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Abstract. In this article we present a new method to compute a center-
line on tubular volumes. The curve-skeleton is central to many applica-
tions in discrete geometry, since it captures interesting geometrical and
topological properties with respect to the initial volume. Although there
are numerous algorithms for skeleton computation, they are not neces-
sarily well-suited for tubular volume specificities, and can lead to unex-
pected results (faulty branches, not complete). Our method works on
tubular-like volumes with junctions (tree structures) and varying diam-
eter. It is based on the center of mass of cross-sections computed using a
Voronöı covariance measure on the volume. Our method adapts its para-
meters to the shape of the tube. The results on both synthetic and real
tubular structures with non-constant diameter illustrate the method’s
efficiency.

Keywords: Centerline · Voronöı covariance measure · Tubular struc-
ture analysis

1 Introduction

Simplification of 3D models is of major importance in shape analysis. By reduc-
ing dimensionality in particular, skeletonization algorithms applied to 3D objects
yield a set of curves and/or surfaces. The particular problem of reducing a vol-
ume to a set of curves, known as centerline and curve-skeleton extraction, is
key to many applications. For example, the centerline is used for the geomet-
ric analysis of 3D shapes [4,15], virtual endoscopy [3] and object matching [2].
Tubular volumes can be found in medical applications (vessels, airways, neurons
and colons) but also in industrial applications [4,12]. The afore-mentioned tubes
are characterized by elongation in one direction, varying diameter and varying
aspect-ratio. They are topologically equivalent to a tree or a graph (see Fig. 1).
In [5], the authors describe various desirable properties for a curve-skeleton,
such as: same topology as the initial object, centeredness, invariance under iso-
metric transformations, robustness to noise, thinness, junction-detection and
smoothness.
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Fig. 1. Example of a tubular volume and three cross-sections, and their 2D equivalent
on the right showing variations in diameter and ellipticity.

Satisfying all these wanted properties on any volume is not achievable, due
to the data variability and complexity. However, given that our volumes are
tubular and according to existing applications, only a subset of these properties
are required. Indeed, for length and curvature estimation the curve-skeleton must
be thin, for virtual endoscopy the points must be centered and the junctions
detected, and for object matching the topology must be preserved. Moreover,
since our volumes have varying diameter, the skeleton must be complete i.e.
capture information at the lowest local levels. In this paper, an original approach
for computing a centerline on any kind of tubes is proposed. It is based on the
tracking of centers of mass which are extracted from orthogonal planes computed
on the volume.

In Sect. 2 related works with different approaches towards curve-skeleton
extraction are presented. Section 3 introduces orthogonal plane computation on
a volume. In Sect. 4 the proposed method is explained. Finally, results obtained
on both synthetic and real data are described and discussed in Sect. 5, with
quantitative comparison with other methods.

2 Related Works

We focus here only on the skeletonization methods which process 3D voxel
objects and compute curve-skeletons. According to the survey [5] we can clas-
sify the curve-skeleton algorithms for discrete objects in the following classes:
(a) thinning algorithms and (b) distance field or general field based algorithms.

Among existing methods, we cite as examples [7,14] for the thinning class.
The first one can handle any 3D voxel volume while the second is dedicated to
three-dimensional tubular structures. The authors in [7] propose to compute the
skeleton by filtering the medial axis with a new bisector function. The resulting
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filtered medial axis is used as constraint set for the computation of the euclidean
skeleton by homotopic thinning. However, the skeleton computation depends on
two parameters: r which allows to filter small maximal balls, and α, a threshold
for the angle of the bisector function. This method, like other thinning methods,
can create small faulty branches (see Fig. 2a), often removed by a pruning step,
which are, in our case, difficult to distinguish from small branches that are
representative of the volume.

As examples of the second class of curve-skeleton algorithms, we can cite
the methods of [6,11] where the skeleton is extracted from a potential field
computed on the volume. In [6], the authors compute a hierarchical skeleton
based on a newtonian potential field. Each boundary point is considered as an
electric charge, repelling interior points of the volume. From the potential vector
field, critical points (points where the magnitude of the force vector vanishes)
are extracted and connected thanks to paths, yielding a first hierarchy in the
skeleton. Then, two levels of hierarchy are added through high divergence value
and high-curvature points. These points are used as seeds to recompute new
potential fields and extract details on the underlying shape. The main drawback
of this kind of algorithm is that the resulting skeleton is not necessarily connected
and can be incomplete (see Fig. 2b). Other methods can be found in the recent
survey [17]. Among them, the method described in [16] computes a multiscale
skeleton by defining an importance measure for each volume point. This method
is not adapted to the previously described data: since the importance measure
is based on an area computation, small branches in the volume do not appear
in the skeleton.

Fig. 2. (a) Skeleton computed using the method described in [7]: parameter values
were chosen to obtain the most complete skeleton with the least amount of faulty
branches, but there are some regardless, see closeup view. (b) (c) Skeleton computed
using potential field [6]: two levels of hierarchy on a skeleton obtained with two different
parameter values. In both cases, obtaining a skeleton containing all the branches in the
volume as well as no faulty branches is not possible.
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This paper addresses the shortcomings of the afore-mentioned methods, and
proposes an accurate curve-skeleton extraction on tubular volumes which adapts
its parameters to the shape of the tubular volume.

3 Orthogonal Plane Estimation

In [10], we described a way to compute orthogonal planes from a voxel set. Our
method is based on a Voronöı covariance measure (VCM). The VCM was first
introduced in [13] on point clouds to estimate surface normals, and extended in
digital geometry in [8]. Moreover the VCM is proven to be multigrid convergent
and resilient to Hausdorff noise. The principal direction of a Voronöı cell corre-
sponds to the surface normal, defined in the computed covariance matrix by the
eigenvector with the largest eigenvalue. The VCM computes at a point y in a
digital object O a covariance matrix of row vectors between points in a domain
of integration DI centered at y and the sites of their respective Voronöı cells,
denoted by pO(x) (see Fig. 3a). The covariance matrix is given as:

VO(y) =
∑

x∈DIO(y)

(x − pO(x))(x − pO(x))t

where DI is for example a ball of radius R.
In [10], we compute orthogonal planes on a volume by summing the con-

tribution of all the normal cones N in the domain of integration (see Fig. 3b).
The orthogonal plane is defined as the plane spanned by the two eigenvectors
with the highest eigenvalues in the covariance matrix, i.e. those which define the
normal cone.

Fig. 3. (a) 2D digital object (in black, O) and computation of the VCM around y by
integration of vectors (in orange) in the domain of integration, denoted by DI. (b) Com-
putation of an orthogonal plane for a point (in green) inside the volume (cylinder), and
relationship with flat normal cones (in dark gray, denoted by N ) at different points on
the surface inside the domain of integration (in red). For sake of clarity, the normal
cones are separated by blank areas, without these the union of all the normal cones
corresponds to the expected orthogonal plane (Color figure online).

In this paper, a new approach based on orthogonal planes for curve-skeleton
computation on tubular volumes is presented.
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4 Proposed Method

Let O ⊆ Z
3 be an object, P(p) an orthogonal plane at a point p, R the radius of

the domain of integration of the VCM used for the orthogonal plane computation,
as described in Sect. 3. The main idea of our algorithm is that the curve-skeleton
C of O is the set of centers of mass of the orthogonal planes computed on the
volume. C is obtained by tracking the centers of mass iteratively (as described
in detail in the “Tracking” paragraph).

The parameter R must be “well-adjusted” to capture locally the shape of the
object, while being robust to shape irregularities. In other words, the domain of
integration should be adjusted such that it contains (a) surface points for which
normal cones are aligned with the expected orthogonal plane and (b) the least
amount of irrelevant surface points. In the following paragraph, using a ball as
domain of integration, we describe how to obtain the minimal value for its radius
R automatically.

The size of the domain of integration is initialized with the distance transform
(DT) value. Obviously, this value does not correspond to the expected value for
R in the case of a tube with elliptic cross-sections, or when the orthogonal plane
is computed at a point p near the boundary of the object. The process is the
following: an initial orthogonal plane P0(p) is computed with R = DT (p). If
there is at least one point x in O ∩ P(p), such that d(p, x) > R, then R is
incremented. This process is repeated until no points in O ∩ P(p) are found at
d > R. It allows to converge towards both the expected orthogonal plane and
the minimal value for R to include all the surface points in O ∩ P(p).

Fig. 4. Tracking performed by our algorithm. From a determined center of mass g0,
we propagate to the next point p1 thanks to the plane normal n̂.

Tracking. It is computationally expensive and redundant to go through all
points in the volume. The intuitive idea to solve this problem is that the volume
is processed layer by layer, orthogonal plane by orthogonal plane. The layer
contains a unique curve-skeleton point so it does not need to be processed further.
As a result, points belonging to each computed orthogonal plane are stored in a
set M , which are not considered in the rest of the computation.

The starting point p0 of the algorithm is the point in the volume which has
the highest DT value, as it is centered. After the orthogonal plane computation
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at a point pi we obtain a center of mass gi. We then propagate to the next point
pi+1 in the 26-neighborhood of gi with the normalized plane normal:

pi+1 =

{
gi + nP(pi) if pi+1 /∈ M

maxq∈(O\M) DT (q) otherwise

where nP(pi) is the plane normal vector. Since gi+nP(pi) ≈ gi+1 in regular (i.e.
convex and flat) portions of the object, propagation is done either on the next
center of mass or on its neighborhood (see Fig. 4). This ensures the algorithm
prioritizes points which are well-centered and for which the orthogonal plane
normal is close or equivalent to the plane normal after convergence. This process
is done for the two normal directions (p0+nP(p0) and p0−nP(p0)). If pi+1 ∈ M ,
the set of marked vertices, a new point pi+1 is assigned from the highest DT
value.

Fig. 5. Computation of orthogonal lines on 2D objects (in light gray). Different config-
urations arise: (a) regular case in the tube, and resulting orthogonal line (b) endpoint:
contribution of two orthogonal lines P1(p) and P2(p) and (c) junction area: contribution
of three orthogonal lines (one per branch).

For some points p ∈ O, the orthogonal plane is not defined because there are
several incompatible contributions on the surface. This is illustrated in Fig. 5b
for endpoints, and in Fig. 5c for points in junctions. The following paragraphs
describe how to specifically detect and handle these two types of points.

Junctions. A junction consists in the intersection of three or more tubes. The
reason why orthogonal plane computation performs so poorly in such areas is
because the branches forming the junctions have different orthogonal planes,
which are all relevant, but cannot be computed in a unique operation. Junctions
correspond to high-curvature points on the surface of the volume. In our method,
high-curvature points are processed differently from the rest of the points.
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Our approach was inspired from the sharp-edge detection method described in
[13]. The purpose is to detect such high-curvature points, and more particularly
the concave parts of the object. In such parts, and under good sampling con-
ditions, the eigenvalues of every vector in the covariance matrix of the Voronöı
cells are roughly the same (i.e. small, see Fig. 6a). As a result, we considered the
following method to detect concave points: from the eigenvalues, we compute
the concave feature given as:

fc(p) =
λ0∑
i λi

where λ0 is the lowest eigenvalue. This captures the fact that the lowest eigen-
value is in the same order of magnitude as the rest of the eigenvalues only for
concave points. We consider p a high-curvature point if fc(p) > t where t is a
threshold. This threshold can be detected automatically using the Otsu thresh-
olding method, since the classes of concave and non-concave points are clearly
separated. In order to deal with the junctions parts specifically, when the domain
of integration of the VCM contains a high curvature point, no further processing
is done and the tracking resumes (see “Tracking” paragraph above).

At this stage, the curve-skeleton consists in various connected curves. Each
curve needs to be connected to another in a second pass, such that the result is
one connected component, i.e. the resulting centerline. For this, we reconstruct
sub-volumes taking into account two tubes (out of the three or more in the
junctions) and use the main tracking algorithm on these to compute missing
parts of the skeleton. The computation follows two steps. Firstly, each extremity
of an individual curve is connected to another by a line segment (see white line
in Fig. 6b). For a junction consisting in the intersection of three tubes, three
points have to be linked. There are three possible line segments linking each
pair of points, one of which is not oriented along the main axis of a branch.
The line segment which goes “near” a branching point is discarded as follows.
Let L be the line segment linking two extremities e1 and e2, and B the set of
high-curvature points. A line segment is discarded if ∃(l, b) ∈ L×B s.t. d(l, b) <
min(DT (e1),DT (e2)). As a second step, tubular sub-volumes are created by
intersecting balls of radius r = DT (p) with the volume, centered in p ∈ L.
The main tracking algorithm is then used on this sub-volume, which yields a
connected and geometrically-sound curve-skeleton.

Endpoints. The endpoints of the volume must also be treated specifically. This
is illustrated in Fig. 5b where the Voronöı cells at the end part of the tube have
an orthogonal orientation compared with the expected plane. One way to detect
these points was presented in [1], where the authors compute a metric graph
and detect the degree of a node in the graph. They compute the shell at p,
defined by:

S(p) = (Br(p) \ BR(p)) ∩ O

where BR(p) denotes a ball of radius R centered at p, and r > R. Here the
parameter R is the same as the one described for the domain of integration
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Fig. 6. (a) 2D Voronöı diagram showing concave areas (blue point) have a limited
Voronöı cell and normal cone in all directions. The orange area is not considered in
the first pass of the curve-skeleton computation. (b) Curves in the skeleton after the
first pass (in dark gray), which are connected by a straight line (in white) avoiding a
high-curvature point (in blue). From these points, a sub-volume is reconstructed (in
orange) and used to compute the skeleton in junctions. (c) Shells (in dark grey) with
one connected component corresponding to an endpoint (p1) and with two components
for a point in the volume (p2) (Color figure online).

size. The number of connected components in S(p) gives the degree deg(p) of
p (see Fig. 6c). When this number is equal to one, p is an endpoint, otherwise,
when it is greater than one, p corresponds to a point inside the volume. Unlike
high-curvature points, endpoints are not processed further because they do not
provide relevant information for the curve-skeleton extraction. Theoretically, for
junction points, the degree is equal to the number of branches. However this prop-
erty cannot be used reliably for junction detection on varying-diameter tubes. In
fact, given a junction, we want to set r and R such that deg(p) = 3. Nonetheless,
for junctions where two branches have a very large diameter compared to a third
branch limited in length, it is not possible to find solutions.

5 Results

In this section, our method’s efficiency is evaluated by comparison to ground-
truth curve-skeletons and to state-of-the-art methods namely euclidean skeleton
thinning approach [7] and the potential field method [6] presented in Sect. 2.
Although the limits of both these methods have been discussed, they satisfy
interesting properties related to our applications and are tested within their
field of application. Our method is tested on both synthetic and real data.

5.1 Synthetic Data

Various simple tubular volumes have been generated using a parametric curve:
cylinder, torus, curved tube and curved tube with noise. Noise was added with
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Table 1. Hausdorff distance (first column, in white) and F-measure (second column,
in gray) for each method on different volumes.

Data Euclidean Potential field Our method

Cylinder

0 0.684 1.41 0.658 0 0.809

Torus

0 1 1.41 0.494 1 0.817

Curved tube

1.41 0.590 1 0.740 1.41 0.635

Noisy curved tube

1.41 0.503 1.41 0.596 1.41 0.683

a simplified version of Kanungo’s method, which switches the voxel’s value
with probability αd where d is the distance to the boundary. For each volume,
the expected curve-skeleton corresponds to the parametric curve used to gener-
ate the volume. The expected skeleton is compared to the computed skeletons
using the Hausdorff distance. The Hausdorff distance allows to measure the
dissimilarity between two curves. Here, it is defined by the maximal distance
between a point in the computed skeleton and its nearest point in the expected
skeleton, i.e.:

dH(T,C) = max
c∈c

{
min
t∈T

d(t, c)
}

where T and C are the sets of points in the expected and computed skele-
ton respectively and d is the euclidean distance. The skeleton is centered if
dH(T,C) ≤ √

3, that is to say if the points in the computed skeleton are “con-
nected” to those of the expected skeleton. Otherwise, the skeleton is thick or
contains faulty branches. This distance does not allow to capture the com-
pleteness and sensitivity of our method. These two properties are estimated
by the precision p and the recall r. The precision estimates whether our skele-
ton contains faulty points, and ranges from 0 (only faulty points) to 1 (no faulty
points). The recall estimates whether the centerline is complete, and ranges from
0 (fully incomplete), to 1 (complete). The precision and recall allow to define
the F-measure, which is a compromise between completeness and sensitivity. The
results are presented in Table 1.

Various parameters for the state-of-the art methods are tested in order to
obtain no faulty branches and the most complete skeleton. Only results with the
best parameters are shown here.
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Fig. 7. Curve-skeletons computed on the curved tube using (a) thinning with euclidean
skeleton (b) the potential field method and (c) our method.

For all volumes, our skeleton is centered (dH(T,C) ≤ √
3), and that is the

case of the other methods as well. Regarding the F-measure, our method pro-
duces the best results in average. The curve-skeleton is close to complete on
the cylinder and the torus. Results on the curved tube are comparable to the
euclidean skeleton. As for the noisy curved tube, the skeleton is more complete
than both the potential field and the euclidean skeletons. Our skeleton is robust
to deformations in the volume because our algorithm is designed to work on
varying-diameter tubes. The resulting skeletons on these volumes are presented
in Fig. 7.

5.2 Real Data

Our method was designed to work on varying-diameter tubular structures with
junctions: results obtained from a human airway-tree acquired from CT-scan are
shown. The airway-tree segmentation yields a volume topologically equivalent
to a binary tree.

Figure 8a and b show the resulting skeletons on two different volumes. A
general visual inspection shows the skeleton does not have the defects of the
state-of-the-art methods illustrated in Sect. 2. Closeups show the resulting skele-
ton can capture local information (junctions, see Fig. 9a) and be exempt of faulty
branches through the majority of the volume. Moreover, our skeleton is well cen-
tered and does not suffer from distortions. In addition to the fact the skeleton
is obtained automatically, these properties are interesting in light of the vari-
ous applications mentioned in Sect. 1. However, when the diameter is as small
as one voxel, points might not be taken into account (see Fig. 9b) as they are
marked and put in the set M wrongfully. For these particular small branches,
the information is lost. Nonetheless, considering the level at which this problem
appears, it does not seem like an issue: the branches are too small to provide
relevant information. The skeleton was also computed on a tube acquired from
laser scan (see Fig. 8c) with concave parts. By visual inspection, the skeleton
corresponds precisely to what we would expect. More examples and images are
available at [9].
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Fig. 8. (a) (b) Centerline extraction on two airway tree volumes. (c) Tube acquired
from laser scan, courtesy of [12].

Fig. 9. Closeups of areas in the extracted centerline (a) example of a junction. (b) defect
in the skeleton: the smaller branches on the left of the volume are not extracted.

6 Conclusion and Prospects

In this article, we have presented a new approach to estimate a centerline on
a tubular volume. We have shown it possesses interesting properties in relation
with various applications, is fully automatic, and has an interesting compromise
between completeness and sensitivity. Moreover, it is centered and does not suffer
from distortions. We have shown interesting results on tubular volumes, that is
to say volumes which are elongated in one direction and restricted in the two
other directions. This algorithm does not apply on non-tubular objects since
orthogonal planes are not properly defined for these objects. This method will
be developed further to ensure missing properties are satisfied in the future. For
instance, connectivity is not ensured: three types of connectivity 6-, 18- and 26-
connectivity are mixed in the skeleton as of yet. This property can be guaranteed
easily by deleting or adding points in order to obtain the desired connectivity. We
cannot ensure our method preserves topology for genus ≥1 objects. In particular,
if there is a hole in a junction area, it will not be preserved in the resulting
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curve-skeleton. As another prospect, one could think about the relevance of
choosing a ball as a domain of integration for the VCM. Only surface points
yielding relevant information for orthogonal plane computation (i.e. points on the
surface belonging to the plane) are interesting. The domain of integration could
be defined as a structuring element depending on the local shape of the object.
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