of isometries. We show
that this density tends to 0 as the time goes to infinity. Thus, in general,
all the information of a numerical image will be lost by applying many
times a naive algorithm of rotation.

1 Introduction

In this paper, we consider the dynamical behaviour of the discretizations of
(linear) isometries of a real and finite dimensional vector space Rn. The goal is
to understand how it is possible to rotate a numerical image (made of pixels) with
the smallest loss of quality as possible. For example, in Fig. 1, we have applied
10 successive random rotations to a 220 × 282 pixels picture, using the software
Gimp (linear interpolation algorithm). These discretized rotations induce a very
strong blur in the resulting image.

Here, we consider the simplest algorithm that can be used to perform a
discrete rotation: discretizing the rotation. More precisely, if x ∈ Z2 is a integer
point (representing a pixel), then the image of x by the discretization of a rotation
R will be the integer point which is the closest of R(x). More precisely, in the
general case of isometries we will use the following definition of a discretization.

Definition 1. We define the projection p : R → Z such that for every x ∈ R,
p(x) is the unique integer k ∈ Z such that k−1/2 < x ≤ k+1/2 (in other words,
p(x) = �x + 11/2�). This projection induces the map

π : Rn �−→ Zn

(xi)1≤i≤n �−→ (
p(xi)

)
1≤i≤n

which is an Euclidean projection on the lattice Zn. For P ∈ On(R) (the set of
linear isometries of Rn), we denote by P̂ the discretization of P , defined by

P̂ : Zn −→ Zn

x �−→ π(Px).

We will measure the loss of information induced by the action of discretizing
by the density of the image set. More precisely, given a sequence (Pk)k≥1 of linear
isometries of Rn, we will look for the density of the set Γk = (P̂k ◦ · · · ◦ P̂1)(Zn).
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Fig. 1. Original image (left) of size 220 × 282 and 10 successive random rotations of
this image (right), obtained with the software Gimp (linear interpolation algorithm).

Fig. 2. Successive images of Z2 by discretizations of random rotations, a point is black
if it belongs to (̂Rθk ◦ · · · ◦ ̂Rθ1)(Z

2), where the θi are chosen uniformly randomly in
[0, 2π]. From left to right and top to bottom, k = 2, 5, 50.

Definition 2. For A1, · · · , Ak ∈ On(R), the rate of injectivity in time k of this
sequence is the quantity

τk(P1, · · · , Pk) = lim sup
R→+∞

Card
(
(P̂k ◦ · · · ◦ P̂1)(Zn) ∩ [BR]

)

Card[BR]
∈]0, 1],

where BR denotes the infinite ball of radius R centered at 0 and [BR] the set of
integral points (i.e. with integer coordinates) inside BR. For an infinite sequence
(Pk)k≥1 of isometries, as the previous quantity is decreasing, we can define the
asymptotic rate of injectivity

τ∞(
(Pk)k≥1

)
= lim

k→+∞
τk(P1, · · · , Pk) ∈ [0, 1].

An example of the sets Γk for a random draw of isometries Pm is presented on
Fig. 2. In particular, we observe that the density of these sets seems to decrease
when k goes to infinity: the images get whiter and whiter.

This phenomenon is confirmed when we plot the density of the intersection
between these image sets Γk and a big ball of Rn (see Fig. 3): this density seems
to tend to 0 as the time k goes to infinity.
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Fig. 3. Expectation of the rate of injectivity of a random sequences of rotations: the
graphic represents the mean of the rate of injectivity τk(Rθk , · · · , Rθ1) depending on
k, 1 ≤ k ≤ 200, for 50 random draws of sequences of angles (θi)i, with each θi chosen
independently and uniformly in [0, 2π]. Note that the behaviour is not exponential.

We would like to explain theoretically this phenomenon. Of course, if we take
Pm = Id, then we will have Γk = Zn and the rates of injectivity will be equal to 0.
To avoid this kind of “exceptional cases”, we will study the asymptotic rate of
injectivity of a generic sequence of matrices of On(R), in the following sense.

Definition 3. We fix once for all a norm ‖ · ‖ on Mn(R). For any sequence
(Pk)k≥1 of matrices of On(R), we set

‖(Pk)k‖∞ = sup
k≥1

‖Pk‖.

In other words, we consider the space �∞(On(R)) of uniformly bounded sequences
of linear isometries endowed with this natural metric.

This metric is complete, thus there is a good notion of genericity on the set of
linear isometries: a set U ⊂ (On(R))N is generic if it is a countable intersection
of open and dense subsets of �∞(On(R)). The main theorem of this paper studies
the asymptotic rate of injectivity in this context.

Theorem 1. Let (Pk)k≥1 be a generic sequence of matrices of On(R). Then
τ∞((Pk)k) = 0.

The proof of this theorem will even show that for every ε > 0, there
exists an open and dense subset of �∞(On(R)) on which τ∞ is smaller than ε.
This theorem expresses that for “most of” the sequences of isometries, the
loss of information is total. Thus, for a generic sequence of rotations, with the
naive algorithm of discretization, we will not be able to avoid the blur observed
in Fig. 1.

Note that we do not know what is the rate of injectivity of a sequence of
isometries made of independent identically distributed random draws (for exam-
ple with respect to the Haar measure on On(R)).
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The proof of Theorem 1 will be the occasion to study the structure of the
image sets Γk = (P̂k ◦ · · · ◦ P̂1)(Zn). It appears that there is a kind of “regularity
at infinity” in Γk. More precisely, this set is an almost periodic pattern: roughly
speaking, for R large enough, the set Γk ∩BR determines the whole set Γk up to
an error of density smaller than ε (see Definition 6). We prove that the image of
an almost periodic pattern by the discretization of a linear map is still an almost
periodic pattern (Theorem 2); thus, the sets Γk are almost periodic patterns.

The idea of the proof of Theorem 1 is to take advantage of the fact that for a
generic sequence of isometries, we have a kind of independence of the coefficients
of the matrices. Thus, for a generic isometry P ∈ On(R), the set P (Zn) is
uniformly distributed modulo Zn. We then remark that the local pattern of the
image set P̂ (Zn) around P̂ (x) is only determined by P and the remainder of
Px modulo Zn: the global behaviour of P̂ (Zn) is coded by the quotient Rn/Zn.
This somehow reduces the study to a local problem.

As a first application of this remark, we state that the rate of injectivity in
time 1 can be seen as the area of an intersection of cubes (Proposition 2). This
observation is one of the two keys of the proof of Theorem 1, the second one being
the study of the action of the discretizations P̂ on the frequencies of differences
ρΓk

(v) = D
(
(Γk−v)∩Γk

)
. Indeed, if there exists a set Γ ′ ⊂ Γ of positive density,

together with a vector v such that for every x ∈ Γ ′, we have P̂ (x) = P̂ (x + v),
then we will have D(P̂ (Γ )) ≤ D(P̂ ) − D(Γ ′). This study of the frequencies of
differences will include a Minkowski-type theorem for almost-periodic patterns
(Theorem 4).

The particular problem of the discretization of linear maps has been quite
little studied. To our knowledge, what has been made in this direction has been
initiated by image processing. One wants to avoid phenomenons like loss of
information (due to the fact that discretizations of linear maps are not injective)
or aliasing (the apparition of undesirable periodic patterns in the image, due
for example to a resonance between a periodic pattern in the image and the
discretized map). To our knowledge, the existing studies are mostly interested in
the linear maps with rational coefficients (see for example [8,11] or [9]), including
the specific case of rotations (see for example [1,2,12–14]). These works mainly
focus on the local behaviour of the images of Z2 by discretizations of linear
maps: given a radius R, what pattern can follow the intersection of this set
with any ball of radius R? What is the number of such patterns, what are their
frequencies? Are they complex (in a sense to define) or not? Are these maps
bijections? In particular, the thesis [12] of B. Nouvel gives a characterization of
the angles for which the discrete rotation is a bijection (such angles are countable
and accumulate only on 0). Our result complements that of B. Nouvel: on the
one hand it expresses that a generic sequence of discretizations is far from being
a bijection, and on the other hand this remains true in any dimension.

Note that Theorem 1 will be generalized to the case of matrices of determi-
nant 1 in [5], with more sophisticated techniques (see also [6]).
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2 Almost Periodic Sets

In this section, we introduce the basic notions that we will use during the study
of discretizations of isometries of Rn.

We fix once for all an integer n ≥ 1. We will denote by �a, b� the integer
segment [a, b] ∩ Z. In this part, every ball will be taken with respect to the
infinite norm; in particular, for x = (x1, · · · , xn), we will have

B(x,R) = B∞(x,R) =
{
y = (y1, · · · , yn) ∈ Rn | ∀i ∈ �1, n�, |xi − yi| < R

}
.

We will also denote BR = B(0, R). Finally, we will denote by �x� the biggest
integer that is smaller than x and �x� the smallest integer that is bigger than x.
For a set B ⊂ Rn, we will denote [B] = B ∩ Zn.

2.1 Almost Periodic Patterns: Definitions and First Properties

In this subsection, we define the notion of almost periodic pattern and prove
that these sets possess a uniform density.

Definition 4. Let Γ be a subset of Rn.

– We say that Γ is relatively dense if there exists RΓ > 0 such that each ball
with radius at least RΓ contains at least one point of Γ .

– We say that Γ is a uniformly discrete if there exists rΓ > 0 such that each
ball with radius at most rΓ contains at most one point of Γ .

The set Γ is called a Delone set (see for instance [10]) if it is both relatively
dense and uniformly discrete.

Definition 5. For a discrete set Γ ⊂ Rn and R ≥ 1, we define the uniform
R-density:

D+
R(Γ ) = sup

x∈Rn

Card
(
B(x,R) ∩ Γ

)

Card
(
B(x,R) ∩ Zn

) , (1)

and the uniform upper density:

D+(Γ ) = lim sup
R→+∞

D+
R(Γ ). (2)

Remark that if Γ ⊂ Rn is Delone for the parameters rΓ and RΓ , then its
upper density satisfies:

1
(2RΓ + 1)n

≤ D+(Γ ) ≤ 1
(2rΓ + 1)n

.

We can now define the notion of almost periodic pattern that we will use
throughout this paper. Roughly speaking, an almost periodic pattern Γ is a set
for which there exists a relatively dense set of translations of Γ , where a vector
v is a translation of Γ if Γ − v is equal to Γ up to a set of upper density smaller
than ε. More precisely, we state the following definition.
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Definition 6. A Delone set Γ ⊂ Zn is an almost periodic pattern if for every
ε > 0, there exists Rε > 0 and a relatively dense set Nε, called the set of
ε-translations of Γ , such that

∀R ≥ Rε, ∀v ∈ Nε, D+
R

(
(Γ + v)ΔΓ

)
< ε. (3)

Of course, every lattice, or every finite union of translates of a given lattice, is
an almost periodic pattern. We will see in next subsection a large class of exam-
ples of almost periodic patterns: images of Zn by discretizations of linear maps.

We end this introduction to almost periodic patterns by stating that the
notion of almost periodic pattern is invariant under discretizations of linear
isometries: the image of an almost periodic pattern by the discretization of a
linear isometry is still an almost periodic pattern.

Theorem 2. Let Γ ⊂ Zn be an almost periodic pattern and P ∈ On(R). Then
the set P̂ (Γ ) is an almost periodic pattern.

This implies that, given a sequence (Pk)k≥1 of isometries of Rn, the successive
images (P̂k ◦ · · ·◦ P̂1)(Zn) are almost periodic patterns. See Fig. 2 for an example
of the successive images of Z2 by a random sequence of bounded matrices of
O2(R). The proof of Theorem 2 will be done in Appendix B. Examples of sets
P̂ (Z2) for various rotations P can be found in Fig. 4, where the almost periodicity
is patent. Remark that Theorem 2 implies that the limsup in Eq. (2) is in fact
a limit, which remains the same if in Eq. (1) we consider an inf instead of a sup
(see [7]).

Fig. 4. Images of Z2 by discretizations of rotations, a point is black if it belongs to the
image of Z2 by the discretization of the rotation. From left to right and top to bottom,
angles π/4, π/5 and π/6.

2.2 Differences in Almost Periodic Patterns

We will need to understand how behave the differences in an almost periodic
pattern Γ , i.e. the vectors x−y with x, y ∈ Γ . In fact, we will study the frequency
of appearance of these differences.



Discretizations of Isometries 77

Definition 7. For v ∈ Zn, we set

ρΓ (v) =
D{x ∈ Γ | x + v ∈ Γ}

D(Γ )
=

D
(
Γ ∩ (Γ − v)

)

D(Γ )
∈ [0, 1]

the frequency of the difference v in the almost periodic pattern Γ .

Studying frequencies of differences allows to focus on the global behaviour
of an almost periodic set. The function ρΓ is itself almost periodic in the sense
given by H. Bohr (see [3]).

Definition 8. Let f : Zn → R. Denoting by Tv the translation of vector v, we
say that f is Bohr almost periodic (also called uniformly almost periodic) if for
every ε > 0, the set

Nε =
{
v ∈ Zn | ‖f − f ◦ Tv‖∞ < ε

}
,

is relatively dense.

If f : Zn → R is a Bohr almost periodic function, then it possesses a mean
M(f) (see for example the historical paper of H. Bohr [3, Satz VIII]), which
satisfies: for every ε > 0, there exists R0 > 0 such that for every R ≥ R0 and
every x ∈ Rn, we have

∣
∣
∣
∣
∣
∣
M(f) − 1

Card[B(x,R)]

∑

v∈[B(x,R)]

f(v)

∣
∣
∣
∣
∣
∣
< ε.

The fact that ρΓ is Bohr almost periodic is straightforward.

Lemma 1. If Γ is an almost periodic pattern, then the function ρΓ is Bohr
almost periodic.

In fact, we can compute precisely the mean of ρ(Γ ).

Proposition 1. If Γ is an almost periodic pattern, then we have

M(ρΓ ) = D(Γ ).

The proof of this proposition will be done in Appendix A.
We now state a Minkowski-type theorem for the map ρΓ . To begin with, we

recall the classical Minkowski theorem (see for example the book [4]).

Theorem 3 (Minkowski). Let Λ be a lattice of Rn, k ∈ N and S ⊂ Rn be a
centrally symmetric convex body. If Leb(S/2) > k covol(Λ), then S contains at
least 2k distinct points of Λ\{0}.
Theorem 4. Let Γ ⊂ Zn be an almost periodic pattern of density D(Γ ). Let S
be a centrally symmetric body, with Leb(S) > 4nk. If for every v ∈ S ∩ Zn, we
have ρΓ (v) < ρ0, then

ρ0 ≥ 1
k

(
1 − 1

D(Γ )(2k + 1)

)
.

In particular, if k ≥ 1
D(Γ ) , then there exists x ∈ C ∩Zn such that ρΓ (x) ≥ D(Γ )

2 .
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Proof (of Theorem 4). Minkowski theorem (Theorem 3) asserts that S/2 contains
at least 2k + 1 distinct points of Zn, denoted by ui. By the hypothesis on the
value of ρΓ on S, and because the set of differences of S/2 is included in S, we
know that the density of (Γ + ui) ∩ (Γ + uj) is smaller than ρ0D(Γ ). Thus,

D
(⋃

i

(Γ + ui)
)

≥
∑

i

D(Γ ) −
∑

i<j

D
(
(Γ + ui) ∩ (Γ + uj)

)

≥ (2k + 1)D(Γ ) − 2k(2k + 1)
2

ρ0D(Γ ).

The theorem then follows from the fact that the left member of this inequality
is smaller than 1. ��

3 Rate of Injectivity of Isometries

We now focus in more detail on the rate of injectivity of a sequence of isometries
(see Definition 2).

3.1 A Geometric Viewpoint on the Rate of Injectivity

In this subsection, we present a geometric construction to compute the rate of
injectivity of a generic matrix, and some applications of it.

Let P ∈ On(R) and Λ = P (Zn). The density of π(Λ) is the proportion of
x ∈ Zn belonging to π(Λ); in other words the proportion of x ∈ Zn such that
there exists λ ∈ Λ whose distance to x (for ‖ · ‖∞) is smaller than 1/2. remark
that this property only depends on the value of x modulo Λ. If we consider the
union

U =
⋃

λ∈Λ

B(λ, 1/2)

of balls of radius 1/2 centred on the points of Λ (see Fig. 5), then x ∈ π(Λ) if
and only if x ∈ U ∩ Zn. So, if we set ν the measure of repartition of the x ∈ Zn

modulo Λ, that is

ν = lim
R→+∞

1
Card(BR ∩ Zn)

∑

x∈BR∩Zn

δprRn/Λ(x),

then we obtain the following formula.

Proposition 2. For every P ∈ On(R) (we identify U with its projection of
Rn/Λ),

τ(P ) = D
(
π(Λ)

)
= ν

(
prRn/Λ(U)

)
.

An even more simple formula holds when the matrix P is totally irrational.

Definition 9. We say that a matrix P ∈ On(R) is totally irrational if the
image P (Zn) is equidistributed1 modulo Zn; in particular, this is true when the
coefficients of P form a Q-free family.
1 It is equivalent to require that it is dense instead of equidistributed.
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θ•

•
•

•

Fig. 5. Computation of the mean rate
of injectivity of a rotation of R2: it is
equal to 1 minus the area of the interior
of the red square (Color figure online).

π/2π/40

1

2(
√

2 − 1)
� 0.83

τ(Rθ)

θ

Fig. 6. Mean rate of injectivity of a rotation
of R2 depending of the angle of the rotation.

If the matrix P is totally irrational, then the measure ν is the uniform mea-
sure. Thus, if D is a fundamental domain of Rn/Λ, then τ(P ) is the area of
D ∩ U . We call the area of D ∩ U the mean rate of injectivity of P and denote
it by τ(P ).

With the same kind of arguments, we easily obtain a formula for ρ
̂P (Zn)(v)

(the frequency of the difference v in P̂ (Zn), see Definition 7).

Proposition 3. If P ∈ GLn(R) is totally irrational, then for every v ∈ Zn,

ρ
̂P (Zn)(v) = Leb

(
B(v, 1/2) ∩ U

)
.

Proof (Sketch of proof of Proposition 3). We want to know which proportion
of points x ∈ Γ = P̂ (Zn) are such that x + v also belongs to Γ . But modulo
Λ = P (Zn), x belongs to Γ if and only if x ∈ B(0, 1/2). Similarly, x + v belongs
to Γ if and only if x ∈ B(−v, 1/2). Thus, by equirepartition, ρ

̂P (Zn)(v) is equal
to the area of B(v, 1/2) ∩ U . ��
From Proposition 2, we deduce the continuity of τ . More precisely, τ is continuous
and piecewise polynomial of degree smaller than n; moreover τ coincides with a
continuous function on a generic subset of On(R).

It also allows to compute simply the mean rate of injectivity of some examples
of matrices: for θ ∈ [0, π/2], the mean rate of injectivity of a rotation of R2 of
angle θ is (see Figs. 5 and 6).

τ(Rθ) = 1 − (cos(θ) + sin(θ) − 1)2.

In particular, in the neighbourhoods of all the nontrivial angles on which the
discrete rotation is bijective (see [12,13]), most of the rotations have a rate of
injectivity bounded away from 1.
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3.2 Diffusion Process

In this paragraph, we study the action of a discretization of a matrix on the set
of differences of an almost periodic pattern Γ ; more precisely, we study the link
between the functions ρΓ and ρ

̂P (Γ ).
For u ∈ Rn, we define the function ϕu, which is a “weighted projection” of

u on Zn.

Definition 10. Given u ∈ Rn, the function ϕu = Zn → [0, 1] is defined by

ϕu(v) =
{

0 if d∞(u, v) ≥ 1∏n
i=1(1 − |ui + vi|) if d∞(u, v) < 1.

×u

•
v

•v + (0, 1)

•
v + (1, 0)

•v + (1, 1)

Fig. 7. The function ϕu in dimension 2:
its value on one vertex of the square is
equal to the area of the opposite rec-
tangle; in particular, ϕu(v) is the area
of the rectangle with the vertices u and
v + (1, 1) (in bold).

×u′

(0, 0) (1, 0)

(0, 1) (1, 1)

•

•

•

•

Fig. 8. The red vector is equal to that
of Fig. 7 for u = Pv. If Px belongs to
the bottom left rectangle, then π(Px +
Pv) = y ∈ Z2; if Px belongs to the top
left rectangle, then π(Px+Pv) = y+(0, 1)
etc. (Color figure online).

In particular, the function ϕu satisfies
∑

v∈Zn ϕu(v) = 1, and is supported by
the vertices of the integral unit cube2 that contains3 u. Figure 7 gives a geometric
interpretation of this function ϕu.

The following property asserts that the discretization P̂ acts “smoothly” on
the frequency of differences. In particular, when D(Γ ) = D(P̂Γ ), the function
ρ
̂PΓ is obtained from the function ρΓ by applying a linear operator A, acting

on each Dirac function δv such that Aδu(v) = ϕP (u)(v). Roughly speaking, to
compute Aδv, we take δPv and apply a diffusion process. In the other case where
D(P̂Γ ) < D(Γ ), we only have inequalities involving the operator A to compute
the function ρ

̂PΓ .

2 An integral cube has vertices with integer coordinates and its faces parallel to the
canonical hyperplanes of Rn.

3 More precisely, the support of ϕu is the smallest integral unit cube of dimension
n′ ≤ n which contains u.
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Proposition 4. Let Γ ⊂ Zn be an almost periodic pattern and P ∈ On(R) be
a generic matrix.

(i) If D(P̂ (Γ )) = D(Γ ), then for every u ∈ Zn,

ρ
̂P (Γ )(u) =

∑

v∈Zn

ϕP (v)(u)ρΓ (v).

(ii) In the general case, for every u ∈ Zn, we have

D(Γ )

D(P̂ (Γ ))
sup

v∈Zn

ϕP (v)(u)ρΓ (v) ≤ ρ
̂P (Γ )(u) ≤ D(Γ )

D(P̂ (Γ ))

∑

v∈Zn

ϕP (v)(u)ρΓ (v).

Proof (of Proposition 4). We begin by proving the first point of the proposition.
Suppose that P ∈ On(R) is generic and that D(P̂ (Γ )) = D(Γ ). Let x ∈ Γ ∩(Γ −
v). We consider the projection y′ of y = Px, and the projection u′ of u = Pv,
on the fundamental domain ] − 1/2, 1/2]n of Rn/Zn. We have

P (x + v) = π(Px) + π(Pv) + y′ + u′.

Suppose that y′ belongs to the parallelepiped whose vertices are (−1/2, · · · ,−1/2)
and u′ (in bold in Fig. 8), then y′+u′ ∈ [−1/2, 1/2[n. Thus, π(P (x+v)) = π(Px)+
π(Pv). The same kind of results holds for the other parallelepipeds whose vertices
are u′ and one vertex of [−1/2, 1/2[n.

We set Γ = P̂ (Zn). The genericity of P ensures that for every v ∈ Zn, the set
Γ ∩(Γ −v), which has density D(Γ )ρΓ (v) (by definition of ρΓ ), is equidistributed
modulo Zn (by Lemma 4). Thus, the points x′ are equidistributed modulo Zn. In
particular, the difference v will spread into the differences which are the support
of the function ϕPv, and each of them will occur with a frequency given by
ϕPv(x)ρΓ (v). The hypothesis about the fact that the density of the sets does
not decrease imply that the contributions of each difference of Γ to the differences
of P̂ (Γ ) add.

In the general case, the contributions to each difference of Γ may overlap.
However, applying the argument of the previous case, we can easily prove the
second part of the proposition. ��
Remark 1. We also remark that:

(i) the density strictly decreases (that is, D(P̂ (Γ )) < D(Γ )) if and only if there
exists v0 ∈ Zn such that ρΓ (v0) > 0 and ‖Pv0‖∞ < 1;

(ii) if there exists v0 ∈ Zn such that
∑

v∈Zn

ϕP (v)(v0)ρΓ (v0) > 1,

then the density strictly decreases by at least
∑

v∈Zn ϕP (v)(v0)ρΓ (v0) − 1.
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3.3 Rate of Injectivity of a Generic Sequence of Isometries

We now come to the proof of the main theorem of this paper (Theorem 1). We
will begin by applying the Minkowski theorem for almost periodic patterns (The-
orem 4), which gives one nonzero difference whose frequency is positive. The rest
of the proof of Theorem 1 consists in using again an argument of equidistribu-
tion. More precisely, we apply successively the following lemma, which asserts
that given an almost periodic pattern Γ of density D0, a sequence of isometries
and δ > 0, then, perturbing each isometry of at most δ if necessary, we can make
the density of the k0-th image of Γ smaller than λ0D0, with k0 and λ0 depending
only on D0 and δ. The proof of this lemma involves the study of the action of
the discretizations on differences made in Proposition 4

Lemma 2. Let (Pk)k≥1 be a sequence of matrices of On(R) and Γ ⊂ Zn an
almost periodic pattern. Given δ > 0 and D > 0 such that D(Γ ) ≥ D, there
exists k0 = k0(D) (decreasing in D), λ0 = λ0(D, δ) < 1 (decreasing in D and
in δ), and a sequence (Qk)k≥1 of totally irrational matrices of On(R), such that
‖Pk − Qk‖ ≤ δ for every k ≥ 1 and

D
(
(Q̂k0 ◦ · · · ◦ Q̂1)(Γ )

)
< λ0D(Γ ).

We begin by proving that this lemma implies Theorem 1.

Proof (of Theorem 1). Suppose that Lemma 2 is true. Let τ0 ∈]0, 1[ and δ > 0.
We want to prove that we can perturb the sequence (Pk)k into a sequence (Qk)k

of isometries, which is δ-close to (Pk)k and is such that its asymptotic rate is
smaller than τ0 (and that this remains true on a whole neighbourhood of these
matrices).

Thus, we can suppose that τ∞((Pk)k) > τ0. We apply Lemma 2 to obtain
the parameters k0 = k0(τ0/2) (because k0(D) is decreasing in D) and λ0 =
λ0(τ0/2, δ) (because λ0(D, δ) is decreasing in D). Applying the lemma � times,
this gives a sequence (Qk)k of isometries, which is δ-close to (Pk)k, such that, as
long as τ �k0(Q0, · · · , Q�k0) > τ0/2, we have τ �k0(Q1, · · · , Q�k0) < λ�

0D(Zn). But
for � large enough, λ�

0 < τ0, which proves the theorem. ��
Proof (of Lemma 2). The idea of the proof is the following. Firstly, we apply
the Minkowski-type theorem for almost periodic patterns (Theorem 4) to find a
uniform constant C > 0 and a point u0 ∈ Zn\{0} whose norm is “not too big”,
such that ρΓ (u0) > CD(Γ ). Then, we apply Proposition 4 to prove that the
difference u0 in Γ eventually goes to 0; that is, that there exists k0 ∈ N∗ and an
almost periodic pattern Γ̃ of positive density (that can be computed) such that
there exists a sequence (Qk)k of isometries, with ‖Qi − Pi‖ ≤ δ, such that for
every x ∈ Γ̃ ,

(Q̂k0 ◦ · · · ◦ Q̂1)(x) = (Q̂k0 ◦ · · · ◦ Q̂1)(x + u0).

This makes the density of the k0-th image of Γ decrease:

D
(
(Q̂k0 ◦ · · · ◦ Q̂1)(Γ )

) ≤ D(Γ ) − D(Γ̃ );

a precise estimation of the density of Γ̃ will then prove the lemma.
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We begin by applying the Minkowski-like theorem for almost periodic pat-
terns (Theorem 4) to a Euclidean ball B′

R such that (recall that [B] denotes the
set of integer points inside B)

Leb(B′
R) = VnRn = 4n

⌊
1

D(Γ )

⌋
, (4)

where Vn denotes the measure of the unit ball on Rn. Then, Theorem 4 says
that there exists u0 ∈ B′

R ∩ Zn\{0} such that

ρΓ (u0) ≥ D(Γ )
2

. (5)

We now perturb each matrix Pk into a totally irrational matrix Qk such that
for every point x ∈ [B′

R]\{0}, the point Qk(x) is far away from the lattice Zn.
More precisely, as the set of matrices Q ∈ On(R) such that Q([B′

R]) ∩ Zn �= {0}
is finite, there exists a constant d0(R, δ) such that for every P ∈ On(R), there
exists Q ∈ On(R) such that ‖P − Q‖ ≤ δ and for every x ∈ [B′

R]\{0}, we
have d∞(Q(x),Zn) > d0(R, δ). Applying Lemma 4 (which states that if the
sequence (Qk)k is generic, then the matrices Qk are “non resonant”), we build
a sequence (Qk)k≥1 of totally irrational4 matrices of On(R) such that for every
k ∈ N∗, we have:

– ‖Pk − Qk‖ ≤ δ;
– for every x ∈ [B′

R]\{0}, we have d∞(Qk(x),Zn) > d0(R, δ);
– the set (Qk ◦ ̂Qk−1 ◦ · · · ◦ Q̂1)(Γ ) is equidistributed modulo Zn.

We then consider the difference u0 (given by Eq. (5)). We denote by �P �(u)
the point of the smallest integer cube of dimension n′ ≤ n that contains P (u)
which has the smallest Euclidean norm (that is, the point of the support of
ϕP (u) with the smallest Euclidean norm). In particular, if P (u) /∈ Zn, then
‖�P �(u)‖2 < ‖P (u)‖2 (where ‖ · ‖2 is the Euclidean norm). Then, the point (ii)
of Proposition 4 shows that

ρ
̂Q1(Γ )

(�Q1�(u0)) ≥ D(Γ )

D(Q̂1(Γ ))
ϕQ1(�Q1�(u0))(u0)ρΓ (u0)

≥
(
d0(R, δ)

)n

2
D(Γ ),

(applying Eq. (5)) and so on, for every k ∈ N∗,

ρ
(̂Qk◦···◦̂Q1)(Γ )

(
(�Qk� ◦ · · · ◦ �Q1�)(u0)

) ≥
((

d0(R, δ)
)n

2

)k

D(Γ ).

We then remark that the sequence of norms
∥
∥(�Qk� ◦ · · · ◦ �Q1�)(u0)

∥
∥
2

is
decreasing and can only take a finite number of values (it lies in

√
Z). Then,

4 See Definition 9.
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there exists k0 ≤ R2 such that
(�Qk0� ◦ · · · ◦ �Q1�

)
(u0) = 0; in particular, by

Eq. (4), we have

k0 ≤
(

4n

Vn

⌊
1

D(Γ )

⌋)2/n

.

Then, point (ii) of Remark 1 applied to v0 = 0 implies that the density of the
image set satisfies

D
(
(Q̂k ◦ · · · ◦ Q̂1)(Γ )

) ≤
⎛

⎝1 −
((

d0(R, δ)
)n

2

)k0
⎞

⎠D(Γ ).

The conclusions of the lemma are obtained by setting λ0 = 1−
(

(d0(R,δ))n

2

)k0

. ��

4 Conclusion

By mean of Theorem 1, we have shown why it is illusory to hope that the naive
algorithm of rotation of a numerical image gives good results: applying succes-
sively the discretizations of a generic sequence of rotations leads to a complete
loss of information.

A Technical Lemmas

Let us begin by the proof of Proposition 1.

Proof (of Proposition 1). This proof lies primarily in an inversion of limits.
Let ε > 0. As Γ is an almost periodic pattern, there exists R0 > 0 such that

for every R ≥ R0 and every x ∈ Rn, we have
∣
∣
∣
∣D(Γ ) − Γ ∩ [B(x,R)]

Card[BR]

∣
∣
∣
∣ ≤ ε. (6)

So, we choose R ≥ R0, x ∈ Zn and compute

1
Card[BR]

∑

v∈[B(x,R)]

ρΓ (v) =
1

Card[BR]

∑

v∈[B(x,R)]

D
(
(Γ − v) ∩ Γ

)

D(Γ )

=
1

Card[BR]

∑

v∈[B(x,R)]

lim
R′→+∞

1
Card[BR′ ]

∑

y∈[BR′ ]

1y∈Γ−v1y∈Γ

D(Γ )

=
1

D(Γ )
lim

R′→+∞
1

Card[BR′ ]

∑

y∈[BR′ ]

1y∈Γ
1

Card[BR]

∑

v∈[B(x,R)]

1y∈Γ−v

=
1

D(Γ )
lim

R′→+∞
1

Card[BR′ ]

∑

y∈[BR′ ]

1y∈Γ

︸ ︷︷ ︸
first term

1
Card[BR]

∑

v′∈[B(y+x,R)]

1v′∈Γ

︸ ︷︷ ︸
second term

.
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By Eq. (6), the second term is ε-close to D(Γ ). Considered independently, the
first term is equal to D(Γ ) (still by Eq. (6)). Thus, we have

∣
∣
∣
∣
∣
∣

1
Card[B(x,R)]

∑

v∈[B(x,R)]

ρΓ (v) − D(Γ )

∣
∣
∣
∣
∣
∣
≤ ε,

that we wanted to prove. ��
We now state an easy lemma which asserts that for ε small enough, the set of
translations Nε is “stable under additions with a small number of terms”.

Lemma 3. Let Γ be an almost periodic pattern, ε > 0 and � ∈ N. Then if we
set ε′ = ε/� and denote by Nε′ the set of translations of Γ and Rε′ > 0 the
corresponding radius for the parameter ε′, then for every k ∈ �1, �� and every
v1, · · · , v� ∈ Nε′ , we have

∀R ≥ Rε′ , D+
R

((
Γ +

�∑

i=1

vi

)
ΔΓ

)
< ε.

Proof (of Lemma 3). Let Γ be an almost periodic pattern, ε > 0, � ∈ N, R0 > 0
and ε′ = ε/�. Then there exists Rε′ > 0 such that

∀R ≥ Rε′ , ∀v ∈ Nε′ , D+
R

(
(Γ + v)ΔΓ

)
< ε′.

We then take 1 ≤ k ≤ �, v1, · · · , vk ∈ Nε′ and compute

D+
R

((
Γ +

k∑

i=1

vi

)
ΔΓ

)
≤

k∑

m=1

D+
R

((
Γ +

m∑

i=1

vi

)
Δ
(
Γ +

m−1∑

i=1

vi

))

≤
k∑

m=1

D+
R

((
(Γ + vm)ΔΓ

)
+

m−1∑

i=1

vi

)
.

By the invariance under translation of D+
R , we deduce that

D+
R

((
Γ +

k∑

i=1

vi

)
ΔΓ

)
≤

k∑

m=1

D+
R

(
(Γ + vm)ΔΓ

)

≤ kε′.

As k ≤ �, this ends the proof. ��
Remark 2. In particular, this lemma implies that the set Nε contains arbitrarily
large patches of lattices of Rn: for every almost periodic pattern Γ , ε > 0
and � ∈ N, there exists ε′ > 0 such that for every ki ∈ �−�, �� and every
v1, · · · , vn ∈ Nε′ , we have

∀R ≥ Rε′ , D+
R

((
Γ +

n∑

i=1

kivi

)
ΔΓ

)
< ε.
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The second lemma is more technical. It expresses that given an almost peri-
odic pattern Γ , a generic matrix A ∈ On(R) is non resonant with respect to Γ .

Lemma 4. Let Γ ⊂ Zn be an almost periodic pattern with positive uniform
density. Then the set of A ∈ On(R) such that A(Γ ) is equidistributed modulo
Zn is generic. More precisely, for every ε > 0, there exists an open and dense
set of A ∈ On(R) such that there exists R0 > 0 such that for every R > R0,
the projection on Rn/Zn of the uniform measure on A(Γ ∩ BR) is ε-close to
Lebesgue measure on Rn/Zn.

Proof (of Lemma 4). During this proof, we consider a distance dist on P(Rn/Zn)
which is invariant under translations, where P(Rn/Zn) denotes the space of
probability Borel measures on Rn/Zn endowed with weak-* topology. We
also suppose that this distance satisfies the following convexity inequality: if
μ, ν1, · · · , νd ∈ P(Rn/Zn), then

dist

(

μ,
1
d

d∑

i=1

νi

)

≤ 1
d

d∑

i=1

dist(μ,νi).

For the simplicity of the notations, when μ and ν have not total mass 1, we will
denote by dist(μ, ν) the distance between the normalizations of μ and ν.

We consider the set Uε of matrices A ∈ GLn(R) satisfying: there exists
R0 > 0 such that for all R ≥ R0,

dist

(

LebRn/Zn ,
∑

x∈BR∩Γ

δ̄Ax

)

< ε,

where δ̄x is the Dirac measure of the projection of x on Rn/Zn. We show that
for every ε > 0, Uε contains an open dense set. Then, the set

⋂
ε>0 Uε will be a

Gδ dense set made of matrices A ∈ GLn(R) such that A(Γ ) is well distributed.
Let ε > 0, δ > 0, � > 0 and A ∈ GLn(R). We apply Remark 2 to obtain

a parameter R0 > 0 and a family v1, · · · , vn of ε-translations of Γ such that
the family of cubes

(
B(

∑n
i=1 kivi, R0)

)
−�≤ki≤�

is an “almost tiling” of B�R0 (in
particular, each vi is close to the vector having 2R0 in the i-th coordinate and 0
in the others, see Fig. 9):

(1) this collection of cubes fills almost all B�R0 :

Card
(
Γ ∩ (⋃

−�≤ki≤� B(
∑n

i=1 kivi, R0)ΔB�R0

))

Card(Γ ∩ B�R0)
≤ ε;

(2) the overlaps of the cubes are not too big: for all collections (ki) and (k′
i)

such that −� ≤ ki, k
′
i ≤ �,

Card
(
Γ ∩ (

B(
∑n

i=1 kivi, R0)ΔB(
∑n

i=1 k′
ivi, R0)

))

Card(Γ ∩ B�R0)
≤ ε;
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× v1

v2

0

Fig. 9. “Almost tiling” of B�R0 by cubes B(
∑n

i=1 kivi, R0), with −� ≤ ki ≤ �.

(3) the vectors
∑n

i=1 kivi are translations for Γ : for every collection (ki) such
that −� ≤ ki ≤ �,

Card
((

ΓΔ(Γ − ∑n
i=1 kivi)

) ∩ BR0

)

Card(Γ ∩ BR0)
≤ ε.

Increasing R0 and � if necessary, there exists A′ ∈ GLn(R) (respectively
SLn(R), On(R)) such that ‖A − A′‖ ≤ δ and that we have

dist

⎛

⎝LebRn/Zn ,
∑

−�≤ki≤�

δ̄A′(
∑n

i=1 kivi)

⎞

⎠ ≤ ε. (7)

Indeed, if we denote by Λ the lattice spanned by the vectors v1, · · · , vn, then
the set of matrices A′ such that A′Λ is equidistributed modulo Zn is dense in
GLn(R) (respectively SLn(R) and On(R)).

Then, we have,

dist

(

LebRn/Zn ,
∑

−�≤ki≤�
x∈Γ∩B(

∑n
i=1 kivi,R0)

δ̄A′x

)

≤ dist

(

LebRn/Zn ,
∑

−�≤ki≤�
x∈Γ∩B(0,R0)

δ̄A′(
∑n

i=1 kivi)+A′x

)

+ dist

(

∑

−�≤ki≤�
x∈Γ∩B(0,R0)

δ̄A′(
∑n

i=1 kivi)+A′x,
∑

−�≤ki≤�
x∈Γ∩B(

∑n
i=1 kivi,R0)

δ̄A′x

)

By the property of convexity of dist, the first term is smaller than

1
Card

(
Γ ∩ B(0, R0)

)
∑

x∈Γ∩B(0,R0)

dist

(

LebRn/Zn ,
∑

−�≤ki≤�

δ̄A′(
∑n

i=1 kivi)+A′x

)

;
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by Eq. (7) and the fact that dist is invariant under translation, this term is
smaller than ε. As by hypothesis, the vectors

∑n
i=1 kivi are ε-translations of Γ

(Hypothesis (3)), the second term is also smaller than ε. Thus, we get

dist

(

LebRn/Zn ,
∑

−�≤ki≤�
x∈Γ∩B(

∑n
i=1 kivi,R0)

δ̄A′x

)

≤ 2ε

By the fact that the family of cubes
(
B(

∑n
i=1 kivi, R0)

)
−�≤ki≤�

is an almost
tiling of B�R0 (Hypotheses (1) and (2)), we get, for every v ∈ Rn,

dist

⎛

⎝LebRn/Zn ,
∑

x∈Γ∩B�R0

δ̄A′x

⎞

⎠ < 4ε.

Remark that we can suppose that this remains true on a whole neighbourhood
of A′. We use the fact that Γ is an almost periodic pattern to deduce that A′

belongs to the interior of Uε. ��

B Proof of Theorem 2

Definition 11. For A ∈ GLn(R), we denote A = (ai,j)i,j. We denote by IQ(A)
the set of indices i such that ai,j ∈ Q for every j ∈ �1, n�.

The proof of Theorem 2 relies on the following remark:

Remark 3. If a ∈ Q, then there exists q ∈ N∗ such that {ax | x ∈ Z} ⊂ 1
qZ. On

the contrary, if a ∈ R\Q, then the set {ax | x ∈ Z} is equidistributed in R/Z.

Thus, in the rational case, the proof will lie in an argument of periodicity. On
the contrary, in the irrational case, the image A(Zn) is equidistributed modulo
Zn: on every large enough domain, the density does not move a lot when we
perturb the image set A(Zn) by small translations. This reasoning is formalized
by Lemmas 5 and 6.

More precisely, for R large enough, we would like to find vectors w such that
D+

R

(
(π(AΓ ) + w)Δπ(AΓ )

)
is small. We know that there exists vectors v such

that D+
R

(
(Γ + v)ΔΓ

)
is small; this implies that D+

R

(
(AΓ + Av)ΔAΓ

)
is small,

thus that D+
R

(
π(AΓ + Av)Δπ(AΓ )

)
is small. The problem is that in general,

we do not have π(AΓ + Av) = π(AΓ ) + π(Av). However, this is true if we have
Av ∈ Zn. Lemma 5 shows that in fact, it is possible to suppose that Av “almost”
belongs to Zn, and Lemma 6 asserts that this property is sufficient to conclude.

The first lemma is a consequence of the pigeonhole principle.

Lemma 5. Let Γ ⊂ Zn be an almost periodic pattern, ε > 0, δ > 0 and A ∈
GLn(R). Then we can suppose that the elements of A(Nε) are δ-close to Zn.
More precisely, there exists Rε,δ > 0 and a relatively dense set Ñε,δ such that

∀R ≥ Rε,δ, ∀v ∈ Ñε,δ, D+
R

(
(Γ + v)ΔΓ

)
< ε,
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and that for every v ∈ Ñε,δ, we have d∞(Av,Zn) < δ. Moreover, we can suppose
that for every i ∈ IQ(A) and every v ∈ Ñε,δ, we have (Av)i ∈ Z.

The second lemma states that in the irrational case, we have continuity of
the density under perturbations by translations.

Lemma 6. Let ε > 0 and A ∈ GLn(R). Then there exists δ > 0 and R0 > 0
such that for all w ∈ B∞(0, δ) (such that for every i ∈ IQ(A), wi = 0), and for
all R ≥ R0, we have

D+
R

(
π(AZn)Δπ(AZn + w)

) ≤ ε.

Remark 4. When IQ(A) = ∅, and in particular when A is totally irrational (see
Definition 9), the map v �→ τ(A + v) is continuous in 0; the same proof as that
of this lemma implies that this function is globally continuous.

We begin by the proofs of both lemmas, and prove Theorem 2 thereafter.

Proof (of Lemma 5). Let us begin by giving the main ideas of the proof of this
lemma. For R0 large enough, the set of remainders modulo Zn of vectors Av,
where v is a ε-translation of Γ belonging to BR0 , is close to the set of remainders
modulo Zn of vectors Av, where v is any ε-translation of Γ . Moreover (by the
pigeonhole principle), there exists an integer k0 such that for each ε-translation
v ∈ BR0 , there exists k ≤ k0 such that A(kv) is close to Zn. Thus, for every
ε-translation v of Γ , there exists a (k0 − 1)ε-translation v′ = (k − 1)v, belonging
to Bk0R0 , such that A(v + v′) is close to Zn. The vector v + v′ is then a k0ε-
translation of Γ (by additivity of the translations) whose distance to v is smaller
than k0R0.

We now formalize these remarks. Let Γ be an almost periodic pattern, ε > 0
and A ∈ GLn(R). First of all, we apply the pigeonhole principle. We partition
the torus Rn/Zn into squares whose sides are smaller than δ; we can suppose
that there are at most �1/δ�n such squares. For v ∈ Rn, we consider the family
of vectors {A(kv)}0≤k≤�1/δ�n modulo Zn. By the pigeonhole principle, at least
two of these vectors, say A(k1v) and A(k2v), with k1 < k2, lie in the same small
square of Rn/Zn. Thus, if we set kv = k2 − k1 and � = �1/δ�n, we have

1 ≤ kv ≤ � and d∞
(
A(kvv),Zn

) ≤ δ. (8)

To obtain the conclusion in the rational case, we suppose in addition that v ∈
qZn, where q ∈ N∗ is such that for every i ∈ IQ(A) and every 1 ≤ j ≤ n, we
have q ai,j ∈ Z (which is possible by Remark 2).

We set ε′ = ε/�. By the definition of an almost periodic pattern, there exists
Rε′ > 0 and a relatively dense set Nε′ such that Eq. (3) holds for the parameter ε′:

∀R ≥ Rε′ , ∀v ∈ Nε′ , D+
R

(
(Γ + v)ΔΓ

)
< ε′, (3’)

We now set

P =
{
Av mod Zn | v ∈ Nε′

}
and PR =

{
Av mod Zn | v ∈ Nε′ ∩ BR

}
.
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We have
⋃

R>0 PR = P , so there exists R0 > Rε′ such that dH(P, PR0) < δ
(where dH denotes Hausdorff distance). Thus, for every v ∈ Nε′ , there exists
v′ ∈ Nε′ ∩ BR0 such that

d∞(Av − Av′,Zn) < δ. (9)

We then remark that for every v′ ∈ Nε′ ∩ BR0 , if we set v′′ = (kv′ − 1)v′,
then by Eq. (8), we have

d∞(Av′ + Av′′,Zn) = d∞
(
A(kv′v′),Zn

) ≤ δ.

Combining this with Eq. (9), we get

d∞(Av + Av′′,Zn) ≤ 2δ,

with v′′ ∈ B�R0 .
On the other hand, kv′ ≤ � and Eq. (3’) holds, so Lemma 3 (more precisely,

Remark 2) implies that v′′ ∈ Nε, that is

∀R ≥ Rε′ , D+
R

(
(Γ + v′′)ΔΓ

)
< ε.

In other words, for every v ∈ Nε′ , there exists v′′ ∈ Nε ∩ B�R0 (with � and
R0 independent from v) such that d∞

(
A(v + v′′),Zn

)
< 2δ. The set Ñ2ε,2δ we

look for is then the set of such sums v + v′′. ��
Proof (of Lemma 6). Under the hypothesis of the lemma, for every i /∈ IQ(A),
the sets ⎧

⎨

⎩

n∑

j=1

ai,jxj | (xj) ∈ Zn

⎫
⎬

⎭
,

are equidistributed modulo Z. Thus, for all ε > 0, there exists R0 > 0 such that
for every R ≥ R0,

D+
R

{
v ∈ Zn

∣
∣ ∃i /∈ IQ(A) : d

(
(Av)i,Z +

1
2
) ≤ ε

} ≤ 2(n + 1)ε.

As a consequence, for all w ∈ Rn such that ‖w‖∞ ≤ ε/(2(n + 1)) and that
wi = 0 for every i ∈ IQ(A), we have

D+
R

(
π(AZn)Δπ(A(Zn + w))

) ≤ ε.

Then, the lemma follows from the fact that there exists δ > 0 such that
‖A(w)‖∞ ≤ ε/(2(n + 1)) as soon as ‖w‖ ≤ δ. ��
Proof (of Theorem 2). Let ε > 0. Lemma 6 gives us a corresponding δ > 0, that
we use to apply Lemma 5 and get a set of translations Ñε,δ. Then, for every
v ∈ Ñε,δ, we write π(Av) = Av +

(
π(Av) − Av

)
= Av + w. The conclusions of

Lemma 5 imply that ‖w‖∞ < δ, and that wi = 0 for every i ∈ IQ(A).
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We now explain why Âv = π(Av) is a ε-translation for the set Â(Γ ). Indeed,
for every R ≥ max(Rε,δ,MR0), where M is the maximum of the greatest mod-
ulus of the eigenvalues of A and of the greatest modulus of the eigenvalues of
A−1, we have

D+
R

(
π(AΓ )Δ

(
π(AΓ ) + Âv

)) ≤ D+
R

(
π(AΓ )Δ

(
π(AΓ ) + w

))

+ D+
R

((
π(AΓ ) + w

)
Δ
(
π(AΓ ) + Âv

))

(where w = π(Av) − Av). By Lemma 6, the first term is smaller than ε. For its
part, the second term is smaller than

D+
R

(
(AΓ + Av)ΔAΓ

) ≤ M2D+
RM

(
(Γ + v)ΔΓ

)
,

which is smaller than ε because v ∈ Nε. ��
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Paris-Est. https://tel.archives-ouvertes.fr/tel-00596947

http://dx.doi.org/10.1007/978-3-540-30503-3_19
https://tel.archives-ouvertes.fr/tel-00596947

	Discretizations of Isometries
	1 Introduction
	2 Almost Periodic Sets
	2.1 Almost Periodic Patterns: Definitions and First Properties
	2.2 Differences in Almost Periodic Patterns

	3 Rate of Injectivity of Isometries
	3.1 A Geometric Viewpoint on the Rate of Injectivity
	3.2 Diffusion Process
	3.3 Rate of Injectivity of a Generic Sequence of Isometries

	4 Conclusion
	A Technical Lemmas
	B Proof of Theorem 2
	References


