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Abstract. As one of the core components in any SPN block cipher and
hash function, diffusion layers are mainly introduced by matrices with
maximal branch number. Surprisingly, the research on optimal binary
matrices is rather limited compared with that on MDS matrices. Espe-
cially, not many general constructions for binary matrices are known
that give the best possible branch number and guarantee the efficient
software/hardware implementations as well. In this paper, we propose
a new class of binary matrices constructed by Feistel structure with bit
permutation as round functions. Through investigating bounds on the
branch number our structure can achieve, we construct optimal binary
matrices for a series of parameters with the lowest hardware cost up to
now. Compared to the best known results, our optimal solutions for
size 16 x 16 and 32 x 32 can save about 20 % and 33.3 % gate equiva-
lents respectively. Without loss of hardware efficiency, a list of software-
friendly optimal binary matrices can be constructed by Feistel structure
with cyclic shift as round functions. The characteristics of this class of
matrices are summarized and involutory optimal instances with com-
monly used dimensions are also provided. In the case of 8 X 8, we prove
that optimal matrices from our structure can not be involutory. Finally,
we extend the strategy to Generalized Feistel Structure and present some
typical experimental results.

Keywords: Lightweight cryptography - Diffusion layer - Optimal
binary matrix - Feistel structure - Multiple platforms

1 Introduction

As a central part of Substitution-Permutation Networks, diffusion layers are very
important for the overall security and efficiency of cryptographic schemes. On the
one hand, they play a role in spreading internal dependencies, which contributes
to enhancing the resistance of statistical cryptanalysis. On the other hand, with
the rapid development of lightweight cryptography, designing hardware-efficient
diffusion layers has already been a hot research topic due to the increasing impor-
tance of ubiquitous computing.
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The quality of a diffusion layer is connected to its branch number, whose
cryptographic significance corresponds to the minimal number of active S-boxes
in any two consecutive rounds. Obviously, the larger the branch number is, the
better the diffusion effect will be, and simultaneously the cipher will not be
vulnerable to unexpected attacks. Therefore, most designers chose to focus on
diffusion layers with the best possible branch number to ensure a relatively
strongest security.

From a coding theory perspective, Maximum Distance Separable (MDS)
codes are quite good choices for the construction of diffusion layers since their
branch numbers are maximum (known as the Singleton bound [1]). Not only are
MDS matrices used in many block ciphers [2-4], but they promote generations
of various related design strategies [5-7]. However, a problem with using MDS
matrices is that they usually come at the price of a less efficient implementation.
Due to Galois field multiplications, hardware implementations will often suffer
from an important area requirement, with the result that MDS matrices are not
suitable for the resource-constrained environments, such as RFID systems and
sensor networks. Although this unfavorable situation is greatly improved with
the advent of recursive MDS matrices [8-10], the temporary memory required
(and hence hardware area) for the computation of matrices is still not reduced
to a degree of satisfaction sometimes.

Another attractive type of diffusion layers is derived from Maximum Distance
Binary Linear (MDBL) codes. The corresponding binary matrices are optimal
in the sense that they achieve the largest possible branch number. Though the
diffusion speed of optimal binary matrices can not keep pace with the one of
MDS matrices, it is an overwhelming advantage that they involve no finite field
multiplication, which is more propitious to a low-cost implementation. Typical
examples are block ciphers E2 [11], Camellia [12] and ARIA [13], who get an
excellent hardware efficiency and remarkable software performance on various
platforms as well. It is accordingly our belief that, in many cases, it is easier
to obtain an overall construction through using optimal binary matrix (or in
general a matrix with branch number not meeting the Singleton bound), despite
sacrificing the diffusion speed to a certain extent.

Compared with the study on constructions of MDS matrices, the research
on designs of MDBL matrices is rather limited [14,15]. Early strategy from [16]
(partially) guided the design of diffusion layers in E2 and Camellia, and unified
method presented in [17] was conducive to summarizing the characteristics of
8 x 8 optimal binary matrices. For constructions of large dimensions (e.g. 16 x 16
and 32x 32), designers in [18,19] considered combining small matrices into bigger
ones, where each block matrix corresponds a finite field element. Indeed, in
our opinion, the generalities of most previous constructions (focusing only on
a few dimensions) are very weak, not to mention making them have efficient
implementation. Here, one exception is the proposal of Dehnavi et al. [20], who
recently investigated a special kind of binary linear layers for commonly used
sizes with efficient implementation.
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Feistel structure is one of the most prominently used structures in cryptog-
raphy and accounts for substantial portion of data encrypted today. This was
facilitated by the introduction of DES [21], which indicated the generation of
modern block cipher. Not only is this classical structure used in large quantities
of symmetric-key algorithms, but it inspires plenty of designs of cryptographic
primitives. For example, S-boxes in [22-24] are constructed by 3-round Feistel
structure, and linear layers in E2 and Camellia are implicitly implemented with
4-round Feistel structure.

Our Contributions. In this paper, we propose constructing diffusion layers
over o with maximal branch number and efficient hardware implementation by
use of Feistel structure with bit permutation as round functions. After introduc-
ing necessary notations and concepts in Sect. 2, we investigate the bounds on
the branch number this construction can achieve, which will later help us judge
whether hardware efficiency (hereby focus mainly on the area and latency) of
the resulting matrix is optimal. Meanwhile, taking account of the improvement
of software performance, we restrict the round function to cyclic shift and give
the overall search strategy for “optimal solutions” in Sect. 3.

In order to demonstrate the generality of our construction, we provide typical
optimal solutions for a series of feasible parameters (up to 32) in Sect.4. To
the best of our knowledge, the hardware cost of most proposals is the lowest
compared with previous results. For cryptographic applications, our focus is
further placed on involutory optimal solutions with commonly used dimensions
in Sect. 5, and we prove that it is impossible to obtain an involutory 8 x 8 optimal
diffusion layer from this structure.

Along similar lines, we present diffusion layers constructed by Generalized
Feistel Structure in Sect.6, improving their applicabilities on other platforms
without loss of hardware efficiency. According to figures listed in Sect.7, we
afterwards show that optimal solutions for size 16 x 16 and 32 x 32 can save
about 20 % and 33.3 % gate equivalents respectively, compared to the best known
results. Finally, we conclude the paper in Sect. 8.

2 Preliminaries

In this section, we fix the basic notions and further more introduce several
judgement methods of branch number. Since diffusion layers investigated in the
present paper are linear transformations on the n-dimensional vector space over
Fy, we directly use an n x n binary matrix to represent a linear layer in the
subsequent discussions.

2.1 Branch Number

Assume v = (vq,v9,...,v,)T is a vector such that v; € Fo, 1 < i < n. Then
the Hamming weight of v, denoted by w;(v), is equal to the number of non-zero
elements in v.
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Definition 1. [3] The differential branch number of a diffusion layer D is given
by

Ba(D) = min{wy(v) +wy(D(v))} (1)

Analogously, we can define the linear branch number.

Definition 2. [3] The linear branch number of a diffusion layer D is given by

Bi(D) = minfuw(v) + (DT ()}, 2)

where DT is the transposition of D.

As the differential branch number of an n x n linear transformation is equal
to the minimum distance of its associated [2n,n] linear code, the maximal By of
a binary matrix is known for small dimension according to [25]. A binary matrix
is optimal if it achieves the maximal By and B;. Since each n x n (with the
exception of n = 32) diffusion layer over Fy constructed in this article satisfies
By = B, we omit linear branch number in the sequel.

Definition 3. [14] Two matrices A, B are permutation homomorphic to each
other if there exists a row permutation p and a column permutation vy satisfying

p(1(4)) =~(p(A)) = B. 3)

Proposition 1. [1/] If two matrices A, B are permutation homomorphic to
each other, then A, B are of the same branch number.

2.2 Judgement Methods

There is a one-to-one correspondence between an n X n linear transformation
O(z) = M - x and a linear code Cy with the generator matrix Gy = [I,,xn|M], so
we can use the following property to determine By(M).

Proposition 2. [3] A linear code has minimum distance d if and only if every
d—1 columns of its parity check matriz are linearly independent and there exists
some set of d columns that are linearly dependent.

To deal with an nxn binary matrix with branch number s, it costs approximately
Py (2;‘) Gaussian eliminations according to Proposition 2, while it needs to
exhaust all possible non-zero input vectors based on Definition 1. After analyzing
the characteristics of minimum-weight codewords among Cy, we give Algorithm 2

(cf. Appendix A for more details) as main detection method, reducing the time
complexity to 2 Zli/fj ().
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3 On Properties of Proposed Diffusion Layers

3.1 The General Construction

Throughout this paper, we consider diffusion layers over F5 constructed by Feistel
structure with bit permutation as round functions. Let * = (zp,zg) and y =
(yr,yr) be the n-bit input and output respectively, then a diffusion layer shown
in Fig. 1 can be characterized as

(01 P. 1 P I
M‘(IO)(IO)"'(IO)’ )
where the size of each block matrix is § x 4. In the rest of this paper, we
only extract the sequence of permutation matrices, namely, [Py, Pa, ..., P.] to

represent M for simplicity. According to [21], it holds that
Mﬁlz[P'mPT—la"'aPl]a (5)

which means the inverse matrix could be implemented with the same structure by
simply reversing the order of round functions. This decided advantage guarantees
the diffusion layer and its inverse require equal XOR’s in terms of hardware
implementation. In particular, the encryption and decryption can even use the
exact same circuit in the case of involutory instances, i.e. round transformations
appearing symmetrically (e.g. [Py, P, P1] and [Py, P2, Ps, P1]).

XL Xr

Fig. 1. A diffusion layer over F> constructed with Feistel structure

As hardware efficiency can have very different meanings depending on the
utilization scenario targeted by the designer, we hereby chose to focus on two
classical metrics: silicon area and latency. Clearly, to make the perfect diffusion
layer hardware-optimal under this construction, the number of iterations should
be as small as possible on the premise of maximal branch number. Therefore it
is necessary to investigate the bound on the branch number of resulting diffusion
layer.
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3.2 Upper Bound of the Branch Number

Before elaborating our main theorem, we need to introduce the following novel
observation. Remember that in technical terms, the Fibonacci sequence F(n) is
defined by the recurrence relation F(n+2) = F(n+1) + F(n), with seed values
FO)=1, F(1)=1.

Lemma 1. Assume (0, ) is the input of the structure shown in Fig. 1 such that
wy(a) = 1. Then the Hamming weight of the output of round i, wy(y;), is upper
bounded by the i-th number of the Fibonacci sequence:

wy(y;) < F(i). (6)

0 a P (a) PP(ax)®a

Fig. 2. Propagation of the Hamming weight on the input (0, «)

Proof. Let us illustrate it by mathematical induction. According to the output
of the first three rounds (see Fig. 2), we know that wy(y1) = F(1), wp(y2) = F(2)
and wy(y3) < F(3).

Now suppose the induction hypothesis is true for round i, 3 < i < r. Then
we only need to prove wy(y;+1) < F(i + 1). Notice that the transformation of
round 7 + 1 can be represented as

Yir1,L = Pix1(Yi,) ® Yi,r
Yi+1,R = Yi,L

and we always have wy(y;.r) = wp(Pit1(yi,r)), which implies wp(yit1,r) <

wy(Yi,) + wp(Yi,R)-
Likewise, we obtain

wy (Yit1,r) = wo(¥i,r.) < wp(Yi—1,2) + w(Yi—1,R)-
Thus it holds

Yi+1,0) + wp(Yit1,R)
yz‘,L) + wb(yuR) + wb(yifLL) + wb(yifl,R)

o
—~~

and we complete the proof. a

! Alternatively, the chosen starting points are fixed to F'(0) = 0, F(1) = 1, which has
no substantial impact on the global sequence.
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Theorem 1. The branch number of the diffusion layer constructed as in Fig. 1
satisfies

B < 2F(T42'1) r is odd o
d = F(%) +F(%—|—1) r 1S even,

where the superscript is used to emphasize the number of rounds in the proposed
construction.

Proof. Our strategy is similar to the start-from-the-middle technique [26]: start
with a particular state value at the middle round and then propagate forward
and backward to the output and input of the Feistel structure respectively. Note
that middle round means different positions depending on whether the number
of rounds is odd or even.

(b)

Fig. 3. Upper bound of the branch number of proposed diffusion layers

When r is odd, let (0, &) be the input of round (r+1)/2 such that wy(a) = 1.
For r = 1, it is easy to see that wy(yo) + wp(y1) = 2F(1). For r > 3, both the
forward and backward propagations begin with the same initial value? (c, 0) and
contain (r 4+ 1)/2 — 1 rounds (see Fig.3.(a)). According to Lemma 1, we obtain
one input/output pair whose Hamming weight satisfies

anlon) < F (52 ). o) < F (S5,

which implies the branch number of the resulting diffusion layer is at most
2F((r+1)/2).

When r is even, we change the target position to round r/2 4 1, with the
result that each direction consists of r/2 rounds (see Fig. 3.(b)). Likewise it holds

whlyo) +we(yr) S F (5+1) +F (3).

2 Notice that we consider the input of round (r + 1)/2 + 1 as the forward starting
point.
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since the inputs of the backward and forward direction are (a,0) and (0, @)
respectively. Hence we complete the proof. a

Remark 1. For an expected branch number, Theorem 1 gives insights on the
lower bound on the number of rounds our construction should have, efficiently
reducing a lot of unnecessary search works. As an illustration, we need at least
8 iterations in the Feistel structure to get a diffusion layer with By = 12 due to
B < 2F(4) =10

3.3 Search Strategy for Software-Friendly Diffusion Layers

In this section, we will explain how to improve software performances of the pro-
posed diffusion layers without loss of hardware efficiency. Compared with the bit
permutation, cyclic shift is undoubtedly much more attractive as suitable rota-
tion can be implemented as a single instruction on the corresponding processor.
For example, while constructing a 16 x 16 binary matrix with cyclic shift as
round transformations, all operations of each round are based on 32-bit words
on condition that 4-bit S-boxes are used. As a result, instead of bit permutation,
cyclic shift is our first choice and the round function is afterwards restricted to
Pi(z) =z <<<t;, 0 <t; <n/2.

The pseudo-code of our basic search procedure is shown in Algorithm 1. The
function BASICSEARCH (n, r, T, G) returns all n X n binary matrices with
By > T constructed by r-round Feistel structure. Here G denotes the set of
transformation matrices that can be selected as round functions. On the basis of
the above strategy, we initialize it to the set of matrices representing cyclic shift
(which implies |G| = n/2) and begin the first attempt with minimum possible r
according to Theorem 1. If no optimal solution is found (i.e. E = §), choose to
increase r or relax restrictions on some round functions to continue searching,
until suboptimal solutions are returned.

Algorithm 1. Search for optimal diffusion layers over Fo

1: function BASICSEARCH(n, r, T, G)
2: E«—0

3: for all M € {[P1,P>,...,P]|P€G,1<i<r}do
4: if B4(M) > T then

5: E—EU{M}

6: end if

7 end for

8: return E

9:

end function

Remark 2. “Optimal solutions” here refer to binary matrices with maximal By
constructed by the least possible number of cyclic shift operations. For instance,
an 8 x 8 matrix with By = 5 constructed by 4 cyclic shifts is optimal solution
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owing to B((f’) < 4. Moreover, “suboptimal solutions” have different forms since
bigger r results in higher cost in hardware implementation, while enlarged G
(from the set of cyclic shift matrices to the one of permutation matrices) leads
to the loss of advantages in software performance. Consequently, there are various
trade-offs when we search for suboptimal solutions®.

Next, we introduce the following statement to relate certain matrices that
lead to the same branch number.

Theorem 2. For any diffusion layer M = [Py, Ps,..., P.] constructed by r-
round Feistel structure, there always exists a corresponding M' = [I, Py, ..., P,]
such that B4(M') = Ba(M).

Proof. First of all, it is not difficult to see that we can place P; after the XOR
operation in round 1 as shown in Fig. 4.(b), since

yi,. = Pi(zr) ®xr = Pi(z @ Py ' (zR)).

By using similar equivalent transforms, P; can be moved to the end of the
structure (see Fig.4.(c) and (d)), with each round function redefined as P;’ =
P;- Py (iis even) or P, = Pfl - P; (i is odd). Then depending on whether the
number of rounds is even or odd, it holds

_ (PO , (I 0 (10 , (I 0
M(Ol>'M'<OP1_1) OTM(OPI)-M'<OP1—1)7

respectively, which means M and M’ are permutation homomorphic to each
other. Thus their branch numbers are equal according to Proposition 1 and we
complete the proof. O

Note that all matrices constructed by r-round Feistel structure can be clas-
sified according to any P;, i € {1,...r}, although we simply choose P, = I in
Theorem 2. In other words, each diffusion layer constructed with P; = I is a rep-
resentative of an equivalence class, from which one can obtain all diffusion layers
in the same equivalence class through analogous transforms mentioned above.
We will make use of this property to reduce the search space by one round in
the subsequent experiment.

4 Constructing Optimal Diffusion Layers with Feistel
Structure

In this section, we will provide the results on constructing diffusion layers for
various parameters. According to the search strategy, cyclic shift is preferred
choice and for convenience, we abuse the symbol R;, i = 0,...,n/2 — 1, to

3 As we take maximal branch number as primary premise, the branch number of
suboptimal solutions is equal to that of optimal solutions.
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X, R 1(XR) X EiI(XR) Xy Plil(xk)

Y Vi
(@) ()

Fig. 4. Equivalence partitioning of the proposed diffusion layers

represent the matrix which corresponds to the transformation L(z) = = <<< 1,
where the size of x is n/2. As an example, an 8 x 8 matrix M = [Ry, R3, R, Ri]
denotes the diffusion layer constructed by the following round functions:

1000 0001 0010 0100
0100 1000 0001 0010
Pr=1oo10| 2= lotoo| = 1000 ™= 0001
0001 0010 0100 1000

Clearly, Ry is the representation of identity matrix and more Ry’s implies more
efficient software implementation.

4.1 Diffusion Layers for n = 4, 8, 16 and 32

First, we ran Algorithm 1 to search for optimal diffusion layers with commonly
used dimensions in cryptography, that is, n = 2¥, where k = 2,3,4,5. The
total number of optimal solutions and typical instance of M we obtained are
summarized in Table 1, accompanied by the cost in hardware implementation
for each parameter. Notice that the branch number of 32 x 32 binary matrices
we can find is 12, which is consistent with the best known value.

Table 1. Experimental results for optimal diffusion layers with n = 4, 8, 16, and 32

n |Bq Optimal solutions XOR gates
Total number | Example of M
4 2 [Ro, R1, Ro] 6
8 | 5 32 [Ro, R1, Rz, Ro] 16
16| 8 9760 [Ro, R1, R1, Rz, Ra, Ro) 48
32 12" | 6272 [Ro, R1, R1, Ri3, R13, Ro, Rs, Re] | 128
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The time complexity of the exhaustive search for optimal solutions with given
length n is (n/2)", where r is the least possible number of rounds to achieve the
maximal By. Actually it took us less than 20h to find all the best 32 x 32
binary matrices through parallel search, and with the help of Theorem 2, we can
further reduce the search time by a factor of 2%. Additionally, the examples in
Table 1 are perfect in the sense that they are constructed with the most possible
number of Ry’s, cutting down on as many rotation instructions as possible in
software implementation. Yet it is noteworthy that the technique of equivalence
partitioning is not applicable in this case, as matrices in the same equivalence
class are constructed by different sequences of round functions.

Moreover, we need to point out for any n x n diffusion layer constructed
by r-round Feistel structure, the number of XOR gates required for hardware
implementation is nr /2, which enjoys an overwhelming advantage even if we have
not done any other optimization. For instance, although the total number of ones
in any 32 x 32 binary matrix with By = 12 is lower bounded by 11 x 32 = 352,
each of our optimal solutions can be implemented just with 128 XOR’s, which
is the best result up to our knowledge.

4.2 Results for Other Parameters

To illustrate the generality of our proposal, we also search for diffusion layers
with other sizes (n is even and n < 20), despite the fact that they are probably
not often used. As shown in Table 2, we obtain optimal solutions for each given
length, with the exception of n = 12. In other words, no 12 x 12 optimal binary
matrix can be constructed by 6-round Feistel structure with cyclic shift as round
functions. This means we need to consider searching for suboptimal solutions
using the methods described in Sect. 3.3.

Laying particular stress on hardware efficiency, we hereby adopt the second
strategy (i.e. enlarging G for only one round function) and find 120 suboptimal
solutions. One of the best results is

Mi2x12 = [Rs, P1, Ry, Ry, Ry, Ro],
where P; is a permutation matrix. Due to the lack of space, we will give the

concrete form of P; and Misx12 in Appendix B.

Table 2. Experimental results for diffusion layers with other interesting sizes

n | Bq | Optimal solutions XOR gates
Total number | Example of M

6 4 12 [Ro, R1, Ro| 9

10|16 80 [Ro, R1, Rz, Ro, R4] 25

148 42 [Ro, R1, R3, Re, Rs5, R3] | 42

188 36720 [Ro, R1, R1, R2, R2, Ro] | 54
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4.3 Other Information from the Proposed Structure

Below we elaborate how to acquire a prior knowledge of the resulting matrix.
First, it is clear that any matrix constructed by r-round Feistel structure can be

characterized as
A A
(r) _ 1 A2
o= (44, ®)

where each block matrix is an expression that consists of P;, 1 < ¢ < r. For
example, based on

P;P,PL o P3Py PsPo®l)’

we get Ay = P3P, @ I in this case. Let T(A;) be the number of terms in A4; and
through exploring the regularity on changes of T'(4;), we have

Theorem 3. The four block matrices constituting M) as shown in (8) satisfy
T(A)=F(r—1),T(Ay) = F(r —2),T(A3) = F(r), T(A4) = F(r — 1).

This observation is straightforward and we omit the proof here. It seems that
Theorem 3 places major focus only on the expanded form, nevertheless, we will
later see that it contributes to understanding the generic picture of optimal
matrices.

As a matter of fact, each 5 x % block matrix in the resulting matrix My,
is a circulant matrix [27] for the optimal solution. To explain conveniently, we
denote a t x t circulant matrix with ¢ ones in the first row by Ui(t). Then each
optimal solution in the case of n = 4 satisfies*

(2) 77(2)
_ (U7 Uy
Myys = (U1(2) UQ(Q)) )

since the terms in A; are always eliminated pairwise during calculating. Taking
n = 8 as anther illustration, in the light of T(4;) = 3,T(43) = 2,T(A3) =
5,T(A4) = 3 and the fact that each row in an optimal solution has at least 4
ones, we conclude

4 4 4 4
Mans — e N o
U?E4) U?E4) ’ U1(4) U?()4) ’
which is in accord with the experimental results. Specifically, there are only 8

instances with the latter form (among 32 optimal solutions) and one example
will be introduced in Appendix C.

4 The necessary condition implies the number of optimal solutions of My is at most
4 since U2§2> is determined and Ul(z) has only two forms. As can be seen in our search

result, solutions achieve the maximal branch number only if “U1(2) = U1(2>”.
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5 Searching for Involutory Optimal Diffusion Layers

In this section, we consider constructing involutory optimal matrix by Feistel
structure with cyclic shift as round function, which enjoys an attractive advan-
tage as it requires only one procedure to be implemented for the encryption
and decryption. Notice that the search strategy is derived from Algorithm 1 and
most instances come from the optimal solutions. For sizes that are often used in
block ciphers, we list some examples in Table 3. Below are some explications of
our experimental results:

(1) For parameter n = 4, the two optimal solutions we find themselves are
involutory, however, the proportion (= 24/9760) is very low for n = 16.

(2) In the case of n = 32, the largest branch number of the involutory matrices
constructed by 8-round Feistel structure is 11. We do not search further (for
involutory matrices with By = 12) since the results are lightweight enough
to have promising applications.

(3) As for n = 8, we do not obtain even one involutory instance despite of many
attempts on the number of rounds. Before jumping to the full explanation
of this situation, we need the following lemma.

Table 3. Experimental results for involutory diffusion layers with n = 4, 16, and 32

B | Total number | Example of M
4 | 4 2 [R1, Ro, Ri]
16| 8| 24 [Ro, R1, Rz, Ra, R1, Ro]
32|11 | 640 [Ro, R1, Rs, R14, Ri14, Rs, R1, Ro]

Lemma 2. Assume M is an 8 x 8 optimal matriz as shown in (8) where each

A;, 1 <i <4, is a circulant matriz. Then no A; can be “0” or Uf).

Proof. Suppose not, then two cases should be discussed:

(a) Without loss of generality, we let A; = 0, then A3 = Uf) since every column
in M contains at least 4 ones, which implies M is singular and hence is a
contradiction.

(b) Similarly let A; = Ui4). Then it needs A3 = 354) or Az = U1(4) to make M
invertible. Note that in these cases, we have B; < 4 as there exists a vector
v = (1,1,0,...,0)T with wy(v) = 2 such that wy(v) + w,(M - v) = 4. This
contradicts the optimality condition.

Consequently, there is no “0” or Uf) among the four block matrices and we

complete the proof. m]



Constructing Lightweight Optimal Diffusion Primitives 365

In addition, the following statement, deduced from [17], is very useful for our
illustration.

Proposition 3. For any 8 X 8 binary matriz with By = 5, if the rows have only
two different Hamming weights and each contains half number of rows, then it
must belong to one of the following cases:

(1) the rows are of Hamming weight 4 and 5.
(2) the rows are of Hamming weight 5 and 6.

Theorem 4. Any 8 x 8 optimal diffusion layer constructed by r-round Feistel
structure with cyclic shift as round functions can not be involutory.

Proof. First, the conditions in Proposition 3 are always satisfied for every 8 x 8
optimal matrix constructed by the structure as shown in Fig. 1. Furthermore, the
four block matrices are all circulant matrices as explained before and according
to Lemma 2 and Proposition 3, it is easy to see that the form of any resulting

matrix belongs to one of the following eight cases:®
Us Us Uz Us Uy Us Uz Us )
UsUy )’ \UsUs )’ \Us Uy )\ U3 Uy )’
Us Us Us Uy Us U, Us Uy (10)
UyUs )’\U3Us )’ \U U3 )"\ Uy Uz ) °

For the sake of clarity, we simply denote the resulting matrix by

- (AB
= (en)

and now suppose M is involutory. Then bases on M?2 = I and the property that
multiplications here are commutative, we have

A’ BC=1 (11)
(A®@D)B=0 (12)
(A®@D)C =0 (13)
A% = D? (14)

Next, we claim neither A nor D is equal to Us. Otherwise, one is singular and the
other is invertible, since there is only one Uy among each of the eight matrices.
This contradicts (14) and we thereby exclude all cases in (9).

5 Throughout this proof, we omit the superscript in Ui(4) for simplicity.

5 With the view of permutation homomorphic, these forms can be considered as two
types on condition that the (row and column) permutation in Definition 2 is block-
wise.
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For cases in (10), we suppose C' = Uy without loss of generality. Then B is a
nonsingular matrix and we have B~! = Uy, or B~ = Us.

Due to BC # 0, we have A2 # I from (11). Furthermore, as A = U and
A% = (Us @ Uy)(Uy @ Up) = U3, it holds

0010
0001
1000
0100

A% =
Then according to (11), we can easily obtain

B (I AU, B l'=U,

(I A%)(UyeUy) =AU, B !=Us;,
which implies the first and third columns in C' are the same (the remaining
two columns are also the same). Therefore, there always exists a vector v =
(1,0,1,0,...,0)T with w,(v) = 2 such that wy(v) + wy(C - v) = 4. This is a

contradiction and all cases in (10) are thus excluded.

In summary, no involutory 8 x 8 optimal binary matrix can be constructed
by Feistel structure with cyclic shift as round functions and we complete the
proof. a

6 Diffusion Layers Constructed with Generalized Feistel
Structure

As explained in Sect. 3.3, we restrict the round function to cyclic shift with the
purpose of improving software performance. However, an unfavourable situation
we are likely to face is that the length of n/2 words is longer than the word size
of the processor. For example, in the case of 8-bit S-box, the software efficiency
of our 16 x 16 optimal diffusion layer on 32-bit processor is weaken since the
rotation on a 64-bit word becomes complicated.

To make up for the above shortcomings, an instinctive idea is to construct
diffusion layers using r-round Type-II Generalized Feistel Structure (GFS, [29]),
which be characterized as

0007\ /Pyl 00 PIO0O
1000 0 010 0070

Mors= 10700 0 0Py I 0 0PI (15)
0070 I 000 7000

where round functions in round 7, Py;_1 and Py;, are cyclic left shifts. Also, we
use [P1, Pa,..., P, to represent Mgy for simplicity.

Owing to the slow diffusion property of Type-II GFS, one may take it for
granted that the number of rounds will be increased compared with the Feistel
structure on the premise of the same B;. However, that is not the case according
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Table 4. Experimental results for diffusion layers constructed by Type-II GFS

n | Bg | example of My,

. [Ro, Ro, Ro, Ru,
R1, Ry, Ro, R1]

ne [Ro, Ro, Ro, Ro, R1, R1,
Ri1, Ra, Ro, Ro, Ro, Ry

g9 17 | [0 Ro, Ro, Ro, Ra, R, R, Ru,
R1, Ro, Ro, Ro, R1, R3, R, R4]

to our search results listed in Table 4. Actually, the conclusion of Theorem 1 also
holds for Type-II GFS and hence the solutions we find are optimal in terms of
the number of rounds.

Compared to the Feistel structure, the cost of hardware implementation of
each round in Type-II GFS remains unchanged, which means we can almost
perfectly solve the problem introduced at the beginning of this section. Yet, it is
to be noticed that the time complexity of r-round search becomes (n/4)?", far
greater than (n/2)” when n > 8. For example, while searching for 32 x 32 binary
matrix with By = 11 constructed by Type-II GFS, the total number of matrices
to be detected is 248. Despite the help of equivalence partitioning technique, the
search space (i.e. 242) is still so huge that we need highly parallel computations
to obtain all solutions.

7 Comparison with Known Results

In this section, we compare our Feistel-structure-based proposals with previous
known results on hardware implementation. As can be seen in Table 5, solutions
we found for n = 32 can save approximately 33.3 % gate equivalents compared
to the best known result. Furthermore, while considering the constructions with
By = 11, this improvement shots up to a staggering 64.7 %.

For the size n = 16, a noteworthy comparison comes between the diffusion
layer used in ARIA and ours. The area can be reduced by 36.8 % provided that
the original linear layer is replaced by our optimal instances. Moreover, in the
case of n = 8, the hardware cost of the design in [16] is equal to ours. The reason,
which we have mentioned in the introduction, is that the examples given in [16]
can be implicitly implemented by 4-round Feistel structure (while the last swap
is not removed).

Here we omit comparisons on the software performance for two reasons. One
is some of the previous constructions place the major focus on maximizing the
branch number using algebraic methods, ignoring the estimate of implemen-
tation efficiency, and thus there is no need to make comparisons. The other is
diffusion layers in cryptographic algorithms are often implemented together with
S-boxes, which makes the comparisons complicated. Nevertheless, as explained
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Table 5. Comparison of our diffusion layers with the known results

Ba | XOR gates | Involutory | Reference
4 14 |6 Yes This paper
8 |5 |34 Yes [18]

5 |16 No [16]

5 |16 No This paper
168 |95 Yes [18]

8 |76 Yes [13]

8 |64 No [20]

8 |60 Yes [14]

8 |48 Yes This paper
3210 | 286 No [15]

10 [112 Yes This paper

11 | 363 No [19]

11 /128 Yes This paper

12 |1 328 Yes [19]

12 192 No [20]

12 1128 No This paper

in Sects. 3.3 and 6, our proposals still have excellent software performance even
without any optimization.

8 Conclusion

In this paper, we propose a new class of optimal diffusion layers over Fs by use
of Feistel structure with bit permutation as round functions. Through investi-
gating bounds on the branch number our structure can achieve, we construct
optimal binary diffusion layers for a series of parameters (up to 32 x 32) with
excellent software/hardware performances. As far as we know, the hardware cost
of most proposals is the lowest compared to the previous results. Involutory opti-
mal instances for the commonly used dimensions are also presented, with the
exception of 8 x 8. Finally, we investigate optimal diffusion layers constructed
by Type-II GFS and provide some typical solutions. Since the hardware cost of
our results are extremely low, we expect our strategy will be useful for future
construction of lightweight ciphers based on (involutory) binary diffusion com-
ponents.
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A Determination of Branch Number

For a [2n,n,d] linear code Cp, there exists at least one codeword v =
(v1,...,v2,)T such that wy(v) = d. Let

Vieft = (Ula v 7vn)T; Vright = (v71,+1a v av2n)Ta

and then it must hold
wy(Viet) < d/2 or  wp(Veight) < d/2,

which implies the number of input vectors to be computed according to (1) is
at most 24/2.

Specifically, as both Gy = [I|M] and G}y = [M ~!|I] are the generator matrices
of Cy, we can determine By(M) by searching for the minimum value between
wy(x) + wy(M - x) and wy(x) 4+ wy(M ' - x) among at most 2%/2 input vectors
of low Hamming weights.

Algorithm 2. Determining the branch number of a binary matrix
1: function BINARYBRANCHNUMBER(M, dimension)
2: InvM < inverse matrix of M
3 x «— (1,0,...,0)T
4: miniweight «— 2 - dimension
5: while wy(x) < miniweight/2 do
6.
7
8

weight — wp(x) + wp(M - x)
if weight < miniweight then
: miniweight «— weight
9: end if

10: weight — wy(x) + wp(InvM - x)

11: if weight < miniweight then

12: mintweight «— weight

13: end if

14: update x in the increasing order by Hamming weight
15: end while

16: return miniweight

17: end function
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B Mj2x12 Constructed by [R5, Pi, Ry, R1, Ry, Ry|
000101111011
111100110010
101011100011
000001 101000011111
000010 100111010110
P _ 100000 M 1011101011100
= loo01000 12127 1001110101110
010000 011010111001
000100 111110000101
110001110101
010011001111
110111101000
C MSXS Constructed by [Ro, Rz, Rl, Rl]
11011001
11101100
01110110
10110011
Msxs=101001110
00100111
00011011
10001101
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