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Abstract. We define new measures of convexity for binary images. The
convexity considered here is the so called Q-convexity, that is, convex-
ity by quadrants. This kind of convexity has been mostly studied in
Discrete Tomography for its good properties, and permits to general-
ize h-convexity to any two or more directions. Moreover convex binary
images are also Q-convex, and for these two classes similar properties
hold. Here we present two measures based on the geometrical properties
of “Q-convex shape” which have the following features: (1) their values
range from 0 to 1; (2) their values equal 1 if and only if the binary image
is Q-convex; (3) their efficient computation can be easily implemented.

1 Introduction

The measure of convexity is one of the most important shape descriptors used
in digital image analysis [12]. Various continuous and discrete convexity mea-
sures have been proposed in image processing which can be grouped into differ-
ent categories. Area based measures form one popular category [3,16,17], while
boundary-based ones [18] are also frequently used. Other methods use simplifica-
tion of the contour [13] or a probabilistic approach [14,15] to solve the problem.
In discrete geometry, and especially in discrete tomographic reconstruction a
straightforward alternative of the continuous convexity concept is the horizon-
tal and vertical convexity (or shortly, h-convexity), arising inherently from the
pixel-based representation of the digital image (see, e.g., [2,8,9]). A measure of
horizontal (or vertical) convexity was introduced in [1], showing also that the
aggregation of the measure in two dimensions can be a difficult task. In this
paper we propose an immediate two-dimensional convexity measure, based on
the concept of Q-convexity [5,6]. This kind of convexity has been mostly stud-
ied in Discrete Tomography for its good properties, and permits to generalize
h-convexity to any two or more directions. Moreover convex binary images are
also Q-convex, and for these two classes similar properties hold.

The notion of salient points of a Q-convex image has been introduced in
[10,11] as the analogue of extremal points of a convex set. They have similar fea-
tures, and in particular a Q-convex image is characterized by its salient points.
Therefore, salient points have been employed for the random generation of
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Q-convex images [7]. Further, as salient points can be generalized for any binary
image, they have been studied to model the “complexity” of a binary image.
In this paper, we focus on estimators of shape descriptors, in particular con-
vexity estimators. The idea is to exploit the geometrical description of a binary
image provided by salient and generalized salient points. The advantages of this
approach are that normalization is straightforward; the measures are equal to
1 if and only if the binary image is Q-convex; the efficient computation of the
measures can be easily implemented; and the measures are easy to generalize to
any two or more directions.

2 Preliminaries

In this section we introduce the necessary notation and definitions. Any binary
image F is a m×n binary matrix, and it can be represented by a set of cells/pixels
(unit squares) or, equivalently, by a finite subset of Z2 contained in a lattice grid
G (rectangle of size m × n) up to a translation. Throughout the paper, we are
going to use both representations as notation for the latter one is more suitable
to describe geometrical properties whereas the images are illustrated as sets of
cells. For our convenience, we use F for both the image and its representation.

Let us consider the horizontal and vertical directions, and denote the coor-
dinate of any point M of the grid G by (xM , yM ). Then, M and the directions
determine the following four quadrants:

Z0(M) = {N ∈ G : 0 ≤ xN ≤ xM , 0 ≤ yN ≤ yM}
Z1(M) = {N ∈ G : xM ≤ xN < m, 0 ≤ yN ≤ yM}
Z2(M) = {N ∈ G : xM ≤ xN < m, yM ≤ yN < n}
Z3(M) = {N ∈ G : 0 ≤ xN ≤ xM , yM ≤ yN < n}.

Definition 1. A binary image F is Q-convex with respect to the horizontal and
vertical directions if Zp(M) ∩ F �= ∅ for all p = 0, . . . , 3 implies M ∈ F .

Figure 1 illustrates two Q-convex images.

Fig. 1. Two Q-convex images. Salient points are indicated by black cells.
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The Q-convex hull of F can be defined as follows:

Definition 2. The Q-convex hull Q(F ) of a binary image F is the set of points
M ∈ G such that Zp(M) ∩ F �= ∅ for all p = 0, . . . , 3.

Therefore, if F is Q-convex then F = Q(F ). Differently, if F is not Q-convex,
then Q(F )\F �= ∅ (see Fig. 2). Denote the cardinality of F and Q(F ) by αF and
αQ(F ), respectively.

Definition 3. For a given binary image F , its Q-convexity measure Θ(F ) is
defined to be Θ(F ) = αF

αQ(F )
.

Since Θ(F ) holds 1, if F is Q-convex, and αQ(F ) ≥ αF , it ranges in (0, 1].
This Q-convexity measure corresponds to the classical convexity measure defined
as the ratio between the area of the considered shape and the area of its convex
hull. Similarly, Θ(F ) is easy to compute but presents similar defects as does not
detect defects in the shape which does not impact on the sizes αF and αQ(F )

(see Sect. 4 about the experiments with intrusions/protrusions images). Indeed,
in the first case both αF and αQ(F ) differ by n so that Θ is close to 1, whereas
in the second case αF is close to 2/3αQ(F ) for n big.

Therefore, we are going to define a new measure based on the geometrical
properties of the “shape”.

Definition 4. Let F be a binary image. A point M ∈ F is a salient point of F
if M /∈ Q(E\{M}).

Denote the set of salient points of F by S(F ) (or simply S): of course S(∅) = ∅. In
particular, it can be proven [10] that the salient points of F are the salient points
of the Q-convex hull Q(F ) of F . This means that if F is Q-convex, its salient
points completely characterize F [6]. If it is not, there are other points belonging
to the Q-convex hull of F but not in F that “track” the non-Q-convexity of F .
These points are called generalized salient points. The generalized salient points
Sg(F ) of F are obtained iterating the definition of salient points on the sets
obtained each time by discarding the points of the set from its Q-convex hull,
i.e. using the set notation:

Definition 5. If F is a binary image, then the set of its generalized salient
points Sg(F ) is defined by Sg(F ) = ∪kS(Fk), where F0 = F , Fk+1 = Q(Fk)\Fk.

Fig. 2. Left: A non Q-convex binary image (all dark cells are salient points). Right: its
Q-convex hull.
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By definition, S(F ) ⊆ Sg(F ) and the equality holds when F is Q-convex. More-
over, as the points of Sg(F ) are chosen among the points of subsets of Q(F ),
then Sg(F ) ⊆ Q(F ).

We are now in the position to define two Q-convexity measures:

Definition 6. For a given binary image F , its Q-convexity measure Ψ1(F ) is
defined by

Ψ1(F ) = αS(F )/αSg(F ),

where S(F ) and Sg(F ) denote the sets of its salient and generalized salient
points, respectively.

Ψ1(F ) measures the Q-convexity of F in terms of proportion between salient
points and generalized salient points. Indeed, if the generalized salient points
are many with respect to salient points, then F is far to be Q-convex. This
measure is purely qualitative because is independent from the size of the image.

Definition 7. For a given binary image F , its Q-convexity measure Ψ2(F ) is
defined by

Ψ2(F ) =
αQ(F ) − αSg(F )

αQ(F ) − αS(F )
,

where Q(F ) denotes its Q-convex hull and S(F ) and Sg(F ) denote the sets of
its salient and generalized salient points, respectively.

Ψ2(F ) takes salient, and generalized salient points with respect to the Q-convex
hull of the image into account. In other words, it measures the non-Q-convexity
of F as the proportion of generalized salient points which are not salient and the
points of the Q-convex hull which are not salient.

Since S(F ) ⊆ Sg(F ) ⊆ Q(F ), both Q-convexity measures satisfy the follow-
ing properties:

– the Q-convexity measure ranges from 0 to 1;
– the Q-convexity measure equals 1 if and only if F is Q-convex.

In particular, for Ψ1(F ), since there are examples where Sg(F ) = Q(F ) (for
instance in the chessboard configuration), the ratio decreases with the inverse of
the size of Q(F ). For Ψ2(F ), in the same case, we get exactly 0. We point out
that we must have S(F ) ⊂ Q(F ) in the definition of Ψ2(F ), but S(F ) = Q(F )
holds only for binary images of size smaller or equal to two. In these cases of
course we also have Sg(F ) = Q(F ), so that Ψ2(F ) would be undefined.

3 Implementation

The measures Ψ1 and Ψ2 can be computed efficiently. Let us associate a boolean
variable Vp(M) to each point M ∈ G, p = 0, . . . , 3, such that Vp(M) = 1 if
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Zp(M) ∩ F �= ∅, else Vp(M) = 0. The variables can be easily computed by
iteration:

V0(xM , yM ) = V0(xM − 1, yM ) ∨ V0(xM , yM − 1) ∨ “(xM , yM ) ∈ F”
V1(xM , yM ) = V1(xM + 1, yM ) ∨ V1(xM , yM − 1) ∨ “(xM , yM ) ∈ F”
V2(xM , yM ) = V2(xM + 1, yM ) ∨ V2(xM , yM + 1) ∨ “(xM , yM ) ∈ F”
V3(xM , yM ) = V3(xM − 1, yM ) ∨ V3(xM , yM + 1) ∨ “(xM , yM ) ∈ F”.

Finally the Q-convex hull of F is obtained by the formulas:

Q(F ) = {M ∈ G : V0(xM , yM ) ∧ V1(xM , yM ) ∧ V2(xM , yM ) ∧ V3(xM , yM )},

and the computation requires a number of operations equal to the size of G. The
same variables permit to compute S(F ) and, hence Sg(F ), as follows. It can be
proven [10] that M is a salient point of F if and only if there exists p such that
Zp(M) ∩ F = {M}. So let Sp(F ) = {M ∈ F : Zp(M) ∩ F = {M}}; we get
S(F ) = S0(F ) ∪ S1(F ) ∪ S2(F ) ∪ S3(F ). The set of salient points can be easily
computed as we have:

S0(F ) = {M ∈ F : ¬V0(xM − 1, yM ) ∧ ¬V0(xM , yM − 1)}
S1(F ) = {M ∈ F : ¬V1(xM + 1, yM ) ∧ ¬V1(xM , yM − 1)}
S2(F ) = {M ∈ F : ¬V2(xM + 1, yM ) ∧ ¬V2(xM , yM + 1)}
S3(F ) = {M ∈ F : ¬V3(xM − 1, yM ) ∧ ¬V3(xM , yM + 1)},

where ¬Vp is the negation of Vp. By definition, the set of generalized salient
points is computed by iterating the computation of salient points on Q(Fk)\Fk

until the set reduces to the empty set. Therefore this computation depends on
the size of Q(F ) which bounds the number of iterations.

4 Case Study

We report on the behavior of the previous Q-convexity measures on the following
representative configurations (F is a n × n binary image):

Chessboard. It is easy to check that if the items of F are arranged to form
a chessboard, then Sg(F ) = Q(F ). As a consequence, Ψ1(F ) = αS(F )/αQ(F )

depends on the size of Q(F ) since αS(F ) ∈ {4, 6, 8}. This means that Ψ1(F )
assigns different values to the same configuration decreasing for increasing sizes
of F . In other words, bigger matrices are “less” Q-convex than smaller ones.
Differently, Ψ2(F ) = 0 by definition. Therefore, the chessboard configuration is
the “least” Q-convex configuration (for the Ψ2 measure) (Fig. 3).
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Fig. 3. Ψ1(F ) = 0.176470, Ψ2(F ) = 0.

Stripe Pattern. By counting reasoning, it is easy to see that if the items of F
are arranged to constitute a stripe pattern, then αS(F ) = 6 whereas αSg(F ) =
6n−1

2 �+4, where n×n is the matrix size. Therefore Ψ1(F ) decreases for n which
increases. The behavior is similar to the chessboard case, but for the same size n,
a chessboard configuration is “less” Q-convex than a stripe pattern configuration
(in the first case the decrement is quadratic, in the second linear w.r.t n). For
the Ψ2 measure, the αQ(F ) term dominates, so that its value is close to 1 for n
big (for n = 10 Ψ2 = 0.58, for n = 50 Ψ2 = 0.93, for n = 100 Ψ2 = 0.965). Hence,
for this configuration the two measures give two different (opposite) “responses”
(Fig. 4).

Fig. 4. Ψ1(F ) = 0.375, Ψ2(F ) = 0.583333.

Frame. If the items of F are arranged to form a frame, αS(F ) = 4 and αSg(F ) = 8
or 5 if there is only one 0 item in F . Moreover, αQ(F ) = n2. Therefore, Ψ1 = 1/2
or 4/5 in the latter case (constant), whereas Ψ2 tends to 1 for increasing values
of n. In both cases, the value is independent from αF (from the “thickness” of
the frame) (Fig. 5).

Fig. 5. Ψ1(F ) = 0.5, Ψ2(F ) = 0.875.
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Ψ1 = 0.666667 Ψ1 = 0.666667 Ψ1 = 0.571429 Ψ1 = 0.461538 Ψ1 = 0.461538 Ψ1 = 0.571429 Ψ1 = 0.352941
Ψ2 = 0.974026 Ψ2 = 0.974026 Ψ2 = 0.961039 Ψ2 = 0.904110 Ψ2 = 0.904110 Ψ2 = 0.909091 Ψ2 = 0.849315

Fig. 6. Q-convexity values measured on intrusions images.

Ψ1 = 1.000000 Ψ1 = 1.000000 Ψ1 = 0.500000
Ψ2 = 1.000000 Ψ2 = 1.000000 Ψ2 = 0.941176

Fig. 7. Q-convexity values measured on protrusions images.

Fig. 8. Q-convexity values measured on protrusions images. Ψ1 = 0.550000, Ψ2 =
0.921739

“Bad” Configurations. The following figures illustrate examples of the applica-
tion of the proposed Q-convexity measures for simple synthetic polygons: the val-
ues show the effects of rotation and translation of intrusions/protrusions images.
In particular, consider the fourth image in Fig. 6. Note that αQ(F ) = O(n2); S(F )
does not depend on the size of F ; all (except the two on the first and last rows)
the 0’s item belong to Sg(F ), and so αSg(F ) = O(n). We point out in addition
that Sg does not depend on the “thickness” of the diagonal intrusion. Therefore,
Ψ1(F ) decreases when n increases; differently Ψ2(F ) depends on Q(F ) so that it
is equal to 1 for n = 2 (and in fact F is Q-convex) and it is close to 1 for n big
even if the diagonal intrusion is “thicker”.

Consider the images illustrated in Fig. 8 (of course they have same measures
by symmetry). Similar considerations hold with the difference that αS(F ) = O(n)
and the “thickness” of the protrusion affects αSg(F ) since it reduces items in Sg.
Therefore when n is big, Ψ1 is greater or equal to 1/2, and tends to 1 when the
“protrusion” becomes very “thick”, and Ψ2 is close to 1.

In Fig. 10 we present the images used in [1] for the analysis of the horizontal
and vertical convexity measure. For comparison, we also calculated the values
of Q-convexity according to the measures Ψ1 and Ψ2. We deduce that the Q-
convexity measures are in accordance with the horizontal and vertical convexity
measures of [1] in the sense that higher Q-convexity values correspond to higher
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Ψ1 = 1.000000 Ψ1 = 0.866667
Ψ2 = 1.000000 Ψ2 = 0.975309

Fig. 9. Q-convexity values measured on protrusions images.

Ψ1 = 0.48571 Ψ1 = 0.24675 Ψ1 = 0.12397 Ψ1 = 0.50000
Ψ2 = 0.98175 Ψ2 = 0.96340 Ψ2 = 0.95012 Ψ2 = 0.99840
Ψh = 0.73470 Ψh = 0.65735 Ψh = 0.80096 Ψh = 1.00000
Ψv = 0.86938 Ψv = 0.85032 Ψv = 0.78521 Ψv = 0.00000

Ψ1 = 0.08889 Ψ1 = 0.01269 Ψ1 = 0.00747 Ψ1 = 0.00514
Ψ2 = 0.98357 Ψ2 = 0.87540 Ψ2 = 0.78726 Ψ2 = 0.69030
Ψh = 0.78628 Ψh = 0.65177 Ψh = 0.57725 Ψh = 0.46883
Ψv = 0.54648 Ψv = 0.45846 Ψv = 0.41153 Ψv = 0.33576

Fig. 10. Example binary images of size 50 × 50, with the Ψ1 and Ψ2 convexity values
shown. Black pixels indicate object points. For comparison the horizontal (Ψh) and
vertical (Ψv) convexity values are also given. Bottom row: same image without, and
with 5 %, 10 %, and 20 % salt-and-pepper noise, from left to right, respectively.

h-convexity (v-convexity) values. Moreover, our measures visibly integrate the
two one-directional measures (see especially the fourth image in the top row
of Fig. 10). We also found that our measures scale well on noisy images (see
bottom row of Fig. 10, for example). Finally let us notice that the values of the
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Θ measure are 0.609828, 0.750000, 0.737407 and 0.660000 for the binary images
from left to right, respectively, in the top row, showing that the Θ measure does
not “classify” the images in accordance with Ψ1 and Ψ2: for instance, according
to Θ the first image is “less” Q-convex than the second one, whereas according
to Ψ1 and Ψ2 the opposite holds.

5 Strongly Q-Convexity

The notion of Q-convexity can be extended to more than two directions [4,7].
Consider the horizontal, vertical and diagonal (i.e. h = (1, 0), v = (0, 1), d =
(−1, 1)) directions. Let

s+h (M) = {N ∈ G : yM = yN and h · ON ≥ h · OM }
s−

h (M) = {N ∈ G : yM = yN and h · ON ≤ h · OM }
s+v (M) = {N ∈ G : xM = xN and v · ON ≥ v · OM }
s−

v (M) = {N ∈ G : xM = xN and v · ON ≤ v · OM }
s+d (M) = {N ∈ G : xM + yM = xN + yN and d · ON ≥ d · OM }
s−

d (M) = {N ∈ G : xM + yM = xN + yN and d · ON ≤ d · OM }

where O is the origin and · denotes the scalar product.

Definition 8. An almost-semi-plane (or ASP) Π(M) along the horizontal, ver-
tical and diagonal directions is a zone Z

(i,j)
p (M) (i �= j ∈ {h, v, d}, p ∈

{0, . . . , 3}) such that for each direction k only one of the two semi-lines s+k
s−

k (M) is contained in Π(M) for k = h, v, d.

Let Π0(M) be the ASP containing s+k (M) for each k = h, v, d. We
denote the other almost-semi-planes encountered clockwise around M from
Π1(M), . . . , Π5(M). In particular,

Π0(M) = Z
(dh)
2 (M) = {N ∈ G : xM + yM ≤ xN + yN , yM ≤ yN}

Π1(M) = Z
(vd)
2 (M) = {N ∈ G : xM + yM ≤ xN + yN , xM ≤ xN}

Π2(M) = Z
(h)
1 (M) = {N ∈ G : xM ≤ xN , yM ≥ yN}

Π3(M) = Z
(dh)
0 (M) = {N ∈ G : xM + yM ≥ xN + yN , yM ≥ yN}

Π4(M) = Z
(vd)
0 (M) = {N ∈ G : xM + yM ≥ xN + yN , xM ≥ xN}

Π5(M) = Z
(h)
3 (M) = {N ∈ G : xM ≥ xN , yM ≤ yN}.

Definition 9. A binary image F is strongly Q-convex around the horizontal,
vertical and diagonal directions if Πp(M) ∩ F �= ∅ for all p = 0, . . . , 5 implies
M ∈ F .
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The definitions of Q-convex hull, salient and generalized salient points can be
easily extended by replacing quadrants with ASP’s. In order to compute them
note that we can associate a boolean variable Vp(M) to each point M ∈ G
p = 0, . . . , 5 such that Vp(M) = 1 if Πp(M) ∩ F �= ∅, else Vp(M) = 0. Similar
formulas to the two direction case can be derived to iteratively compute the
variables. By their computation we can also derive the set of salient points
Sp(M) p = 0, . . . , 5 and finally the set of generalized salient points. Indeed, we
can extend the proof in [10] to show that M ∈ S(F ) iff there exists p such that
Πp(M) ∩ F = {M} and S(F ) = S(Q(F )).

We conducted the same experiments as in Sect. 4 for measuring the strongly
Q-convexity of the images. We do not report all the results for space limits, but
they are very similar with few differences.

For the intrusions test, as expected, the fourth image of Fig. 6 receives a better
value, whereas the third and sixth are worse. For the protrusions test, values for
images in Fig. 7 are worse because they are not strongly Q-convex, whereas
values for images in Fig. 9 are exactly the same. The only significant difference
concerns the second image in Fig. 8 for which Ψ1 = 0.571429, Ψ2 = 0.975410:
indeed, S = 4 and Sg = 7 are constant (whereas they depend on n in case of
Q-convexity w.r.t. horizontal and vertical directions), and, moreover, they score
better values since the protrusion is in the diagonal direction.

Regarding the images of Fig. 10 we observed that the three directional Q-
convexity values were more or less the same as in the two directional case, except
the third image of the first row (Ψ1 = 0.08108 and Ψ2 = 0.93621 for the strongly
Q-convexity measures) and the first image of the second row (Ψ1 = 0.11111 and
Ψ2 = 0.98717). The reason is that the two images are “almost” convex in the
diagonal direction.

6 Conclusion and Discussion

In this paper, we proposed two measures of convexity based on the notions of
generalized salient points and Q-convex hull. First, we considered convexity in
the horizontal and vertical directions and then we extended also the measures to
a third diagonal direction. The experiments we conducted are promising as the
measures correctly incorporate the convexity along the considered directions. In
particular, measure Ψ1 is more sensible to small modification of the shape, while
Ψ2 is more robust.

As a short discussion, let us notice here that a correcting factor could be used
which takes into account also quantitative information. For example look at the
images illustrated in Fig. 11, where Ψ1 is constant (1/2) and Ψ2 is close to 1, since
the geometry is preserved. But it would be desirable that the Q-convexity mea-
sures assign a bigger value to the configuration on the left of Fig. 11 and smaller to
the configuration to the right. This can be obtained by multiplying the previous
measures to the factor Θ(F ) = αF /αQ(F ). For the image on the left αS(F ) = 4,
αSg(F ) = 8, αQ(F ) = 64, and αF /αQ(F ) = 0.84345, while for the image on the
right αS(F ) = 4, αSg(F ) = 8, αQ(F ) = 64, αF /αQ(F ) = 0.34375 which underpins
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Fig. 11. Images to show the importance of the correcting factor. For the image on the
left αF /αQ(F ) = 0.84345 while for the image on the right αF /αQ(F ) = 0.34375.

the above argument. Further work can be conducted to investigate the role of the
correcting factor and to extend the measure to any two or more directions.
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