
Chapter 2

Formulation of Some NSF Unsteady

Initial-Boundary Value Problems

In the present chapter, using the results of Sects. 1.1–1.3 of Chap. 1, the reader can

find first a mathematical formulation of a typical, initial-boundary value, unsteady

NSF problem in the case of a thermally (calorically) perfect gas. Then, a more

specific NSF problem of this kind is formulated for an expansible/dilatable liquid
under the influence of temperature, with a specific equation of state; this is use to

show the emergence of the working models for classical Bénard thermal convec-
tion, heated from below. The corresponding NSF problems are also formulated for

nonlinear acoustics and atmospheric motions.
We also mention the case of so-called Navier-Stokes (NS) isentropic, viscous,

compressible fluid flow, a physically inconsistent case, mainly considered by

mathematicians, in their pure rigorous investigations using abstract nonlinear
functional analysis!

Concerning large horizontal scale atmospheric motions, the gravity term means

that one must consider the influence of the Coriolis force in the momentum equation

for the velocity vector as observed in the rotating earth frame, and one must also

employ spherical coordinates. In this case we are confronted with a very stiff,
complicated, starting system of dimensionless equations, but this system allows one

to use the RAM approach to derive various reduced working models.

It is important to note that the equations are not sufficient for the applications of
the RAM approach and deconstruction analysis to the NSF system of equations.

One must also formulate physically convenient initial and boundary conditions.
Indeed, the equations given below govern the flow of a fluid—they are the same

equations whether the flow is, for example, over an Airbus A380 (cruising speed

912 km/h) through a subsonic wind tunnel or past a windmill. The flow fields are

quite different for these cases, even though the governing equations are the same.

Why? Where does the difference enter? The answer is through the boundary

conditions, which are quite different for these two examples. The boundary condi-

tions, and sometimes the initial conditions (with given data), dictate the particular

solutions to be obtained from the governing equations (see Sect. 2.5). The above

remark seems trivial, but unfortunately, in mathematically rigorous investigations,
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the role of the associated conditions is often not given serious consideration by

mathematicians who have the strange opinion of a futility concerning these condi-

tions! Some complementary remarks are made in Sect. 2.7.

Concerning the RAM approach, the reader can find the “mathematics” of this

approach in Chap. 6 of our companion 2012 book, but in Chap. 3 of the present

book, I have decided, as explained in the preface, to provide some complementary

enlightenment!

2.1 The Case of a Thermally Perfect Gas: Typical NSF

Equations

For a thermally perfect gas (identified as calorically perfect, for simplicity), we first

write the following equation of state for the specific internal energy e:

e ¼ CvT; ð2:1Þ

where Cv is the specific heat for a specific volume. With the various results given in

Chap. 1, we are now in a position to write the following full unsteady NSF

equations for a thermally perfect gas, where we assume that the kinematic viscosity

ν¼ μ/ρ and also the coefficient of thermal conductivity k are both constant coeffi-

cients. Hence, we have the following NSF system of equations governing the fluid

flow for the four unknown functions u, ρ, p, and T:

ρDu=Dt ¼ ρf �∇pþ ∇ λ ∇:uð Þ½ � þ ∇: 2μD
� �� �

; ð2:2aÞ
Dρ=Dt þ ρdivu ¼ 0; ð2:2bÞ

ρCv DT=Dt þ p divu ¼ k∇2TþΦ; ð2:2cÞ
p ¼ RρT; ð2:2dÞ

where R¼Cp�Cv is the gas constant and Cp the specific heat for p constant and

Φ ¼ λ ∇:uð Þ2 þ 2μD : D: ð2:2eÞ

The ratio γ¼Cp/Cv may be taken as unity for a pressure near normal values, and

λ is the second viscosity coefficient (often assumed constant).
The above system of equations (2.2a–d), with (2.2e), is just the full unsteady/

evolution (in time), typical NSF classical system of aerodynamics equations (often
written with f¼ 0).

For atmosphericmotions, when dry atmospheric air is treated simply as a perfect

gas, one must consider gravity g¼�gk as an external force in place of f in (2.2a),

with the unit vector k in the vertical direction opposite to the gravity vector g. For

large horizontal scale atmospheric motions, when the NSF equations are written in

a system of spherical coordinates (see Sect. 3.4), in a coordinate frame rotating with
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the earth, one must use an equation for the relative velocity taking into account the

Coriolis force, in place of equation (2.2a). In a such a case, as done in Sect. 3.4, the
RAM approach allows us to derive a multiplicity of working non-ad hoc models

simulating various interesting and useful atmospheric motions. These are sketched

on Fig. 6.3 of Sect. 6.3.

On the other hand, if we take into account (2.1), with (2.2e), and the above

formulas for R and γ, then in place of equation (2.2d) for the pressure p, we can use
the following equation of state:

p ¼ ρ γ� 1ð Þe; γ ¼ Cp

Cv

: ð2:2fÞ

We also observe that a rather more complicated formulation of the NSF equa-

tions for a compressible, viscous, and heat conducting Newtonian fluid flow is

possible when, instead of the equation of state, we introduce theHelmholtz orGibbs
free energy formulations in thermodynamics (mentioned in Sect. 1.4).

2.2 The Case of an Expansible Liquid

The equation of state for various liquids is usually taken to give the density ρ as a

function of T and p:

ρ ¼ ρ T, pð Þ: ð2:3aÞ

In Rayleigh <1>, a pioneering paper entitled “On convection currents in a
horizontal layer of fluid, when the higher temperature is on the under side », instead
of (2.3a), it is assumed that

ρ � ρ Tð Þ, with� 1=ρð Þ dρ=dT ¼ α Tð Þ; ð2:3bÞ

where α (T) is the volume/thermal expansion coefficient, and measurements show

rather smaller values for the above coefficient α(T) for liquids than the value 1/T

appropriate to a thermally perfect gas. In reality, rather than the state equation

(2.3a), it is usually assumed (see for instance [25], cited in “Introduction”) that the

expansible liquid can be described by the following approximate (truncated) law:

ρ ¼ ρd 1� ad T� Tdð Þ þ χA p� pAð Þ½ �; ð2:4aÞ

where ρd, Td, and pA are some constant values for the density, temperature, and

pressure, and χA , ad are respectively the so-called isothermal compressibility
coefficient:
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χA ¼ 1=ρdð Þ ∂ρ=∂p½ �A; ð2:4bÞ

and the coefficient of thermal expansion at ρd and Td:

αd ¼ � 1=ρdð Þ ∂ρ=∂T½ �d: ð2:4cÞ

In his 1916 paper <1>, Rayleigh wrote: “Bénard worked with a very thin layer,
in his 1900/1901 experiments [5], cited in “Introduction”.” In the highly relevant

monograph by Chandrasekhar (1981), the author explains that a depth of only
about 1 mm is considered on a level metallic plate; this layer was usually free, and
being in contact with the air was at a lower temperature—various liquids were

employed, and the layer rapidly resolved itself into a number of cells.
More precisely, Bénard found that when the temperature of the lower surface

was gradually increased, at a certain instant (bifurcation—see Chap. 10 of [14],
cited in “Introduction”), the layer became reticulated and revealed its dissection
into cells. He further noticed that there were motions inside the cells: of ascension
at the centre, and of descension at the boundaries with the adjoining cells.

With the specific enthalpy h, the energy equation is

ρDh=Dt� Dp=Dt ¼ k∇2T þΦ: ð2:5Þ

In our 2009 monograph [25], cited in “Introduction”, devoted to convection in
fluids, the reader can find a unified RAM approach to the three main convection

cases: shallow thermal (Rayleigh-Bénard), deep thermal (�a la Zeytounian), and

thermocapillary (Bénard-Marangoni) convections.

Concerning the equation for the (absolute) temperature T associated with the

above full equation of state (2.3a) for the liquids, we have:

�
Cpð Þ=γ�ρDT=Dt ¼ αd=χAð ÞT ∇:uð Þ ¼ k∇2T þΦ: ð2:6Þ

Hence, the starting NSF equations for an expansible liquid are the two Navier-

Stokes dynamic equations (2.2a) and (2.2b), with the equation of state (2.3a) and

equation (2.6) for the temperature, where Φ is given by (2.2e).

2.3 Navier-Stokes (NS) Barotropic Compressible

Equations

In the case of NS equations, only a reduced system of two equations is considered,
rather than the full NSF equations: the dynamic equation (2.2a) for u, where λ and μ
are both assumed constant and designated by λO and μO, with continuity equation

(2.2b) for ρ, and also a simplified specifying equation between p and ρ, for a

so-called elastic/barotropic compressible and viscous fluid. We thus have:
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ρDu=Dt ¼ ρ f � ∇p þ μO∇
2uþ λO þ μOð Þ∇ ∇:u½ �; ð2:7aÞ

Dρ=Dt þ ρ∇:u ¼ 0; ð2:7bÞ
p ¼ P ρð Þ; ð2:7cÞ

which forms a simplified closed system of three equations for u, ρ, and p. This is the
so-called Navier-Stokes compressible, but isentropic, system of equations, a system

often used by “pure mathematicians” in mathematical fluid dynamics, as in Lions

(1998)!

The above NS system of three equations (2.7a)–(2.7c) is a correction,
disregarding viscosity, of the Euler system (1.20b,c) given in Sect. 1.2, with the

above specific equation (2.7c) in the place of the equation of state p¼ exp(S/Cv)ργ,
and without the equation DS/Dt¼ 0 for the specific entropy. These compressible

non-viscous equations for an elastic fluid in an adiabatic/barotropic flow, first

considered by Euler in 1755, constitute, in contrast, a very consistent non-viscous
fluid flow model, with many interesting and varied applications. Unfortunately, a

barotropic and compressible fluid flow, when assumed viscous, as in the above NS

system of equations (2.7a)–(2.7c), does not have, on the contrary, any physical

reality, and obviously the various rigorous results obtained by mathematicians

using these NS equations are of little interest!

Viscosity always generates entropy—baroclinity—the typical case being atmo-

spheric motion for dry air, treated as a trivariate thermally perfect gas, as in

Sects. 2.6 and 2.4. This was noticed by Leray (1994) in relation to rigorous

mathematical abstract results derived for low Mach number asymptotics by

P.L. Lions. But despite Leray’s critical observation, 5 years later, in a survey (!)

by Desjardins and Lin (1999), this isentropic viscous, physically inappropriate

model was discussed once again (!), while the critical paper by Leray (1994) was

curiously ignored.

2.4 The Case of Nonlinear Acoustics

As a dominant acoustic system of equations �a la NSF for the velocity vector u and

the thermodynamic perturbations, π, ω, and θ, such that

p ¼ 1þMπ, ρ ¼ 1þ Mω, T ¼ 1þMθ; ð2:8Þ

and neglecting the terms proportional to O(M2)—see, for instance, pp. 17–18 of my

book 2006 [24], cited in “Introduction”—we obtain the following system of

equations, assuming that the bulk viscosity is zero, i.e., λ+ (2/3)μ¼ 0 according

to the Stokes relation:
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∂ω=∂t þ∇: u ¼ � M ∇: ωuð Þ½ �; ð2:9aÞ
∂u=∂t þ 1=γð Þ∇π ¼ 1=Reacð Þ ∇2uþ 1=3ð Þ∇ ∇:uð Þ� �

�M ω∂u=∂t þ u:∇ð Þu½ �; ð2:9bÞ
∂θ=∂tþ γ� 1ð Þ∇:u ¼ γ=PrReacð Þ∇2θþ γ γ� 1ð Þ M=Reacð Þ 1=2ð ÞD : D

�

þ 1=3ð Þ ∇:uð Þ2g � M ω∂θ=∂t½
þ u:∇ð Þθ þ γ� 1ð Þπ∇:u�; ð2:9cÞ

π ¼ � θþ ωð Þ þ Mθω: ð2:9dÞ

The above “dominant” equations (2.9a)–(2.9d) are the main starting point for the

derivation of various model equations in nonlinear acoustics, considered as a

branch of fluid dynamics by Crighton [6], cited in “Introduction”, Lighthill, 1954,
and also Coulouvrat <2>.

For the frequencies and media commonly used in nonlinear acoustics, the

acoustic Reynolds number Reac in the above equations (2.9b) and (2.9c) is always

very large compared to unity. This means that the (continuous) medium is weakly

dissipative at the frequency chosen in the most common experimental situations,

and the above system of equations (2.9a)–(2.9d) is quite accurate enough. As a

consequence, the above three unsteady equations turn out to be perturbation system

of equations with two small parameters M and 1/Reac. But neglecting the terms

proportional to O(M2), the above system makes sense only if

M2 << 1=Reac: ð2:10Þ

In Sect. 8.9, the reader can find a very short derivation of the famous KZK

parabolic single equation model for low acoustic Mach number incorporating

nonlinearity, dissipation, and diffraction effects. This KZK amplitude equation is

in fact a generalised form of the well-known one-dimensional Burgers equation,
derived in 1948, illustrating the theory of turbulence, when the parameters linked

with the relative orders of magnitude of diffraction and nonlinearity in the KZK

equation are zero.
More particularly, concerning the asymptotic derivation of the KZK model in

Sect. 8.9, the main idea is basically that the 3D acoustic field is locally plane, so that
the nonlinear wave propagates in the same way as a linear plane wave over a few
wavelengths. In this case, the wave profile or amplitude is significantly altered only
at large distances from the source, i.e., in the far field!

34 2 Formulation of Some NSF Unsteady Initial-Boundary Value Problems

https://doi.org/10.1007/978-3-319-31619-2_8
https://doi.org/10.1007/978-3-319-31619-2_8


2.5 Initial-Boundary Value Problem for the Typical NSF

Equations

The boundary conditions, and sometimes initial conditions, dictate the particular

solutions to be obtained from the governing NSF equations formulated above.

When we consider a fluid flow governed by the typical NSF system of equations,

e.g., by the three evolution equations (2.2a)–(2.2c), with the equation of state (2.2d)

for a thermally perfect gas, it is first necessary to have a complete set of initial

conditions, with given data, u�, ρ�, T�, for u , ρ, T:

t ¼ 0 : u ¼ u� xð Þ, ρ ¼ ρ� xð ÞandT ¼ T� xð Þ: ð2:11aÞ

The typical case is obviously linked with weather forecasting and the crucial

question: what will the weather be like tomorrow and for the next few days! But,

these initial conditions (2.11a) are also necessary in various unsteady fluid dynam-

ics problems—see, for instance, the problem considered in Sect. 8.8.

The case when at time t¼ tac an accident/disaster takes place during the

unsteady evolution of a fluid flow with time is also a case for which the RAM

approach can be useful! A spectacular, but very dramatic example is the explosion

of the space shuttle Challenger on its tenth launch, on January 28, 1986. This was

indeed a frightful disaster. The main cause was the failure of the aft joint seal in the

right solid rocket boosters due to the cold weather, leading to a combustion gas leak

through the aft field joint of the right solid rocket motor, initiated at or shortly after

ignition, which eventually weakened and/or penetrated the external tank, causing

structural break-up and loss of the space shuttle during STS Mission 51-L.

When our RAM approach is applied with the above initial conditions, another

intriguing aspect which appears as a consequence of the filtering of short com-

pressible acoustic waves during the transition from compressible to incompressible

fluid flow, characterize the singular nature of the unsteady low Mach number

limiting process near the initial time. Section 3.4 gives some information

concerning this filtering and its relation with matching, a basic concept of the

RAM approach!

Concerning the boundary conditions, we need to distinguish the case of a fluid

flow extending to infinity (external flow) in space-time, for which we set various

conditions on u and T when |x|!1. In the case of a solid body movingwith a given
velocity uw, in the general case of an NSF problem, we set the following no-slip

condition (a viscous fluid grips the wall Γ):

u ¼ uw, on Γ, when xj j, tð Þ 2 body: ð2:11bÞ

On the other hand, in the conductive case, k> 0 in (2.2c), a boundary condition

has to be imposed on the temperature T. In particular, we can require the following

thermal condition:
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T ¼ Tw þ χ Θ, onΓ; ð2:11cÞ

where the scalar χ> 0 is a given constant—a measure—for the wall temperature

field Θ (often in a bounded region on the wall Γ), and Tw is a given constant

temperature.

The unsteady character of the typical NSF initial-boundary value problem,
(2.2a)–(2.2d) with (2.11a)–(2.11c), as formulated above, is linked mainly with the

change in the wall temperature field Θ with time t, for some evolution problem. In

various applications of this problem, the role of the time t in the wall temperature

field Θ must be made more precise in the above thermal condition (2.11c)! This is

precisely the case in the above-mentioned problem linked with the crash of the

space shuttle Challenger.

The well-posedness of the above typical initial-boundary value (I-BV) NSF fluid
flow problem follows to some extent from properly formulated initial value condi-

tions (2.11a) and boundary conditions (2.11b) and (2.11c). Unfortunately, rigorous
and valuable mathematical results concerning the existence and uniqueness of this

above I-BV NSF fluid flow problem, i.e., ones that can actually be applied, seem to
me outside the scope of “pure” mathematically rigorous investigations by
mathematicians.

Despite many and varied rigorous papers published recently by Elsevier

B.V. (editors S. Friedlander and D. Serre) in “Handbook of Mathematical Fluid
Dynamics” during the years 2002 to 2003, 2005 and 2007, it is very difficult to
extract any helpful result from among them.

In the framework of the present book, the initial-boundary value NSF fluid flow
problem (2.2a)–(2.2d) with (2.11a)–(2.11c) formulated above is a typical working
NSF problem and is designed for use with the RAM approach, when this is rewritten
in dimensionless form, as is the case Sect. 3.2, and also in Sect. 3.4 for atmospheric
motions. Hence, our main objective is the “deconstruction” of the I-BV NSF fluid
flow problems formulated above, first by rewriting in dimensionless form and then,

thanks to the appearance of various non-dimensional parameters (numbers) in this

dimensionless (I-BV) NSF problem, by application of the RAM approach.

In Chap. 6, such a deconstruction is achieved for various useful fluid flows, and

in Figs. 6.1–6.4, the resulting family of working models are indicated for Re�1,
M�1,meteo-fluid dynamics, and the Bénard convection problem, respectively. The

RAM approach is also applied systematically to various fluid dynamics problems in

Sects. 8.1–8.9.
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2.6 The Rotating Earth and Its Atmosphere

as a Continuum

This rather long section is motivated mainly by my long-standing interest in

modelling atmospheric motions and the publication of two books: [22], cited in

“Introduction” and <3>, a course <4>, and also various papers, e.g., [21], cited in

“Introduction” <5>, <6>, and <7>.

The critical review by Fred R. Payne (from the Aerospace Engineering Univer-

sity of Texas) in Appl. Mech Rev. 46(42) B29, 1993, of my 1991 book <3>,

published by Springer (Heidelberg) under the title “Meteorological Fluid Dynam-
ics”, describes our approach to atmospheric flows from the point of view of a fluid

dynamicist:

It is apparent that the author expended a considerable effort to make the material in this

book accessible to non-specialists. The author has in mind a sequence of models leading to:

“. . .a complete and consistent rational modeling of atmospheric phenomena. . .in the

future.” His goal of a: “return of meteorology to the family of fluid mechanics”, is both

admirable and essential, somewhat like Prandtl’s, in 1904, enabling the reunion of (invis-

cid) aerodynamics and “practical fluids” (hydraulics) after a century of separation.

Appendix 1 is quite a good survey of matched asymptotic expansions (MAE) for

singular perturbation problems prevalent in boundary layers but a new prospective user

will need to peruse some cited background books.

I found Chaps. 7–10 of most interest. This book seems more suited to individual

researchers seeking entry, or as a tutorial by a teacher with some PhD candidates in the

area, rather than as a conventional text for a lecture course. Its many examples will be

useful in a variety of settings; it is also suited to self-study by an advanced student.

The teacher will need to provide some bridging material, both computational and

physical insights, in the early chapters. Chapters 7–9 are written in a more expository

style and are essentially self-contained; these chapters make a good text for a one-semester

course and would require minimal amplification. As the book stands, it is a sketch for a first

course and rather complete for a second.

This is a stimulating book.

Most first-time readers will likely make copious comments upon the margins. It is a

member of a select subset, needful of study by specialists in fluid mechanics, turbulence,

atmospheric dynamics and modeling, and finite-dimensional dynamic systems.

I feel that my “Meteorological Fluid Dynamics” is a good preparation for

reading the more ambitious monograph “Asymptotic Modeling of Atmospheric
Flows”, despite the fact that it was published a little earlier in 1990 [22], cited in

“Introduction”. Concerning this book, Huijun Yang of the University of Chicago

wrote the following in the book review of SIAM Rev (33, Dec. 1991, pp. 672–673):

This Asymptotic Modeling of Atmospheric Flows, is rather a monograph in which the

author has set forth what are, for the most part, his own results and this is particularly true of

Chaps. 7–13. In the book, the author viewed meteorology as a fluid mechanics discipline.

Therefore, he used singular perturbation methods as his main tools in the entirety of the

book. . .The book consists of the author’s more than 25 years work. In the thirty-two

references of his own work, fewer than one third were published in English, with the rest

in Russian or French.

Throughout the book, the reader can strongly feel the influence of Soviet works on the

author. However, the author does have his own boundary layer treatment, and well
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posedness and ill posedness of the system are very important problems facing researchers

today in atmospheric sciences and other related sciences. The reader will find some

valuable information on these issues. . .
The mathematically consistent treatment of the subject does give this book a unique

place on shelves of libraries and offices of researchers. . .
This book is very different from recent books on the market (i.e., Holton (1979), Gill

(1982), Haltiner and Williams (1980), Pedlosky (1987), and Yang (1990)).

I recommend that researchers in atmospheric dynamics and numerical weather predic-

tion read this book to have an alternative view of deriving atmospheric flow models.

Researchers in theoretical fluid mechanics might also be interested to see how singular

perturbation methods can be used in atmospheric sciences.

The book may be used as supplemental material for courses like numerical weather

prediction or atmospheric dynamics.

However, I do not think it is a suitable textbook for a regular class: as the author said in

his preface—I am well aware that this book is very personal, one might even say impas-

sioned. Unfortunately, in France, and for instance by Roger Teman, the very no-adequate

book of Pedlosky (1987) is systematically used in various papers in journal (Nonlinearity),

with J.L. Lions and S.Wang (1991, 1992) devoted to atmospheric motions, which are not

any practical interest for the modeling the atmospheric motions!

2.6.1 The Rotating Earth

Concerning meteo fluid dynamics, one must first observe that the earth revolves

about its axis once every 23 H 56 min and 4 s, or a total of 86,164 s. The frequency

of rotation or the angular velocity of the earth is

ΩO ¼ 2π=86164 ¼ 7:292 � 10�5rad=s; ð2:12aÞ

and the radius of the earth at a latitude of φ¼ 45� is aO¼ 6370.1 km. The true

gravitational acceleration owing to the pull of the earth, on the surface and at a

geographic latitude of ϕ¼ 45�, is

fj j ¼ 9: 82357 m=s2; ð2:12bÞ

and therefore, it will be assumed here that the body force, ρf, in the momentum

equation is the true gravitational force, where ρ is the atmospheric density.

To distinguish the experiences of a fixed and a rotating observer, let a subscript a

denote quantities referred to an absolute, inertial frame of reference, and a subscript

r, quantities referred to a frame rotating with the angular velocity of the earth,

Ω¼ΩO e relatively to the absolute frame. Let i, j, and k denote respectively the unit

vectors pointing east, north, and vertically upward. Then,

e ¼ k sinφþ jcosφ: ð2:12cÞ

If γr is the relative acceleration and γa the absolute acceleration, we can write the

following formula:
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γa ¼ γr þ 2Ω� vr � ΩOð Þ2x⊥; ð2:12dÞ

where the subscript ⊥ denotes the equatorial component of Ω� ðΩ� xÞ ¼
~Ω� ð~Ω� ~xÞ. For the gravitational acceleration, we write

g ¼ f þ ΩOð Þ2x⊥, such that
��g�� ¼ g ¼ fj j � ΩOð Þ2��x⊥

��; ð2:12eÞ

and g¼ 9.8066 m/s2 at φ¼ 45�. The Froude number Fr—a measure of the signif-

icance of the gravitational acceleration (the force of gravity)—is defined by

FrL0 ¼ U0= gL0ð Þ; ð2:12fÞ

where |U|¼U0 , U is the characteristic constant reference velocity, and L0 is a

characteristic length.

If u denotes the relative velocity vr , the terme Ω� u is an apparent acceleration

known as the Coriolis acceleration, which exists only if there is motion relative to a

moving frame such as the earth. For this Coriolis acceleration we have

2Ω� u ¼ 2ΩOcosφw� 2ΩOsinφ vð Þiþ 2ΩOsinφ uj� 2ΩOcosφ uk; ð2:13aÞ

when u, v, and w are the components of u. The symbol f¼ 2ΩO sinφ is the local

Coriolis parameter, and we can write, in place of (2.13a), the following relation:

2Ω� u ¼ f uj� við Þ þ df=dφ wi� ukð Þ: ð2:13bÞ

The importance of the Coriolis acceleration in relation to the inertial forces is

given by the Rossby number Ro, which is defined as

Ro ¼ U0=L0f0, with f0 ¼ 2ΩO sinφO, where φO ¼ Constant: ð2:13cÞ

In fact, f0� 10�4 in mid-latitudes, and for Ro>> 1, the Coriolis force is likely to

cause only a slight modification of the pattern of atmospheric motion, but when

Ro�1, the effects of the Coriolis force are likely to be dominant! In fact, for

synoptic-scale atmospheric motions, we have: L0ffi 106 m and Roffi 10�1, but for

the meso- (or regional) scale atmospheric flows, we have L0ffi 105 m and Roffi 1.

Finally, for the case of local-scale atmospheric process, we have rather L0ffi 104 m

and Roffi 10!

In the present book, we prefer to use, instead of the Rossby number Ro, the

parameter (taking into account my Moscovite (1957–1966) scientific meteo adven-
ture with Il’ya Afanas’evich Kibel) known as the Kibel number:

Ki ¼ 1=f0ð Þ=t0; ð2:14Þ

where t0 is a characteristic reference time. If t0 is the advective time scale L0/U0,

this Kibel number is identical to the Rossby number Ro.
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2.6.2 The Atmosphere as a Continuum

From a mathematical point of view of a continuum, we postulate that properties at

any one point can be expressed in terms of properties at a neighboring point—this is

because these properties and their derivatives are assumed continuous in their

spatial variations. From the continuum mechanics point of view, the atmosphere
is a thin layer of air—a gaseous mixture—surrounding the surface of the earth,
which remains attached to the earth by the pull of gravity and extends about seven
miles upwards from the earth’s surface.

The layer nearest to the earth’s surface, characterized by a linear temperature

decrease with increasing altitude, is called the troposphere, and it is most influenced

by energy transfer through radiation, evaporation, condensation, and convection.

However, it is no easy matter to account for all these four effects. The troposphere

also represents the limit within which conventional air flight takes place, and also

within which man-made pollution from industrial activities is principally confined,

and it is where most cloud formation occurs. Dynamically speaking, the tropo-

sphere is stable, but those portions of the layer nearest the surface of the earth are

often unstable.

The air in the atmosphere is a Newtonian fluid, and dry air is governed by the law

of perfect gases with (2.1) and (2.2d). If the relative velocities are small, the
pressure will be only slightly disturbed from the value it would have in the absence

of motion, pst(zst), defined by the relations

dpst zstð Þ=dzst þ gρst ¼ 0, with ρst zstð Þ ¼ pst zstð Þ=RTst zstð Þ; ð2:15aÞ

in a basic, so-called standard atmosphere in which fluctuations due to motion

occur. This basic standard atmospheric state is assumed known, although in fact

its determination from first principles requires at least the consideration of mech-

anisms such as radiative transfer in the atmosphere. But in rather simple cases we

have, from the first law of thermodynamics, for the standard temperature Tst(zst), a

function only of the standard altitude zst, the following equation:

k Tstð Þ dTst zstð Þ=dzst þ Rst Tstð Þ ¼ 0; ð2:15bÞ

with

dRst zstð Þ=dzst ¼ ρstQst Tstð Þ: ð2:15cÞ

Equation (2.15c) gives Rst(Tst), where Qst(Tst) is the rate of heat supply per unit

mass by radiative heat transfer and the scalar kst(Tst) is the standard coefficient of

thermal conductivity.
For our purposes here, it is sufficient to assume that Qst(Tst) is a known function

of Tst and also that the influence of the rate of heat by radiative heat transfer on the

atmospheric motions is the main factor in the determination of Tst. By doing this,
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we consider only a mean standard heat source and ignore variations thereof! As a

consequence, the reference quantities are the values for the standard state at ground
level: pst(0), ρst(0), and Tst(0). In this case, from (2.15a), the following

non-dimensional parameter—the Boussinesq number—appears:

Bo ¼ gH0= pst 0ð Þ=ρst 0ð Þð Þ ¼ H0= RTst 0ð Þ=gð Þ; ð2:16aÞ

where H0 is a characteristic length scale for vertical atmospheric motions, while the

characteristic altitude scale for the standard altitude zst is

Hst ¼ RTst 0ð Þ=g ð2:16bÞ

In fact, Bo is the ratio of two vertical length scales. It follows from (2.16a) that,

between the parameters Froude (Fr), Mach (M), Boussinesq (Bo), and the ratio ε—
the so-called hydrostatic parameter—the following relation holds:

FrL0ð Þ2 ¼ γε M2=Bo or γ M=FrH0½ �2 ¼ Bo; ð2:16cÞ

where

ε ¼ H0=L0, and M ¼ U0=√C0, withC0 ¼ γRTst 0ð Þ: ð2:16d� fÞ

On the other hand, Nst(zst) defined by

Nst
2 zstð Þ ¼ g= Tstð Þ½ � γ� 1ð Þg=γR½ � þ dTst=dzstf g; ð2:16gÞ

is called the Brunt-Väisälä frequency or the natural frequency of oscillations of a
vertical column of “standard” atmospheric mass during a small displacement from
its equilibrium position—the standard atmosphere being statically stable when Nst

is real! Below, the existence of characteristic scales is exploited by the introduction
of non-dimensional quantities denoted by primes, and we have

z ¼ H0z
0, zst ¼ Hstz

0
st, and Tst ¼ Tst 0ð ÞT0

st: ð2:16hÞ

We can then write the following dimensionless equation in place of (2.16g):

astN
0
st
2
z0st
� � ¼ Bo=T0

st½ � γ� 1ð Þ=γ½ � þ dT 0
st=dz

0
st

� �
; ð2:17aÞ

where ast is a dimensionless measure of the standard stability. We can also derive

an interesting relation between zst and z0, namely:

zst ¼ Boz0; ð2:17bÞ

which plays a decisive role in the justification (�a la Zeytounian (1974)) of the

famous Boussinesq equations. Concerning these Boussinesq (shallow) equations,
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and also Zeytounian (deep) equations, see Sects. 2.6.3 and 2.6.4 for their asymptotic
derivation from the Euler equations, via the RAM approach.

Finally, in the asymptotics of atmospheric motions, two parameters also play an

important role: the Reynolds number Re¼U0L0/ν0, which shows the importance of
the inertia relative to the viscosity, and the Ekman number:

Ek ¼ Ro=Re ¼ 1=L0
2

	 

v0=f 0½ �; ð2:17cÞ

which is a measure of the ratio of the frictional and Coriolis forces.
We observe that an important feature of large synoptic-scale atmospheric

motions is that both the Kibel and Ekman numbers are small. A typical value of

Ek in the earth’s troposphere is 10�3, when for the eddy viscosity we choose

ν0¼ 5 m2/s.

Except in the immediate vicinity of the equator, Ki is usually a small parameter

(�1), if the characteristic time scale t0 �104 s, which is the case for synoptic-scale

motions.

In any realistic atmospheric situation, M�1, and the synoptic meteorological
situation corresponds to

ε 
 10�2and Bo << 1: ð2:17dÞ

But, frequently, for the prediction of atmospheric phenomena at regional (meso)
and local scales, one may assume that

Bo << 1, but ε 
 1; ð2:17eÞ

as is typically the case for lee waves, arising downstream of a mountain.
For further details concerning the physical nature of the atmosphere, the reader is

referred to books Houghton (1977) and Scorer (1978). It must be kept in mind that
modelling, i.e., the translation of a complex physical situation into correctly
expressed mathematical terms, has at the present time become very important in
many fields in the realm of scientific research.

2.6.3 Shallow Boussinesq Equations

To derive the shallow Boussinesq equations from the Euler equations, these Euler
equations must be written in dimensionless form. First we take into account (2.15a)

for the standard atmosphere, and with pst(0), ρst(0), and Tst(0) we introduce

non-dimensional quantities (dropping the primes) such that
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p ¼ pst zstð Þ 1 þ π½ �, ρ ¼ ρst zstð Þ 1 þ ω½ �, T ¼ Tst zstð Þ 1þ θ½ �: ð2:18aÞ

With (2.18a), for dimensionless velocity components (v¼ (u, v), w), and thermo-

dynamic perturbations, π, ρ, and θ, we derive the following dimensionless, emerg-
ing equations:

1þ ω½ � St Dv=Dt þ Tst zstð Þ 1=γM2
� �

∇π ¼ 0,

1þ ω½ � St Dw=Dt þ 1=γM2
� �

Tst zstð Þ∂π=∂zf
� 1þ ω½ � Bo θg ¼ 0,

π ¼ ωþ 1þ ω½ � θ,
St Dω=Dt þ 1 þ ω½ � ∂u=∂xþ ∂v=∂yþ ∂w=∂zð Þ

¼ 1þ ω½ � Bo 1=Tst zstð Þ½ � 1� Γst zstð Þf gw,
St Dθ=Dt � γ � 1ð Þ=γ½ � St Dπ=Dt

þ 1 þ π½ � Bo 1=Tst zstð Þ½ � γ � 1ð Þ=γ½ � � Γst zstð Þf gw ¼ 0: ð2:18bÞ

Again we stress that the above dimensionless Euler meteo equations (2.18b) for v¼
(u, v), w, and (π, ω, θ), are a set of exact consequences of the traditional Euler
equations, and this remark is very important for the consistent derivation of the

Boussinesq model equations below!

Our approach via the RAM approach goes from the full exact equations to

simplified/reduced model equations—and this is the only way to derive relevant

and worthwhile reduced/simplified, non-ad hoc working model equations! As

leading-order equations, these Boussinesq equations are derived via the RAM

approach from the above Euler system of equations (2.18b), if we assume that

M << 1 and Bo << 1, such that Bo=M ¼ B* ¼ O 1ð Þ; ð2:18cÞ

and use the associated asymptotic expansions

u; v;wð Þ ¼ u0B; v0B;w0Bð Þ þ . . . ,
ω; qð Þ ¼ M ω1B; θ1Bð Þ þ . . . ,

π ¼ M2 π2B þ ;
ð2:18dÞ

and also the limiting process:

limM!o with t, x, y, z, and St, γ, B* fixed½ �: ð2:18eÞ

The above conditions (2.18c)–(2.18e) are obtained after a brief investigation of

the various degeneracies of the Euler equations (2.18b) when M! 0 with t, x, y, z,

and St, γ, and B* fixed! In this case, it appears that one must assume that the

Boussinesq number Bo is also a small parameter such that the similarity relation
with B*¼O(1), in (2.18c), is satisfied!
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From the above conditions (2.18c)–(2.18e), we derive the following Boussinesq

model equations for the functions: uoB, voB, woB, ω1B, θ1B, and π2B in place of the

Euler equations (2.18b) (written without primes):

St Dv0B=Dt þ 1=γ½ � ∇π2B ¼ 0,

St Dw0B=Dt þ 1=γ½ � ∂π2B=∂z� B*θ1B ¼ 0,

ω1B ¼ �θ1B,
∂u0B=∂xþ ∂v0B=∂yþ ∂w0B=∂z ¼ 0,

St Dθ1B=Dtþ B* γ � 1ð Þ=γ½ � � Γst 0ð Þf gw0B ¼ 0;

ð2:18fÞ

since in dimensionless form, we obviously have Tst(o)� 1, but in a general case
Γst(0)¼ dTst(zst)/dzstjzst¼ 0 is obviously different from zero!

We note also that the above relation (2.17b) was taken into account. Concerning

the validity of the above system of Boussinesq equations, from the similarity

relation (2.18c), where B*¼O(1), we have

B* ¼ Bo=M ¼ O 1ð Þ ) Hc � Uc=g½ � RTst 0ð Þ=γð Þ1=2� HB � 103m; ð2:18gÞ

and this leads to a strong restriction on the application of the Boussinesq equations

(2.18f) in the whole troposphere (Hc¼Hst¼RTst(0)/g� 104 m)!

The equations (2.18f) derived above are indeed only shallow Boussinesq equa-
tions. Concerning more particularly the lee waves downstream of a mountain in the
whole troposphere, one must assume that Bo� 1, zst� z. In the 2003 paper <8>,

the reader can find a more general derivation of the Boussinesq equations applicable

to atmospheric motions

2.6.4 Deep Equations “�a la Zeytounian”

If we take into account that, in the troposphere, the air temperature on average
decreases with height at an overall positive rate (of about 6.5 �C/km), then it seems

to me not too bad a hypothesis to assume that�Γst(z)¼�dTst/dz is very close to
[(γ� 1)/γ] in the troposphere, and write

Γst zð Þ ¼ � dTst=dz ¼ γ� 1ð Þ=γ½ � þM2χst zð Þ; ð2:19aÞ

the function χst (z) being a known function of z which takes into account a weak
stratification with altitude z in a standard troposphere, and |χst(z)|¼O(1).

In such a case, with

limM!0 with t, x, y, z, and St, γ, Bo, χst zð Þ fixed½ �; ð2:19bÞ
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instead of the above system (2.18f) of shallow Boussinesq equations, we derive the
following so-called deep equation (�a la Zeytounian) (see Sect.10.2.2 in [22], cited

in “Introduction”):

γ Td zð Þ ∂uod=∂xþ ∂vod=∂yþ ∂wod½ � ¼ wod,

St Dvod=Dt þ 1=γð Þ Td zð Þ ∇π2d ¼ 0,

St Dwod=Dt þ 1=γð Þ Td zð Þ∂π2d=∂z � θ2d½ � ¼ 0,

St Dθ2d=Dt � γ � 1ð Þ=γ½ � St Dπ2d=Dtþ 1=Td zð Þ½ �χst zð Þwod ¼ 0,

π2d ¼ θ2d þ ω2d, Td zð Þ ¼ 1 � γ � 1ð Þ=γ½ � z;

ð2:19cÞ

withD=Dt ¼ ∂=∂t þ uod∂=∂xþ vod∂=∂yþ wod∂=∂z;when M! 0 with t, x, y,

z, and St, γ, Bo� 1, fixed, with:

u, v, wð Þ ¼ u0d, v0d, w0dð Þ þ . . . ,
ω, θ, πð Þ ¼ M2 ω2d, θ2d, π2dð Þ þ . . . :

ð2:19dÞ

The above model equations (2.19c) are the true “anelastic” non-dissipative

equations, the equations of Ogura and Phililips (1962), being rather an ad hoc
system of equations!

These deep convection equations (2.19c) are valid in the whole troposphere,
while the shallow Boussinesq equations (2.18f) can be considered as a reduced
form of these deep convection equations (2.19c), only valid in the vicinity of
the ground, in a layer close to a flat ground surface with a thickness of only
about 103 m.

In the 2D steady case, from each of the above systems of equations—(2.18f) and

(2.19c)—one can derive a single equation for a stream function—a very pleasing

derivation for a curious and motivated student!

After Chap. 6, in “Some Concluding Remarks about Part III”, the reader can find
the RAM derivation of a more complete anelastic, deep, non-adiabatic, viscous and
heat conducting system of equations for dissipative atmospheric thermal
convection.

2.7 Complementary Remarks

In our books published by Springer (Heidelberg) during the years 1974–2014, the

reader can find many complementary presentations of very different theoretical

subjects relating to fluid dynamics—the reader will find some of these below! But

first it should be noted that much of the impetus for research on Newtonian fluid
dynamics during the past 50 years was created by the rapid development of

“asymptotics” and “modelling”.
In [10], cited in “Introduction” and in the paper by Guiraud [7], cited in Chap. 1

entitledGoing on with asymptotics, and also in my 2002 book, FMIA 64 [7], cited in
“Introduction” (pp. 4–18 contain a short summary of Chaps. 2–12), the reader can

2.7 Complementary Remarks 45

https://doi.org/10.1007/978-3-319-31619-2_6
https://doi.org/10.1007/978-3-319-31619-2_1


find discussion of the following: Newtonian fluid flow equations and conditions;
asymptotic analysis and modelling; useful limiting forms of the NSF equations; the
Navier-Fourier model; the Euler model; boundary layer models; models of
nonlinear acoustics; low-Reynolds number asymptotics; asymptotic modelling of
thermal convection and interfacial phenomena; meteo fluid dynamics models;
singular coupling and the triple-deck model.

On the other hand, in the book by R. E. Meyer <9>, the curious reader will find
an introduction to mathematical fluid dynamics laying out the basic concepts of a
semi-axiomatic foundation, but without abstract nonlinear functional analysis, in
contrast to the two books by P. L. Lions, published in 1996 and 1998 by Oxford

University Press, where pure mathematics plays the main role. We note that, for a
mathematics student, such a treatment (�a la Meyer) helps to dispel the common
impression that the whole subject is built on a quicksand of assorted intuitions. It
remains to hope that our RAM approach will lead to more positive feelings!

Of course, in Meyer’s book, the account is not axiomatic; the “postulates” are
used to illuminate the subject, not to deduce it, and mathematicians will be even

more disappointed by the lack of any attempt to prove an existence theorem, or even

to talk seriously about partial differential equations. There would seem to be room,

however, for an introduction to what the whole subject is about, before the Navier-

Stokes equations are tackled. In fact, many mathematicians will complain that the

book contains hardly (!) any mathematics—which is also the case in the present

book—and many theoretical fluid dynamicists, that the book is far too abstract—

this indicates a gap which should be filled!
Note, however, that, in Sect. 38 of Chap. 6 of Meyer, 1971, the reader can find a

short but well argued discussion concerning the Navier-Stokes equations, referred

to in the present book as the Navier-Stokes-Fourier (NSF) equations. In particular,

in pp. 100–110 of Chap. 4 of Meyer, 1971, the reader will find the formulation,
solution, and discussion of the basic classical Blasius problem of the theory of fluids
with small viscosity, considering a steady incompressible flow past a solid flat plate
placed edgewise in a uniform stream. The Blasius problem for viscous fluid flow is

considered for the case of a slightly compressible fluid in Sect. 8.5.
Chapter 5 of Meyer, 1971, entitled Some aspects of rotating fluids, gives useful

complementary information about Sect. 2.6 of the present book, and the singular
perturbation example in his Chap. 4 seems to me a good simple case, illustrating
asymptotics!

In our two volumes [13] and [14], cited in “Introduction”, the reader will find

many and varied examples of the application of asymptotics to both non-viscous
and viscous fluid dynamics problems. In particular, in Chap. 3 of [14], cited in

“Introduction”, the reader will find some simple (but fundamental) examples of

viscous fluid flows.

For instance, Sect. 3.1 considers the plane Poiseuille flow and the

Orr-Sommerfeld equation, which is solved by a double-scale asymptotic technique
when
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ikRe ¼ 1=ε >> 1: ð2:20aÞ

The unknown stream function ψ(t, x, z), satisfying the perturbed vorticity Navier

equation, is written in the following form:

ψ zð Þ ¼ ϕ zð Þ exp ik x� ctð Þ½ Þ�; ð2:20bÞ

and ϕ(z) is the solution of the Orr-Sommerfeld equation (see p. 58–60 of [14], cited
in “Introduction”). With the boundary conditions dϕ/dz¼ 0 and ϕ¼ 0 on z¼�1

and z¼ +1, this is an eigenvalue problem.
Writing c¼ cr + ici, then if ci¼ 0, there is sustained oscillation, and the condition

ci¼ 0 leads to a relation between k and Re—a neutral stability curve in the (k, Re)
plane, as shown in Fig. 2.1.

Section 3.2 of [14], cited in “Introduction”, is devoted to steady flow through an

arbitrary cylinder under pressure, and three particular cases are considered—the

case of a circular cylinder, the case of an annular region beween concentric
cylinders, and the case of a cylinder of arbitrary section.

Section 3.3 of [14], cited in “Introduction”, investigates the problem of the

steady-state Couette flow between two concentric circular cylinders of radii r1,
r2, rotating about their common axis at angular velocities ω1, ω2. This leads to the

classic Taylor problem, where the Taylor number for a small ε¼ d/rm� 1 is

Ta ¼ ρ�=μ�ð Þ2 ω1ð Þ2d4 1 � Ω2
� �

=ε
� �

; ð2:21aÞ

and the ratio (1�Ω2)/ε, of two small parameters is assumed to have a finite value.

In ε¼ d/rm, d¼ r2� r1, and rm¼ (½) [r2 + r1], while Ω¼ω2/ω1. Again we have an

eigenvalue problem that yields an eigenvalue relation, and in Fig. 2.2 the neutral

k

kc

Ci < 0

Ci < 0

Ci > 0

Rc R

Fig. 2.1 Neutral curve for

plane Poiseuille flow. From

p. 59 of [14], cited in

“Introduction”
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stability curve is given by the value σ¼ 0. This is the principle of exchange of
stabilities!

The flow is described by

u ¼ w ¼ 0, v ¼ V rð Þ ¼ Arþ B=r, 1=ρ�ð ÞdP rð Þ=dr ¼ 1=rð Þ V rð Þ½ �2; ð2:21bÞ

and, following Taylor (1923), it is assumed that the perturbed flow has the form

u¼ (u0, V(r) + v0, w0), p¼ P(r) + p0. In Fig. 2.2, n¼md with m the axial wave number.
The Bénard problem is discussed in pp. 68–70 of Sect. 3.4 of [14], cited in

“Introduction”, as in Sect. 6.4 of the present, but in the framework of a linear
theory, when perturbations relative to a basic equilibrium state are small. In such a
case, using the usual linearization, we derive a linear system �a la Boussinesq. When
we analyze the perturbations into normal mode, we must then consider, for the

function W(z),

w0, T0ð Þ ¼ W zð Þ, Θ zð Þ½ � f x, yð Þ exp σ tð Þ; ð2:22Þ

where σ¼ σr + iσi. In this case, the equation for W(z) with the boundary conditions
determines a so-called self-adjoint eigenvalue problem for Rayleigh number, Ra ¼
Pr Gr, where according to (3.7) Gr¼ α/Frd

2 is the Grashof number with α as a small
dilatation parameter (see the Sect. 6.4).

When Ra exceeds the critical value Rac, instability occurs in the form of

convection in (Bénard) cells forming a polygonal platform. Once again, the case

σ¼ 0 represents neutral (marginal) stability (see Fig. 2.3).

The formation of Bénard cells in a weakly expansible liquid layer is one of the

most remarkable examples of a bifurcation phenomenon. Bifurcations in dissipative
(dynamical) systems are investigated in Chap. 10 (entitled A Finite-Dimensional

T

n

TC

nC

0

s > 0

s < 0

Fig. 2.2 Neutral curve for

circular Couette flow. From

p. 67 of [14], cited in

“Introduction”
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Dynamical System Approach to Turbulence) of the book [14], cited in “Introduc-

tion”, devoted to the theory and applications of viscous fluid flows.
The linear problem with a free surface open to ambiant passive air is considered

in Sect. 3.5 of [14], cited in “Introduction”. This problem represents one of the most

important cases in which capillary forces come into play. More precisely, the

motion induced by tangential gradients of variable (only temperature dependent)
surface tension:

σ Tð Þ ¼ σ T�ð Þ � γ� T � T�ð Þ; ð2:23aÞ

where T� is the constant temperature of the free surface in the basic equilibrium

state

γ� ¼ � dσ=dTð ÞT� ¼ const; ð2:23bÞ

is customarily called the Marangoni effect.
But, according to Zeytounian (see Chap. 7 of [25] cited in “Introduction”), from

an asymptotic viewpoint, it is not consistent to take into account the buoyancy effect
and the deformation of the free surface simultaneously in the Bénard thermal

convection model problem for a weakly expansible liquid!

In the Bénard-Marangoni thermocapillary problem, three non-dimensional
parameters play a significant role:

Ma ¼ γ�d� ΔT�=ρ�v�2
� �

; ð2:24aÞ

Ra

RaC

KC

unstable

stable

K
0

Fig. 2.3 The neutral

stability curve for the onset

of Bénard thermal

convection. From p. 70 of

[14], cited in “Introduction”
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We ¼ σ T�ð Þ d�=ρ�v�2
� �

; ð2:24bÞ
Bi ¼ q�d�=k� ; ð2:24cÞ

which are respectively the Marangoni, Weber, and Biot numbers. Here ΔT� is a

difference of constant temperatures, and q� in the expression for the Biot number is

the thermal surface conductance constant between a free surface and air.

Figure 2.4 shows the neutral stability curves for various values of the crispation
number, according to the paper by Regnier and Lebon (1995). For Bi¼ 0 and Bond
number Bn¼ Pr [Cr/Fr�2]¼ gρ�[d�2/σ (T�)]¼ 0.1, the regions below each of curves

represent the stable state in the plan (a, Ma). When Cr¼We/Pr! 0, i.e., for a non-
deformable free surface, and Froude number Fr�2! 0, such that Bn 6¼ 0, we obtain

once again the result due to Pearson (1958), viz., Mac� 80 and ac� 2.0!

Concerning Sects. 6 and 7 in Chap. 3 of [14], cited in “Introduction”, we note the
following. First, in Sect. 6, viscous flow (ν� is the kinematic viscosity coefficient)

due to a disc (in the plane z¼ 0) rotating at constant angular velocity Ω� is

considered for small and large values of ζ¼ [ν�/Ω�]1/2 z. Then, in Sect. 7, the
corresponding expansions are “joined” in a rather heuristic manner using a trial and

error approach.

Second, in Sect. 7, the Rayleigh flow problem is investigated using the

one-dimensional unsteady-state NSF equations, caused by an impulsively started

flate plate, when

Pr ¼ 1, Re ¼ O 1ð Þ, M2 ! 0, and τ� ! 0; ð2:25aÞ

where τ� ¼ΔT�/T�, and we assume that, for t> 0 on z¼ 0, the temperature changes

instantaneously from T� to T� +ΔT�, with ΔT� > 0. We first consider the smallM2

asymptotic solution close to the flat plane, but far from the initial time, which is an

inner expansion. Then we examine the smallM2 asymptotic solution far from a flat

plate, an outer expansion. As a result, it appears necessary to include a term

proportional to M3 in the expansions as a consequence of matching. However, the
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Fig. 2.4 Neutral stability

curves for various values of

Cr (for Bi¼ 0) and

Bn¼ 0.1. From p. 74 of

[14], cited in “Introduction”
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above procedure yields only an asymptotic solution for the time t¼O(1), and is not

valid near t¼ 0, because the above asymptotic solutions would imply that an

infinite impulse per unit area is required to set the flat plate in motion!

The main problem is to match the solution valid in the initial transient layer with

the above asymptotic solution, which is valid for fixed time t> 0. In fact, for small
M2 close to the initial time, one must first introduce a short time adapted to the

initial transient layer. Hence, we write

t* ¼ t=Mβ, β > o; ð2:25bÞ

and with this short time (2.25b), we consider an initial limiting process:

M ! 0 with t* and z fixed and Re ¼ 0 1ð Þ; ð2:25cÞ

with an initial asymptotic expansion. If we assume that, close t*¼ 0, the significant
system of equations is the classical system of acoustic equations, then in the initial
asymptotic expansion (valid close to t*¼ 0) we have a term proportional to the

Mach number M, and β¼ 1 in (2.25b).

In Some Concluding Remarks for Part I below, the reader can find further

information concerning this unsteady Rayleigh flow problem.
As a conclusion of this rather long Sect. 2.7, I wish to quote below some

comments by M.F. Platzer (from the Dept of Aeronautics and Astronautics at the

Naval Postgraduate School, Code AA/PL, Monterey CA 93943-5000) in the Book

Reviews section of Appl Mech Rev, vol 57, No. 3, May 2004. Platzer reviewed my

book entitled Theory and Applications of Viscous Fluid Flows [14], cited in

“Introduction”:

It is evident from this brief summary that the author’s emphasis is on the mathematical

aspects of the viscous flow equations and their various asymptotic limit cases and analytical

solution methods.

His choice of topic and flow problems is meant to provide young researchers in fluid

mechanics, applied mathematics and theoretical physics with an up-to-date presentation of

some key problems in the analysis of viscous fluid flows.

Although the author intentionally limited himself to a select few topics, teachers of

advanced viscous flow courses and researchers in this field will welcome this book for its

thorough review of current work and the listing of 1156 relevant papers.

In my judgment, it meets the stated objective of bridging the gap between standard

undergraduate texts in fluid mechanics and specialized monographs.

The last chapter (Chap. 10) of our Theory and Applications of Viscous Fluid
Flows [14]cited in “Introduction” presents the finite-dimensional dynamical sys-
tems approach to turbulence by reviewing the classical Landau-Hopf, Ruelle-
Takens-Newhouse, Feigenbaum, and Pomeau-Maneville transition scenarios to
turbulence. In pp. 414–443 of Sect. 10.4 of [14], cited in “Introduction” the reader

will find a collection of strange attractors (see Figs. 2.5 and 2.6) for various viscous
flow phenomena. These two strange attractors are related to the thermocapillary

instabilities in a free-falling vertical 2D film, when the amplitude KS equation

(2.26) is considered, where the function H(t, x) is related with the film thickness.
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∂H=∂tþ 4H∂H=∂xþ ∂2
H=∂x2 þ ∂4

H=∂x4 ¼ 0: ð2:26Þ
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Fig. 2.5 Metastable chaos regime at k¼ 0. 273. From p. 424 of [14], cited in “Introduction”
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Fig. 2.6 Complex movement is observed in the vicinity of limit cycles. From p. 423 of [14], cited

in “Introduction”
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