
ECC on Your Fingertips: A Single Instruction
Approach for Lightweight ECC Design in GF (p)

Debapriya Basu Roy(B), Poulami Das, and Debdeep Mukhopadhyay

Secured Embedded Architecture Laboratory (SEAL),
Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur, Kharagpur, India
{deb.basu.roy,debdeep}@cse.iitkgp.ernet.in, poulamidas22@gmail.com

Abstract. Lightweight implementation of Elliptic Curve Cryptography
on FPGA has been a popular research topic due to the boom of ubiq-
uitous computing. In this paper we propose a novel single instruction
based ultra-light ECC crypto-processor coupled with dedicated hard-IPs
of the FPGAs. We show that by using the proposed single instruction
framework and using the available block RAMs and DSPs of FPGAs,
we can design an ECC crypto-processor for NIST curve P-256, requiring
only 81 and 72 logic slices on Virtes-5 and Spartan-6 devices respectively.
To the best of our knowledge, this is the first implementation of ECC
which requires less than 100 slices on any FPGA device family.

Keywords: Elliptic curve · Single instruction · URISC · SBN · FPGA ·
Hard-IPs

1 Introduction

With the recent boom in ubiquitous computing, specially in Internet-of-Things
(IoT), the need of lightweight crypto-algorithms, either at algorithmic or imple-
mentation level, has increased significantly. Though the researchers have pro-
posed various lightweight symmetric ciphers, the most popular options for pub-
lic key cryptography are RSA and Elliptic Curve Cryptography (ECC). ECC
based crypto-system is being preferred over its counterpart RSA because of its
wonderful property of increased security level per key bit over RSA. Any ECC
based protocol or algorithm is based on underlying elliptic curve scalar multi-
plication whose computation is based on a number of field operations, making it
computationally extensive. Software implementations of ECC, running on smart
cards or AVR are slow and can become performance bottleneck for many appli-
cations. As an alternative, dedicated ECC-crypto processors are being built on
hardware platforms like ASICs (Application Specific Integrated Circuits) and
FPGAs (Field Programmable Gate Arrays).

D. Mukhopadhyay—This work was partially supported by project from
Defence Research and Development Organization (DRDO), India [Sanction No:
ERIP/ER/1100420/M/01/1517].

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 161–177, 2016.
DOI: 10.1007/978-3-319-31301-6 9

162 D.B. Roy et al.

Although ASIC implementations are faster than those based on FPGAs,
FPGAs are sometimes preferred over ASIC for cryptographic applications due
to its inherent properties of reconfigurability, short time to market and in house
security. The entire design cycle of an FPGA based system can be completed
inside a single lab unlike ASIC based systems where several different parties
are involved in the design cycle. Moreover, modern FPGAs with various device
families provide interesting design choices to the designer. Additionally, these
FPGAs are now equipped with dedicated hard IPs like DSP blocks, Block RAMs,
which when properly utilized results in efficient design of dedicated ECC-based
crypto-processors in GF (p) with improved timing performance and reduced area
overhead.

There have been many works in the literature which focus on efficient imple-
mentation of ECC crypto-processor in GF (p) on FPGAs. An overview of such
implementations can be found in [1]. A lightweight ASIC design was reported
in [2]. Considerably high speed designs for FPGAs can be found in [3] which
is significantly faster than previous designs reported in [4,5]. But, though the
proposed design requires much less area compared to the previous designs (1715
logic slices on Virtex-4 platform for NIST P-256), it is still considerably large for
lightweight applications. A fast pipelined modular multiplier for ECC field mul-
tiplication was proposed in [6], whereas optimized tiling methodology targeting
rectangular DSP blocks of Virtex-5 FPGA was proposed in [7]. However, both of
them have considerable area overhead, hence can not be applied in lightweight
applications.

A lightweight ECC algorithm for RFID tags was presented in [8] and authen-
tication and ID transfer protocols based on lightweight ECC was introduced
in [9]. On implementation level, authors have proposed a lightweight architec-
ture, known as Micro-ECC, in [10]. The proposed design methodology shows
significant improvement in terms of area-time product compared to the previous
implementation [11–13]. However, Micro-ECC was implemented on Virtex-II
platform which is no longer a recommended design platform by Xilinx [14].
Moreover, unlike [11–13], Micro-ECC architecture does not support generalized
ECC scalar multiplication on any prime field. Nevertheless, for fixed P-256 and
P-224 curve, the performance of Micro-ECC outperforms other by big mar-
gin. Lightweight implementation of IPsec protocols comprising implementation
of lightweight block cipher PRESENT, lightweight hash function PHOTON and
ECC crypto-processor (P-160 and P-256) was presented in [15]. The ECC imple-
mentation requires 670 logic slices on Spartan-6 platform for NIST P-256 curve.
Consequently, a lightweight architecture supporting both RSA and ECC along
with some side channel countermeasure was proposed in [16]. The slice con-
sumption of the proposed design is 1914 logic slices on Virtex-5 platform which
is quite low considering dual support of RSA and ECC, provided by the design.
As an alternative of standard NIST specified curves, many researchers have
recommended use of Edward curve and hyper elliptic curve (HECC). Efficient
lightweight implementation of ECC scalar multiplication on such curves can be
found in [17,18].

ECC on Your Fingertips 163

In this paper, we want to propose an alternative single instruction approach
for designing lightweight ECC scalar multiplier which has not been adopted
in the previous works. It is well known that using a single instruction like SBN
(subtract and branch if negative), SUBLEQ (subtract and branch if the answer is
negative or equal to zero), we can construct a Turing complete computer proces-
sor. However, though single instruction processor can execute any arithmetical
or logical operation, the execution time of some operations become so large that
it can not be used in practical scenarios. Hence, a stand alone URISC processor
can not be used to design computationally intensive ECC applications. How-
ever, in this paper we will show that using the dedicated hard-IPs of FPGA,
and with some simple modification of a URISC processor, it is possible to design
an immensely lightweight and yet practical ECC architecture.

This architecture is extremely lightweight and to our best of knowledge this
is the first implementation of ECC scalar multiplication which requires less than
100 slices on Virtex-5 and Spartan-6 platform. This significant reduction in slice
consumption has been achieved by the lightweight architecture of single instruc-
tion processor along with intensive usage of hard-IPs of the modern FPGAs. ECC
scalar multiplication execution requires to compute and store multiple tempo-
rary variables along with the inputs and outputs. This contributes to significant
number of register usage and hence increases the slice consumption. In this
paper, we will show an alternative design approach where we intensively use the
block RAMs and reduce the slice consumption significantly. Further reduction
is obtained by replacing the LUT logics with high speed DSP blocks whenever
possible. The strategy of using block RAMs to reduce the slice consumption has
already been applied for lightweight block ciphers like PRESENT [19], where the
authors have shown that block RAM based block cipher design can be extremely
lightweight resulting in more slices left for other applications.

Thus the contribution of the present paper can be listed as below:

– We propose a single instruction ECC crypto-processor for NIST P-256 curve,
and analyze various challenges along with their solutions that a designer will
face while applying single instruction approach in the context of lightweight
implementation of ECC designs.

– We show that single instruction based ECC crypto-processor, coupled with
intensive usage of block RAMs and DSP blocks, can yield extremely light-
weight design for ECC scalar multiplication execution. The proposed proces-
sor requires less than 100 slices on both Virtex-5 and Spartan-6 family and
involves thorough usage of FPGA hard-IPs.

The rest of the paper is structured as below: Sect. 2 gives a very brief
introduction of ECC and single instruction processor. Section 3 gives a detailed
description of single instruction processor along with the modifications required
for efficient ECC scalar multiplication. Consequently, Sect. 4 focuses on the archi-
tecture of the proposed ECC crypto-processor. Next, in Sect. 6, we discuss the
timing and area performance of our design followed by conclusion in Sect. 7.

164 D.B. Roy et al.

2 Preliminaries

In this section, we will give a brief summary of ECC and single instruction
processors.

2.1 Elliptic Curve Cryptography

As we have previously mentioned, elliptic curve cryptography (ECC) is a pub-
lic key cryptography based on elliptic curves and finite field. Security of ECC
depends upon the mathematical intractability of discrete logarithm of a point
in elliptic curve with respect to a known base point.

ECC in finite field GF (p) is defined by the following equation

y2 = x3 + ax + b; a, b ∈ GF (p), b �= 0. (1)

Scalar multiplication is the most important operation in ECC for performing
key agreement or digital signature schemes. Given a point P on an elliptic curve
and a scalar k, scalar multiplication is computed by adding the point P , k times.
The basic algorithm used for scalar multiplication is Double-and-Add algorithm,
defined in Algorithm 1 in AppendixA, which shows that scalar multiplication
is executed by a repeated sequence of point doubling and point additions. It is
advantageous to use standard projective coordinates [20] for ECC scalar multipli-
cation as it requires less number of field inversion operations compared to affine
coordinate system. In this paper, we have used standard projective coordinates
during implementation of ECC scalar multiplication.

Now, each point addition and point doubling operation involves multiple
field multiplication operation, making it most critical operation for efficient
scalar multiplication execution. NIST specified curves are efficient for hardware
implementation as modular reduction operation in those curves are simple as
it involves a combination of few addition and subtraction. The fast modular
reduction algorithm for NIST P-256 is shown in AppendixA.

In our proposed design, we have concentrated on the NIST P-256 curve.
Nevertheless, our approach can be extended to other NIST certified curves also.

2.2 Single Instruction Processor

The concept of single instruction computer or one instruction set computer
(OISC) was first proposed in [21]. It has been shown in [22] that using just
a single instruction it is possible to create a Turing complete machine. The idea
of applying URISC on cryptographic applications was proposed in [23]. In the
similar direction, application of one instruction set computer on encrypted data
computation was analyzed in [24], but in that paper the authors have investi-
gated OISC in the context of homomorphic encryption and have not considered
elliptic curves, which is the precise objective of the present paper.

ECC on Your Fingertips 165

A standard single instruction processor can be designed by instruction like

1. ADDLEQ (Add the operands and branch if the answer is less than or equal
to zero)

2. SUBLEQ (Subtract the operands and branch if the answer is less than or
equal to zero)

3. SBN (Subtract the operands and branch if the answer is less than zero)
4. RSSB (Reverse subtract and skip if borrow)
5. SBNZ (Subtract the operands and branch if the answer is non-zero)

The main advantage of OISC is that we don’t need any instruction decoding
mechanism, which makes the processor architecture exceptionally simple and
lightweight. The instruction format of a standard OISC is shown in Fig. 1.

Jump Address1st Operand Address 2nd Operand Address

Fig. 1. Instruction format of OISC

For the present work, we have chosen SBN as the single instruction. However,
the proposed design strategy can be tweaked to adopt any of the above described
instructions. The operation of SBN instruction is described in Table 1 (code 1.1):

Table 1. SBN and addition using SBN

Code 1.1 SBN: Subtract and Branch Code 1.2 Addition using SBN
if negative

SBN A,B,C
D.Mem[A]=D.Mem[A]-D.Mem[B]
if(D.Mem[A]<0)//D.Mem=Data Memory
jump to C
else
jump to next instruction

ADD C,A,B //D.Mem[C]=D.Mem[A]+D.Mem[B]
1. SBN X,X,2 // D.Mem[X]=0
2. SBN X,A,3 // D.Mem[X]=-D.Mem[A]
3. SBN X,B,4 // D.Mem[X]=-D.Mem[A]-D.Mem[B]
4. SBN C,C,5 // D.Mem[C]=0
5. SBN C,X,6 // D.Mem[C]=D.Mem[A]+D.mem[B]

Using this instruction, we can execute any mathematical, logical, flow-
control, memory control or load-store type of instruction. For example, in Table 1
(code 1.2), we will show how to perform addition of two operands using SBN
instruction.

In this section we have given a brief idea about elliptic curves and OISC. In
the next section, we will go into more details of OISC based on SBN instruction
and will analyze it from the point of view of elliptic curve applications.

3 SBN-OISC and Elliptic Curve Scalar Multiplication

In the previous subsection, we have given a brief idea about the ECC and OISC,
based on SBN instruction (from hereafter we will refer this as SBN-OISC).

166 D.B. Roy et al.

In this section we will focus more on SBN-OISC in the context of ECC implemen-
tation. We will identify the critical challenges that the designer will face while
implementing ECC using SBN-OISC and will provide the solutions to tackle
those challenges. We will first describe a stand-alone SBN-OISC processor in
the next subsection

3.1 Stand-Alone SBN-OISC Processor

A stand-alone SBN-OISC processor is shown in Fig. 2. The main components of
a SBN processor are characterized below:

– Instruction Memory: Instruction memory stores the instructions to be exe-
cuted and can be implemented on FPGA using block RAMs, configured as
single port ROM. In the Fig. 2, the instruction memory can store up to 211

number of instructions and each instruction is 21 bits wide. The format of the
instruction is similar to Fig. 1, where address of both the operands are 5 bits
wide and the length of the jump address is 11 bits.

– Data Memory: Data memory stores the final result of any computation,
along with the input and all the temporary results, required during the com-
putation. This has been implemented using block RAM, configured as true
dual port RAM. The data memory has space of 32 entries, each of which are
260 bits wide. While implementing scalar multiplication in NIST P-256, the
partially modular reduced output can be of size 259 bits which can be repre-
sented by 260 bits signed representation. Hence we have chosen the data path
to be 260 bits wide.

– ALU: Arithmetical logical unit (ALU) of SBN-OISC contains a subtracter,
which computes difference between the two inputs. If the result is negative,
program counter gets updated by the jump address, specified in the instruc-
tion. Otherwise, the program counter gets updated by the immediate next
instruction.

The above described architecture is simple and extremely lightweight, requir-
ing 66 logic slices on a Virtex-5 platform. But, as we will show in the next sub-
section, further optimization of ECC operation can be achieved by introducing
different variants of SBN instruction. In the next subsection, we will mainly
concentrate on different variants of SBN instructions and will discuss how these
different versions of SBN can accelerate ECC implementation.

3.2 Instruction Level Optimizations

Generally, though an OISC processor executes only a single instruction, it is
possible to realize different versions of that single instruction to accelerate the
desired operation. This approach helps us to reduce the size of instruction mem-
ory and consequently, results in faster execution of the aimed design. This is
extremely helpful for computationally intensive ECC applications, as illustrated
in the following discussion.

ECC on Your Fingertips 167

D

T
A

A

M
E
M
O
R

Ins

Memory

Y

Program Counter

 Sub−
tractorAddress

Instruction

en_ins

addr. port A

addr. port B

dout port A

dout port B

Control Unit

we_a

en_a

clk reset
clk reset

clk

reset

resetclk

we_a=write enable for port A
en_a=read enable for port A
en_b= read enable for port B

en_b

+1

5

5
1

260

260

11

260

11

21

Fig. 2. Architecture of SBN-OISC

Switching Off Memory Write-Back. When we consider traditional SBN
instruction (SBN A,B,C), the memory location A always get updated by the
result D.Mem[A]−D.Mem[B] (D.Mem is the data memory). But we can reduce
the required number of instruction count considerably, if we can switch off this
memory write-back operation in some cases.

Let us consider a prime field addition operation. We assume that we need to
add two operands stored at memory location A and B and the modulus of the
field is stored at memory location P . In Table 2 (code 1.3) shows the realization
of this operation using SBN. In this case, we can see that to implement prime
field addition we will require 11 SBN instructions. Now, if each SBN instruction
execution takes n clock cycles, total clock cycles requirement for field operation
will be 11n clock cycles.

Now, let us consider the scenario shown in Table 2 (code 1.4), where we
consider two variations of SBN instruction: SBNnw and SBNw. SBNw A,B,C
instruction is similar to normal SBN instruction, where memory location A get
updated by the value D.Mem[A] = D.Mem[A] − D.Mem[B]. But in case of
SBNnw A,B,C, memory location A does not get updated and continue to store
the previous value. If we use a combination of SBNw and SBNnw to implement
prime field addition, we will need only 7 instruction as shown in Table 2 (code
1.4). Thus, we have a saving of 4 instructions if we use the strategy depicted in
Table 2 (code 1.4). Similar saving can be obtained for field subtraction operation
also. Now, in the case of ECC scalar multiplication, where for each key bit
we need to do point doubling and if the key bit is 1, we need to do point
addition, this saving translates into significant speed up. Each point doubling

168 D.B. Roy et al.

operation involves 11 field addition and each point addition operation requires
7 field addition. Considering a random distribution of key value for NIST P-
256 curve, containing 128 bits of zero and 128 bits of one, we can save around
256 × 11 × 4 + 128 × 7 × 4 = 14848 number of instructions, which is quite large.

Table 2. Field addition using different SBN instructions

Code 1.3 Field Addition using Code 1.4 Field Addition using
Traditional SBN our Modification

ADDp C,A,B
//D.Mem[C]=D.Mem[A]+D.Mem[B] mod D.Mem[P]
1. SBN X,X,2 // D.Mem[X]=0
2. SBN X,A,3 // D.Mem[X]=-D.Mem[A]
3. SBN X,B,4 // D.Mem[X]=-D.Mem[A]-D.Mem[B]
4. SBN C,C,5 // D.Mem[C]= 0
5. SBN C,X,6 // D.Mem[C]=D.Mem[A]+D.Mem[B]
6. SBN R,R,7 // D.Mem[R]=0
7. SBN R,X,8 // D.Mem[R]=D.Mem[A]+D.Mem[B]
8. SBN R,P,12 // D.Mem[R]=D.Mem[R]-D.Mem[P],

// on negative jump to ins. 12
9. SBN X,X,10 // D.Mem[X]=0
10. SBN X,R,11 // D.Mem[X]= -D.Mem[R]
11. SBN C,X,12 // D.Mem[C]= D.Mem[R]
12. SBN ... // Next Operation Code

ADDp C,A,B
//D.Mem[C]=D.Mem[A]+D.Mem[B]

mod D.Mem[P]
1. SBNw X,X,2 // D.Mem[X]=0
2. SBNw X,A,3
// D.Mem[X]=-D.Mem[A]
3. SBNw X,B,4
// D.Mem[X]=-D.Mem[A]-D.Mem[B]
4. SBNw C,C,5 // D.Mem[C]= 0
5. SBNw C,X,6
// D.Mem[C]=D.Mem[A]+D.Mem[B]
6. SBNnw C,P,8
// Check if C<P,if yes jump
//to ins. 8
7. SBNw C,P,8
// D.Mem[C]=D.Mem[C]-D.Mem[P]
8. SBN ...
// Next Operation Code

Right Shift on SBN Processor. Right shift is an important operation for
elliptic curve scalar multiplication execution as it is required during the field
inversion operation. Right shift operation can be executed through SBN instruc-
tion by repeated subtraction of the operand. For example, if we wish to right
shift an operand by 1 bit position, we need to subtract the operand by 2 until
the subtraction result become less than 2. Now as we are concentrating on NIST
P-256 curve, the operands are typically 256 bits long, making the sequence of
repeated subtraction operation extremely time consuming. On the other hand,
shifter design on the FPGA has zero LUT overhead if the number of bits to be
shifted are fixed. Hence, it is better if we implement right shift operation using
a dedicated right shifter module instead of using SBN.

To facilitate this in our architecture, we have introduced another flag (SBNrs

and SBNrs) in our instruction format. When this flag is set, the dedicated right
shifter module reads the operand and shift it right by one bit position.

Shifting Key Register. As we have stated in Algorithm 1, the elliptic curve
scalar multiplication operation involves point addition and point doubling oper-
ation. Point doubling happens for every key bit, but point addition happens only
when the key bit value is one. Hence we need to scan the key value bit by bit
to execute scalar multiplication operation. On a standard processor this can be

ECC on Your Fingertips 169

implemented using shift and logical AND operation. However, executing logi-
cal operations using only SBN instruction is again time consuming and hence
practically infeasible.

To solve this challenge, we have used a dedicated key register, separate from
the data memory shown in Fig. 2. Also we have introduced another flag in our
instruction format (SBNks and SBNks), which when enabled will left shift the
key register by one bit. The shifted out bit from the key register will decide
whether point doubling or point addition will occur.

Multiplication Using SBN. Field multiplication using SBN is carried out
by repeated addition. For example to multiply operand A with Operand B we
need to add operand A, B times. Now we have already shown how to implement
field addition using SBN in Table 2. To complete the multiplication operation,
we need to run that code, B times using a loop. Now, in the worst case scenario,
the operands value in NIST P-256 curve are in the range of 2256, which makes
repeated addition implementation impractical as the loop need to run 2256 times.
Hence, we can not implement field multiplication using only SBN for ECC scalar
multiplication.

To solve this problem, we have designed a lightweight multiplier using DSP
blocks, which acts as an external multiplier core and execute the field multiplica-
tion operation. However, to reset this multiplier core and to provide operand data
to the multiplier we need another variant of SBN instruction, which we refer as
SBNmul and SBNmul. The SBNmul instruction resets the multiplier, whereas
SBNmul initiates the multiplication operation. The detailed description of this
external multiplier core along with its interfacing with the SBN-OISC processor
is provided in the next section.

In this section, we have discussed about different variations of SBN instruc-
tion, that is required for optimized ECC implementation. The list of these vari-
ants can be found in Table 3, where we have combined the discussed SBN instruc-
tion variations. It should be noted that when we reset the multiplier we don’t
need any memory write-back, as ALU output does not matter in that situation.
Similarly when we are shifting the key register or doing the right shift operation,
no memory write-back is needed.

Table 3. Different variant of SBN instruction

Instruction Memory write-back Multiplier reset Key-shift Right-shift

SBNwmulksrs � x x x

SBNnwmulksrs x x x x

SBNnwmulksrs x x � x

SBNwmulksrs � x x �
SBNnwmulksrs x � x x

170 D.B. Roy et al.

To adopt these variations of SBN instructions in our architecture we also need
to modify the instruction format. The modified instruction format is shown in
Fig. 3. In the next section, we will discuss the modified SBN architecture which
can support these instruction variants, along with field multiplier architecture.
We would like to stress that though we are introducing different variants of SBN
instruction, we are still using same ALU for each of this variant. Hence these
variants are part of the same SBN instruction, with different flag values as shown
in Table 3.

w/nw mul/mul ks/ks rs/rs 1st Operand Address 2nd Operand Address Jump Address

5 51 1 1 1 11

23 22 21 20 15 1024

Fig. 3. Modified instruction format of SBN-OISC

4 Lightweight Field Multiplier for SBN-OISC

As we have stated in the previous sections, we need to provide a dedicated light
weight multiplier core to the SBN-OISC processor for efficient execution of the
ECC operations. In this section we will focus on the architecture of this dedicated
field multiplier and will describe the design strategies behind the proposed filed
multiplier methodology.

The architecture of the field multiplier is shown in Fig. 4. As we can see, the
architecture requires two DSP blocks, one for integer multiplication and another
one for modular reduction operation. DSP blocks of Virtex-5 FPGA can sup-
port 25× 18 signed multiplication. It can also provide 48 bit adder/accumulator
support. For our implementation, we have used DSP block as 16 × 16 unsigned
multiplier, configured in multiply and accumulate mode. Moreover, during addi-
tion operation, DSP block is configured as 32 bit adder.

We will first focus on the integer multiplier and will follow it with a discussion
on the modular reduction operation.

4.1 Integer Multiplication

The integer multiplier receives two 256 bits long operands as input. The operands
are divided into 16 bit words and are passed to the first DSP block through two
multiplexers. The DSP block is configured in multiply and accumulate mode and
support two different operations. In the first operation, DSP block computes
A ∗B +P where A and B are two multiplexer output and P is the accumulator
output. This operation computes the summation of the partial products which
are aligned with each other. Let us illustrate this with a small example in Eq. 2.

Let us consider a 32 bit multiplication of two operands R(= r1216 + r0)
and S(= s1216 + s0), divided into 16 bit words. In this scenario the addition of

ECC on Your Fingertips 171

....

....

a[15:0]

a[255:240]

b[15:0]

b[255:240]

sel_b

DSP BLOCK

Acc. M
E
M
O
R
Y

addr_a

addr_b

we

mul_sel

16 bit right shift

32 bit right shift

DSP BLOCK

Acc.

a

rs

16

16

16

16

16

16

32

32

16 16

48 16

48

output

mod_out
right_shift_output

result_memory

sel_a

mul_selb_les a_les we

48

add/sub mod_sel

addr_b

addr_a
Multiplier Control Unit

clk

Fig. 4. Architecture of Lightweight Field Multiplier

partial products r1s0 and r0s1 are carried out by the operation A ∗ B + P as
these partial products are aligned to each other. But for the partial products
which are shifted, DSP blocks operate using the second instruction A ∗ B + C,
where C = P >> 16. The result is stored in memory of dimension 16×32 which
is implemented using a block RAM configured as true dual port RAM.

R × S =
1∑

j=0

rj2j∗16 ×
1∑

i=0

si2i∗16 = r0s0 + (r1s0 + r0s1)216 + r1s1232 (2)

The integer multiplication requires 256 iteration of the DSP block, along with
three clock cycles for updating the data memory. Hence the total clock cycle
count for integer multiplication is 259.

4.2 Modular Reduction

Once the memory is loaded with the integer multiplication result, modular
reduction operation is initiated. For NIST curves, modular reduction operation
requires a combination of addition and subtraction operation as shown in Algo-
rithm2 in AppendixA. Now in Algorithm 2, the modular reduction operation
needs to add operands T, S1, S2, S3.S4 and subtract D1.D2,D3,D4 from them.
We have separated the operands in 32 bit words and have used a DSP adder
to execute the addition/subtraction operations. The memory produces 32 bits
of output in a single clock cycle, which are added or subtracted depending on

172 D.B. Roy et al.

the control signal add/sub. Like the previous DSP blocks, this one also supports
two operation: P ±C and C +CONCAT , where CONCAT = P >> 32 and P
is the accumulator output. The first operation does the addition or subtraction
of a 32 bit operand with the accumulator result, and the second operation is
required to add the carry bits generated from the previous additions.

The addition and subtraction sequence of the operands are decided by the
modular reduction algorithm for NIST P-256 curve, shown in AppendixA. More-
over, the produced result is not fully reduced but is within the range [−4p, 5p] [3],
where p is the modulus of the curve. The total clock cycles required for this par-
tial modular reduction operation is 68, making the total clock cycle requirement
for field multiplication 327.

As we have shown in the Fig. 4, our architecture is also coupled with a ded-
icated right shifter module. Now, when the rs flag is set high, the design will
produce the right shifter output of the input operand a. Otherwise, it will pro-
duce the output of the field multiplier.

D

T
A

A

M
E
M
O
R
Y

Program Counter

 Sub−
tractor

dout port A

we_a

clk reset

resetclk

en_b

+1

5
1

clk reset

Instruc
tion

Memory

addr_a

mul_add

web

addr_b en_a

addr_0

instruction

shift by 1
addr_1

ks

key register

Control Unit

Address

we_a=write enable for port A
en_a=read enable for port A
en_b= read enable for port B
we_b=write enable for port B

ks

5

5

5

5

256

260

dinA

web

 Multiplier
{mul,rs}

260

260

dout port BdinB

2

260

11

11

clk

reset

Fig. 5. ECC SBN-OISC processor architecture

5 Complete ECC SBN-OISC Processor

In this section, we will present the detailed description of our proposed ECC
SBN-OISC processor. The complete architecture of the processor is shown in
Fig. 5. The architecture and the working of the proposed processor is nearly
similar to the stand alone SBN processor shown in Fig. 2 with some few modifi-
cations which are described below.

The ECC SBN-OISC processor is coupled with the multiplier core described
in the previous section. Multiplier core is initiated by the mul flag of the instruc-
tion. As long as the mul flag is set to one, the multiplier stays in its initial stage.
Once it is set low, the multiplier starts its operation and produces the partially

ECC on Your Fingertips 173

reduced output along with signal web which indicates the completion of multipli-
cation operation. In the stand alone SBN (Fig. 2), the data memory is updated
only through port A. But in our case, we are also using the unused port B for
writing the multiplier output into the memory. It must be noted that when the
rs flag is set high, the multiplier module produces right shifted output of input,
available through port A.

As we have mentioned earlier, we introduced a flag ks in our instruction
format for shifting the key register. Key is stored in a different register which
goes though a single bit left shift when ks flag is set high. If the MSB of the
key bit is one, we select the address of the memory location containing value
1 (addr 1) and pass it to the data memory. Otherwise if the MSB bit is zero,
we select the memory location containing value 0 (addr 0). Once this is done
we can easily switch between point doubling and addition operation depending
upon the memory location passed to the data memory.

The ALU of the proposed SBN-OISC processor is a subtracter, implemented
through cascaded DSP blocks. The subtraction operation requires 6 clock cycles
to be completed. Instruction fetch, memory read and memory write-back require
single clock cycle for each operation. Hence total clock cycle required for a single
SBN instruction requires 9 clock cycles.

6 Result and Comparison

In this section we will analyze the performance of the proposed ECC SBN-
OISC processor in terms of timing and area. Table 4 shows the timing and area
performance of the proposed processor. As we can see, the slice count required by
the design for both Virtex-5 and Spartan-6 is very small. This is achieved by in-
depth usage of block-RAMs and DSP blocks. The stand alone SBN processor is
itself very lightweight, and the dedicated multiplier core is designed by judicious
use of DSPs and block RAMs making the slice count extremely small. The
block RAMs are used to implement both data and instruction memory of the
SBN-OISC processor. Moreover all the temporary storages along with control
units are also implemented through block RAMs which increases the block RAM
consumption, but reduces the slice count considerably. A designer can choose a
budget of slices and block RAMs and then can design the ECC crypto-processor
according to that budget. In this paper, we wanted to explore the limit up-to
which we can reduce the slice count by increasing the block RAM usage. The
result in Table 4 shows that saving is significant in terms of slice usage and hence
the objective of the paper is achieved.

Table 5 shows the comparison with the previous results. Among the pre-
vious work, the design proposed in [3] targets high speed architecture and is
not intended for lightweight applications. Apart from that, the proposed ECC
SBN-OISC processor shows comparable performance in terms of area and time
product. But it is unfair to directly compare the proposed design and the previ-
ous designs [10,11] as they were implemented on Virtex-II pro which is extremely
inefficient in comparison with Virtex-5 device family. However as FPGA devices

174 D.B. Roy et al.

Table 4. Area and timing performance of the proposed ECC SBN-OISC processor

Platform Freq. Slices LUTs Flip-Flops DSP DSP for Block-RAM Time

(MHz) for ALU Multiplier (ms)

Virtex-5 171.5 81 212 35 6 2 22 11.1

Spartan-6 156.25 72 193 35 6 2 24 12.2

Table 5. Comparison of ECC SBN-OISC processor with existing designs

Reference Slices MULTs BRAMs Freq (MHz) Latency (ms) FPGA

Micro-ECC P-256 16 bit [10] 773 1 3 210 10.02 Virtex-II Pro

Micro-ECC P-256 32 bit [10] 1158 4 3 210 4.52 Virtex-II Pro

[11] 16 bit any prime curve 1832 2 9 108.20 29.83 Virtex-II Pro

[11] 32 bit any prime curve 2085 7 9 68.17 15.76 Virtex-II Pro

[3] P-256 1715 32 (DSP) 11 490 .62 Virtex-4

[15] P-256 221 1 3 Not shown Not shown Spartan-6

Present work, P-256 81 8(DSP) 22 171.5 11.1 Virtex-5

Present work, P-256 72 8(DSP) 24 156.25 12.2 Spartan-6

has evolved significantly in the last decade, there is a need to update design
strategies which will be efficient on these modern FPGAs. Additionally, these old
FPGA families are no longer recommended for new designs by Xilinx. Motivated
by these reasons, we have chosen Virtex-5 and Spartan-6 as our implementation
platform, as these two FPGA family though not much new, are equipped with
most of the modern hard-IPs, present in the FPGAs. The proposed processor
is also much faster when compared with lightweight software libraries for ECC
like TinyECC [25]. The developed architecture is the first implementation which
has reduced the slice requirement of an ECC processor to be less than 100 on
Virtex-5 and Spartan-6 device family. The results shown here are obtained after
post place and route analysis on Xilinx ISE.

7 Conclusion

In this paper we have merged two design strategies to create an extremely light-
weight ECC crypto-processor for scalar multiplication in NIST P-256 curve.
The first strategy was to use a single instruction processor (ECC SBN-OISC
processor) to create lightweight framework for ECC scalar multiplication. Then
we have equipped this processor with dedicated field multiplier along with some
simple modification of the processor architecture and instruction format to make
the scalar multiplication operation practical time feasible. The second strategy
is to use the dedicated hard-IPs of the FPGA to reduce the slice consumption
further. We have shown that by thorough usage of DSP blocks and block RAMs,
the slice requirement decreases significantly. For Virtex-5 and Spartan-6, we
have been able to achieve less than 100 slice consumption. To the best of our
knowledge, this is the first implementation which has been able to achieve this
feat.

ECC on Your Fingertips 175

A Appendix 1

Here we will show two algorithm. The first algorithm is for ECC scalar multi-
plication using double and add methodology, shown in Algorithm1.

Algorithm 1. Double-and-Add Algorithm
Data: Point P and scalar k = km−1, km−2, km−3...k2, k1, k0, where km−1 = 1
Result: Q = kP

1 Q = P
2 for i = m − 2 to 0 do
3 Q = 2Q (Point Doubling)
4 if ki=1 then
5 Q = Q + P (Point Addition)

Next, we will present NIST specified fast algorithm for modular reduction in
NIST P-256 curve, shown in Algorithm 2.

Algorithm 2. Fast Modular Reduction Algorithm for NIST P-256 Curve
Data: 512 bit product C represented as C = C15||C14|| . . . ||C0, where each Ci is

a 32 bit integer, i ∈ {0, 15}
Result: P = C mod P-256

1 T = (C7||C6||C5||C4||C3||C2||C1||C0)
2 S1 = (C15||C14||C13||C12||C11||0||0||0)
3 S2 = (0||C15||C14||C13||C12||0||0||0)
4 S3 = (C15||C14||0||0||0||C10||C9||C8)
5 S4 = (C8||C13||C15||C14||C13||C11||C10||C9)
6 D1 = (C10||C8||0||0||0||C13||C12||C11)
7 D2 = (C11||C9||0||0||C15||C14||C13||C12)
8 D3 = (C12||0||C10||C9||C8||C15||C14||C13)
9 D4 = (C13||0||C11||C10||C9||0||C15||C14)

10 P = T + 2S1 + 2S2 + S3 + S4 − D1 − D2 − D3 − D4 mod P-256

References

1. Daly, A., Marnane, W., Kerins, T., Popovici, E.: An FPGA implementation of a
GF(p) ALU for encryption processors. Microprocess. Microsyst. 28(56), 253–260
(2004). Special Issue on FPGAs: Applications and Designs

2. Batina, L., Mentens, N., Sakiyama, K., Preneel, B., Verbauwhede, I.: Low-cost
elliptic curve cryptography for wireless sensor networks. In: Buttyán, L., Gligor,
V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 6–17. Springer,
Heidelberg (2006)

176 D.B. Roy et al.

3. Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

4. Satoh, A., Takano, K.: A scalable dual-field elliptic curve cryptographic processor.
IEEE Trans. Comput. 52, 449–460 (2003)

5. Orlando, G., Paar, C.: A scalable GF (p) elliptic curve processor architecture for
programmable hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 356–371. Springer, Heidelberg (2001)

6. Alrimeih, H., Rakhmatov, D.: Pipelined modular multiplier supporting multiple
standard prime fields. In: 2014 IEEE 25th International Conference on Application-
Specific Systems, Architectures and Processors (ASAP), pp. 48–56, June 2014

7. Roy, D.B., Mukhopadhyay, D., Izumi, M., Takahashi, J., Multiplication, T.B.: An
efficient strategy to optimize DSP multiplier for accelerating prime field ECC for
NIST curves. In: The 51st Annual Design Automation Conference, DAC 2014,
San Francisco, CA, USA, 1–5 June 2014, pp. 177:1–177:6 (2014)

8. Kim, C.-J., Yun, S.-Y., Park, S.-C.: A lightweight ECC algorithm for mobile RFID
service. In: Proceedings of the 5th International Conference on Ubiquitous Infor-
mation Technologies and Applications (CUTE 2010), pp. 1–6, December 2010

9. He, D., Kumar, N., Chilamkurti, N., Lee, J.-H.: Lightweight ECC based RFID
authentication integrated with an ID verifier transfer protocol. J. Med. Syst.
38(10), 116 (2014)

10. Varchola, M., Güneysu, T., Mischke, O.: MicroECC: a lightweight reconfigurable
elliptic curve crypto-processor. In: International Conference on Reconfigurable
Computing and FPGAs, ReConFig 2011, Cancun, Mexico, November 30–December
2, 2011, pp. 204–210 (2011)

11. Vliegen, J., Mentens, N,. Genoe, J., Braeken, A., Kubera, S., Touhafi, A., Ver-
bauwhede, I:. A compact FPGA-based architecture for elliptic curve cryptography
over prime fields. In: 21st IEEE International Conference on Application-Specific
Systems Architectures and Processors, ASAP 2010, Rennes, France, 7–9 July 2010,
pp. 313–316 (2010)

12. Tawalbeh, L.A., Mohammad, A., Gutub, A.A.-A.: Efficient FPGA implementa-
tion of a programmable architecture for GF(p) elliptic curve crypto computations.
Signal Process. Syst. 59(3), 233–244 (2010)

13. Ghosh, S., Alam, M., Chowdhury, D.R., Gupta, I.S.: Parallel crypto-devices for
GF(P) elliptic curve multiplication resistant against side channel attacks. Comput.
Electr. Eng. 35(2), 329–338 (2009)

14. Xilinx Inc.: Virtex-II and Virtex-II Pro X FPGA User Guide, 14 February 2011
15. Driessen, B., Güneysu, T., Kavun, E.B., Mischke, O., Paar, C., Pöppelmann, T.:

IPSecco: a lightweight and reconfigurable IPSec core. In: International Confer-
ence on Reconfigurable Computing and FPGAs, ReConFig 2012, Cancun, Mexico,
5–7 December 2012, pp. 1–7 (2012)

16. Pöpper, C., Mischke, O., Güneysu, T.: MicroACP - a fast and secure recon-
figurable asymmetric crypto-processor. In: Goehringer, D., Santambrogio, M.D.,
Cardoso, J.M.P., Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405, pp. 240–247.
Springer, Heidelberg (2014)

17. Himmighofen, A., Jungk, B., Reith, S.: On a FPGA-based method for authenti-
cation using edwards curves. In: 8th International Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC), Darmstadt, Germany,
10–12 July 2013, pp. 1–7 (2013)

ECC on Your Fingertips 177

18. Fan, J., Batina, L., Verbauwhede, I.: Light-weight Implementation options for
curve-based cryptography: HECC is also ready for RFID. In: ICITST, pp. 1–6.
IEEE (2009)

19. Kavun, E.B., Yalcin, T.: RAM-based ultra-lightweight FPGA implementation
of PRESENT. In: International Conference on Reconfigurable Computing and
FPGAs (ReConFig 2011), pp. 280–285, November 2011

20. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2003)

21. Mavaddat, F., Parhamt, B.: URISC: the ultimate reduced instruction set computer.
Int. J. Electr. Eng. Educ. 25, 327–334 (1988)

22. Gilreath, W.F., Laplante, P.A.: Computer Architecture : A Minimalist Perspective.
The Springer International Series in Engineering and Computer Science. Springer,
New York (2003)

23. Naccache, D.: Is theoretical cryptography any good in practice? In: CHES (2010)
24. Tsoutsos, N.G., Maniatakos, M.: Investigating the application of one instruc-

tion set computing for encrypted data computation. In: Gierlichs, B., Guilley, S.,
Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 21–37. Springer,
Heidelberg (2013)

25. Liu, A., Ning, P., Tinyecc,: A configurable library for elliptic curve cryptography
in wireless sensor networks. In: IPSN, pp. 245–256. IEEE Computer Society (2008)

	ECC on Your Fingertips: A Single Instruction Approach for Lightweight ECC Design in GF(p)
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curve Cryptography
	2.2 Single Instruction Processor

	3 SBN-OISC and Elliptic Curve Scalar Multiplication
	3.1 Stand-Alone SBN-OISC Processor
	3.2 Instruction Level Optimizations

	4 Lightweight Field Multiplier for SBN-OISC
	4.1 Integer Multiplication
	4.2 Modular Reduction

	5 Complete ECC SBN-OISC Processor
	6 Result and Comparison
	7 Conclusion
	A Appendix 1
	References

