Skip to main content

Atmospheric Biosignatures

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Life has likely coevolved with the Earth system in time in various ways. Our oxygen-rich atmosphere and the protective ozone layer are mainly the result of photosynthetic activity. Additionally, bacteria emit greenhouse gases such as methane and nitrous oxide into the atmosphere, and vegetation can emit a variety of organic molecules. In an exoplanetary context, it is important to consider whether such gas-phase species – so-called atmospheric biosignatures – could be detected spectroscopically and attributed to extraterrestrial life. Another signature of life on Earth is the so-called redox disequilibrium of its atmosphere. This refers to the presence of simultaneously oxidizing and reducing species (e.g., molecular oxygen and methane). Without life, such species would react and be removed on relatively fast timescales. Since Earth’s atmosphere has changed considerably during its history, we will also consider atmospheric biosignatures in the context of the early Earth. This chapter will present a brief literature review of atmospheric biosignatures. We will discuss the main photochemical responses of such species in the modern and early Earth’s atmosphere and their potential to act as atmospheric biosignatures in an exoplanetary context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Airepetian D et al (2016) Prebiotic chemistry and atmospheric warming of early earth by an active young sun. Nat Geosci 9:452–455

    Article  ADS  Google Scholar 

  • Allen D et al (1992) Variable oxygen airglow on Venus as a probe of atmospheric dynamics. Nature 359:516–519

    Article  ADS  Google Scholar 

  • Atreya SK et al (2007) Methane and related trace species on Mars: origin, loss, implications for life and habitability. PSS 55:358–369

    Article  Google Scholar 

  • Barstow J et al (2016) Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? MNRAS 461:L92–L96

    Article  ADS  Google Scholar 

  • Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapor. J Geophys Res 55:301–327

    Article  ADS  Google Scholar 

  • Berner RA (2001) Modeling atmospheric O2 over Phanerozoic time. Geochem Cosm Act 65:685–694

    Article  ADS  Google Scholar 

  • Berner RA et al (2000) Isotopic fractionation and atmospheric oxygen. Science 287:1630–1633

    Article  ADS  Google Scholar 

  • Bousquet P et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  ADS  Google Scholar 

  • Bouwman AF et al (1995) Uncertainties in the global source distribution of nitrous oxide. J Geophys Res 100(2785):2800

    Google Scholar 

  • Brasseur G, Solomon S (eds) (2006) Aeronomy of the middle atmosphere. Springer, Dordrect

    Google Scholar 

  • Buick R (2007) Did the Proterozoic ‘Canfield ocean’ cause a laughing gas greenhouse? Geobiology 5:97–100

    Article  ADS  Google Scholar 

  • Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Plan Spa Lett 237:1–20

    Article  ADS  Google Scholar 

  • Catling DC et al (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth. Science 293:839–843

    Article  ADS  Google Scholar 

  • Catling DC et al (2017) Exoplanet biosignatures: a framework for their assessment. Astrobiology (submitted)

    Google Scholar 

  • Chapman S (1930) On ozone and atomic oxygen in the upper atmosphere. Lond Edin Dub Phil Mag J Sci 10:369–383

    Article  Google Scholar 

  • Court RW, Sephton MA (2012) Extrasolar planets and false atmospheric biosignatures: the role of micrometeoroids. PSS 73:233–242

    Article  Google Scholar 

  • Crisp D et al (1996) Ground-based near-infrared observations of the Venus nightside: 1.27-μm O2 (a 1Δ g) airglow from the upper atmosphere. J Geophys Res 101:4577–4593

    Article  ADS  Google Scholar 

  • Crutzen PJ (1970) The influence of nitrogen oxides upon the atmospheric ozone content. QJMS 96:320–325

    Article  Google Scholar 

  • Des Marais DJ et al (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2:153–181

    Article  ADS  Google Scholar 

  • Domagal-Goldman S et al (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11:419–441

    Article  ADS  Google Scholar 

  • Formisano V et al (2004) Detection of methane in the atmosphere of Mars. Nature 306:1758–1761

    Google Scholar 

  • Fries et al (2016) A cometary origin for Martian atmospheric methane. Geochem Persp Lett 2:10–23

    Article  Google Scholar 

  • Fujii Y et al (2017) Exoplanet biosignatures: observational prospects. Astrobiology (submitted)

    Google Scholar 

  • Gaillard F et al (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232

    Article  ADS  Google Scholar 

  • Gebauer S et al (2017) Evolution of earth-like extrasolar planetary atmospheres. Astrobiology 17:27–54

    Article  ADS  Google Scholar 

  • Godolt M et al (2015) 3D climate modeling of earth-like extrasolar planets orbiting different types of host stars. PSS 111:62–76

    Article  Google Scholar 

  • Grenfell JL (2011) Sensitivity of biomarkers to changes in chemical emissions in Earth’s Proterozoic atmosphere. Icarus 211:81–88

    Article  ADS  Google Scholar 

  • Grenfell JL et al (2007) The response of atmospheric chemistry on earthlike planets around F, G and K stars to small variations in orbital distance. PSS 55:661–671

    Article  Google Scholar 

  • Grenfell JL et al (2012) Response of atmospheric biomarkers to NO x -induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars. Astrobiology 12:1109–1122

    Article  ADS  Google Scholar 

  • Grenfell JL et al (2014) Sensitivity of biosignatures on earth-like planets orbiting in the habitable zone of cool M-dwarf stars to varying stellar UV radiation and surface biomass emissions. PSS 98:66–76

    Article  Google Scholar 

  • Guzmán-Marmolejo A et al (2013) Abiotic production of methane in terrestrial planets. Astrobiology 13:550–559

    Article  ADS  Google Scholar 

  • Haagen-Smit AJ (1952) Chem. And phys. Of Los Angeles smog. Indust Eng Chem 44:1342–1346

    Article  Google Scholar 

  • Harper DB (2000) The global chloromethane cycle: biosynthesis, biodegradation and metabolic role. Nat Prod Rep 17:337–348

    Article  Google Scholar 

  • Hedelt P et al (2013) Spectral features of earth-like planets and their detectability at different orbital distances around F, G, and K-type stars. A&A 553:A9

    Article  ADS  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University USA, Princeton

    Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers and the great oxidation event. Geochim Cos Act 66:3811–3826

    Article  ADS  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Trans R Soc A. https://doi.org/10.1098/rstb.2006.1838

  • International Panel on Climate Change (IPCC) Climate Change (2007) In: Solomon S et al (eds) The physical basis. IPCC, Geneva

    Google Scholar 

  • Kaiser J, Röckman T (2005) Absence of isotope exchange in the reaction of N2O + O(1D) and the global 17O budget of nitrous oxide. Geophys Res Lett 32:LI15808

    Article  ADS  Google Scholar 

  • Kaltenegger L et al (2007) Spectral evolution of an earth-like planet. ApJ 658:1

    Article  Google Scholar 

  • Kasting JF, Catling DC (2003) Evolution of a habitable planet. Ann Rev Astron Astrophys 41:429–463

    Article  ADS  Google Scholar 

  • Kawahara H et al (2012) Can ground-based telescopes detect the 1.27 micron absorption feature as a biomarker in exoplanets? ApJ 758:1

    Article  Google Scholar 

  • Keppler F et al (2005) New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos Chem Phys 5:2403–2411

    Article  ADS  Google Scholar 

  • Kiang NY et al (2007) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7:252–274

    Article  ADS  Google Scholar 

  • Kitzmann D et al (2011) Clouds in the atmospheres of extrasolar planets. A&A 531:A62

    Article  ADS  Google Scholar 

  • Knak Jensen SJ et al (2016) A sink for methane on Mars? The answer is blowing in the wind. Icarus 236:24–27

    Article  ADS  Google Scholar 

  • Korpela EJ et al (2015) Modeling indications of technology in planetary transit light curves – dark-side illumination. ApJ 809:2

    Article  Google Scholar 

  • Krasnopolsky VA et al (2004) Detection of methane in the martian atmosphere: evidence for life? Icarus 172:537–547

    Article  ADS  Google Scholar 

  • Krissansen-Totton J et al (2016) On detecting biosignatures from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39–67

    Article  ADS  Google Scholar 

  • Kump L (2008) The rise of atmospheric oxygen. Nature 451:277–278

    Article  ADS  Google Scholar 

  • Kump LR et al (2011) Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science 334:1694–1696

    Article  ADS  Google Scholar 

  • Lederberg J (1965) Signs of life. Nature 207:9–13

    Article  ADS  Google Scholar 

  • Lefèvre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460:720–723

    Article  ADS  Google Scholar 

  • Lenton TM, Watson AJ (2000) Redfield revisited: 2. What regulates the oxygen content of the atmosphere? Glob Biogeo Cyc 14:249–268

    Article  ADS  Google Scholar 

  • Levine GS et al (1979) N2O and CO production by electric discharge: atmospheric implications. Geophys Re Lett. https://doi.org/10.1029/GL006i007p00557

  • Lovelock JE (1965) A physical basis for life detection experiments. Nature 207:568–570

    Article  ADS  Google Scholar 

  • Margulis LM, Lovelock JE (1974) Biological modulation of the Earth’s atmosphere. Icarus 21:471–489

    Article  ADS  Google Scholar 

  • McCollom TM (2016) Abiotic methane formation during experimental serpentinization of olivine. PNAS 113:13,965–13,970

    Article  Google Scholar 

  • Meadows V et al (2017a) Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17:1022–1052

    Article  ADS  Google Scholar 

  • Meadows V et al (2017b) Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology (submitted)

    Google Scholar 

  • Misra A et al (2014) Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14:67–86

    Article  ADS  Google Scholar 

  • Montmessin F et al (2011) A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216:82–85

    Article  ADS  Google Scholar 

  • Morrison D, Owen T (2003) The planetary system, 3rd edn. Reading

    Google Scholar 

  • Muller C (2013) N2O as a biomarker: from the earth and solar system to exoplanets. Astrophys Spa Sci Proc 35:99–106

    Article  Google Scholar 

  • Mumma MJ et al (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1044

    Article  ADS  Google Scholar 

  • Mvondo NM et al (2010) The production of nitrogen oxides by lightning and coronal discharges in simulated early earth, venus and mars environments. Adv Spa Res 27:217–223

    Article  Google Scholar 

  • Noack L, Breuer D (2014) Plate tectonics on rocky exoplanets: influence of initial conditions and mantle rheology. PSS 98:41–49

    Article  Google Scholar 

  • O’Malley-James JT et al (2014) Swansong biospheres II: the final signs of life on terrestrial exoplanets near the end of their habitable lifetimes. Int J Astrobiol 13:229–243

    Article  Google Scholar 

  • Perrier S et al (2006) Global distribution of total ozone on Mars from SPCAM/MEX UV measurements. J Geophys Res 111:E9

    Article  Google Scholar 

  • Pilcher CB (2004) Astrobiol. Biosignatures Early Earths 3:471–486

    Google Scholar 

  • Rauer H et al (2011) Potential biosignatures in super-earth atmospheres I. Spectral appearance of super-earths around M dwarfs. A&A 529:A8

    Article  ADS  Google Scholar 

  • Raymond SN et al (2007) High-resolution simulations of the final assembly of earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7:66–84

    Article  ADS  Google Scholar 

  • Rein et al (2014) Some inconvenient truths about biosignatures involving two chemical species on earth-like exoplanets. PNAS 111:6871–6875

    Article  ADS  Google Scholar 

  • Reinhard et al (2017) False negatives for remote life detection on ocean-bearing planets: lessons from the early earth. Astrobiology 17:287–297. (accepted)

    Article  ADS  Google Scholar 

  • Ricker GR et al (2014) Transiting exoplanet survey satellite. Astron Telesc Instrum Syst 1:014003

    Article  ADS  Google Scholar 

  • Roberson AL et al (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic eon. Geobiology 9:313–320

    Article  Google Scholar 

  • Robinson TD et al (2011) Modeling the infrared spectrum of the earth-moon system. ApJ 741:1–9

    Article  ADS  Google Scholar 

  • Rodler F, López-Morales M (2014) Feasibility studies for the detection of O2 in an earth-like exoplanet. ApJ 781:1

    Article  Google Scholar 

  • Rugheimer S et al (2015) Effect of UV on the spectral fingerprints of earth-like planets orbiting M-stars. Astrobiology 809:1–16

    Google Scholar 

  • Sagan C et al (1994) A search for life on earth from the Galileo spacecraft. Nature 365:375–377

    Google Scholar 

  • Samarkin VA et al (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geophys 3:341–344

    Google Scholar 

  • Schwieterman E et al (2017) Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology (submitted)

    Google Scholar 

  • Seager S et al (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390

    Article  ADS  Google Scholar 

  • Seager S et al (2013) Biosignature gases in H2-dominated atmospheres on rocky planets. ApJ 777:2

    Article  ADS  Google Scholar 

  • Seager S et al (2016) Toward a list of molecules as potential biosignature gases for the search for life on exoplanets and applications to terrestrial biochemistry. Astrobiology 16:465–485

    Article  ADS  Google Scholar 

  • Segura A et al (2003) Ozone concentrations and ultraviolet fluxes on earth-like planets around other stars. Astrobiology 3:689–708

    Article  ADS  Google Scholar 

  • Segura A et al (2005) Biosignatures from earth-like planets around M-stars. Astrobiology 5:706–725

    Article  ADS  Google Scholar 

  • Segura A et al (2010) The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M-dwarf. Astrobiology 10:751–771

    Article  ADS  Google Scholar 

  • Selsis F et al (2002) Signature of life on exoplanets: can Darwin produce false positive detections? A&A 388:985–1003

    Article  ADS  Google Scholar 

  • Simoncini E et al (2013) Quantifying drivers of chemical disequilibrium: theory and application to methane in Earth’s atmosphere. Earth Sys Dyn 4:317–331

    Article  ADS  Google Scholar 

  • Slanger TG, Copeland RA (2003) Energetic oxygen in the upper atmosphere and the laboratory. Chem Rev 103:4731–4766

    Article  Google Scholar 

  • Snellen I (2014) High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-earths. Phil Trans A 372

    Google Scholar 

  • Stolarski RJ, Cicerone RS (1974) Stratospheric chlorine: a possible sink for ozone. Can J Chem 52:1610–1615

    Article  Google Scholar 

  • Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26

    Article  ADS  Google Scholar 

  • Tabataba-Vakili F et al (2016) Atmospheric effects of stellar cosmic rays on earth-like exoplanets orbiting M-dwarfs. A&A 585:A96

    Article  ADS  Google Scholar 

  • van Capellan P, Ingall ED (1996) Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271:493

    Article  ADS  Google Scholar 

  • von Paris P et al (2011) Spectroscopic characterization of the atmospheres of potentially habitable planets: Gl581d as a model case study. A&A 534:A26

    Article  ADS  Google Scholar 

  • von Paris P et al (2013) Characterization of potentially habitable planets: retrieval of atmospheric

    Google Scholar 

  • Walker SI et al (2017) Exoplanet biosignatures: future directions. Astrobiology (submitted)

    Google Scholar 

  • Wayne RP (1993) Chemistry of atmospheres, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Webster CR et al (2015) Mars methane detection and variability at gale crater. Science 412:415

    Article  ADS  Google Scholar 

  • Werner M et al (2016) Extension of ATLAST/LUVOIR’s capabilities to 5 microns or beyond. SPIE 041205

    Google Scholar 

  • World Meteorological Organization (WMO) (1995) Scientific assessment of ozone depletion: 1994. Report Number 37. WMO, Geneva

    Google Scholar 

  • Yan F et al (2015) High-resolution transmission spectrum of the Earth’s atmosphere-seeing earth as an exoplanet using a lunar eclipse. Int J Astrobiol 14:255–266

    Article  Google Scholar 

  • Yang J et al (2013) Stabilising cloud feedback dramatically expands the habitable zone of tidally-locked planets. ApJL 771:2

    Article  Google Scholar 

  • Yung YL, DeMore WB (1999) Photochemistry of planetary atmospheres. Oxford University Press, Oxford

    Google Scholar 

  • Zahnle K et al (2011) Is there methane on Mars? Icarus 212:493–503

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lee Grenfell .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grenfell, J.L. (2018). Atmospheric Biosignatures. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_68-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_68-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics